Appetite Predicts Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Patient Selection
2.3. Definition of Variables
2.4. PCI Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet 2003, 361, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Kimura, T.; Ishihara, M.; Nakagawa, Y.; Nakao, K.; Miyauchi, K.; Sakamoto, T.; Tsujita, K.; Hagiwara, N.; Miyazaki, S.; et al. JCS 2018 Guideline on Diagnosis and Treatment of Acute Coronary Syndrome. Circ. J. 2019, 83, 1085–1196. [Google Scholar] [CrossRef]
- Goldberg, R.J.; Currie, K.; White, K.; Brieger, D.; Steg, P.G.; Goodman, S.G.; Dabbous, O.; Fox, K.A.; Gore, J.M. Six-month outcomes in a multinational registry of patients hospitalized with an acute coronary syndrome (the Global Registry of Acute Coronary Events [GRACE]). Am. J. Cardiol. 2004, 93, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Puymirat, E.; Simon, T.; Cayla, G.; Cottin, Y.; Elbaz, M.; Coste, P.; Lemesle, G.; Motreff, P.; Popovic, B.; Khalife, K.; et al. Acute Myocardial Infarction: Changes in Patient Characteristics, Management, and 6-Month Outcomes Over a Period of 20 Years in the FAST-MI Program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation 2017, 136, 1908–1919. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, H.; Dhuromsingh, M.; Dai, L.; Jiang, Y.; Zeng, H. Evaluation of C-reactive protein as predictor of adverse prognosis in acute myocardial infarction after percutaneous coronary intervention: A systematic review and meta-analysis from 18,715 individuals. Front. Cardiovasc. Med. 2022, 9, 1013501. [Google Scholar] [CrossRef] [PubMed]
- Yahud, E.; Schilo, T.; Nevzorov, R.; Asher, E.; Bryk, G.; Laish-Farkash, A.; Lev, E.I. Immature platelet fraction over time and clinical outcomes in patients with acute myocardial infarction. Int. J. Lab. Hematol. 2021, 43, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, E.; Khanam, S.S.; Son, J.W.; Youn, Y.J.; Ahn, M.S.; Ahn, S.G.; Kim, J.Y.; Lee, S.H.; Yoon, J.; et al. Prognostic value of short-term follow-up B-type natriuretic peptide levels after hospital discharge in patients with acute myocardial infarction. Int. J. Cardiol. 2019, 289, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.; Park, S.Y.; Cha, Y.S.; Park, H.C.; Kim, D.H.; Lee, Y.K. The change in Geriatric Nutritional Risk Index is associated with mortality in patients who start hemodialysis: Korean Renal Data Registry, 2016–2018. Sci. Rep. 2022, 12, 20352. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, Y.; Sota, T.; Kamitani, H.; Nakayama, N.; Nakamura, K.; Hirai, M.; Yanagihara, K.; Kato, M.; Ono, T.; Takahashi, M.; et al. Diagnostic performance of nutritional indicators in patients with heart failure. ESC Heart Fail. 2022, 9, 2096–2106. [Google Scholar] [CrossRef]
- Sun, T.; Ma, M.; Huang, X.; Zhang, B.; Chen, Z.; Zhao, Z.; Zhou, Y. Prognostic impacts of geriatric nutritional risk index in patients with ischemic heart failure after percutaneous coronary intervention. Clin. Nutr. 2023, 42, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Kamiya, K.; Hamazaki, N.; Nozaki, K.; Uchida, S.; Maekawa, E.; Yamaoka-Tojo, M.; Ako, J. Predictive value of cholinesterase in patients with heart failure: A new blood biochemical marker of undernutrition. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1914–1922. [Google Scholar] [CrossRef]
- Candeloro, M.; Di Nisio, M.; Balducci, M.; Genova, S.; Valeriani, E.; Pierdomenico, S.D.; Porreca, E. Prognostic nutritional index in elderly patients hospitalized for acute heart failure. ESC Heart Fail. 2020, 7, 2479–2484. [Google Scholar] [CrossRef] [PubMed]
- Kanda, D.; Ikeda, Y.; Takumi, T.; Tokushige, A.; Sonoda, T.; Arikawa, R.; Anzaki, K.; Kosedo, I.; Ohishi, M. Impact of nutritional status on prognosis in acute myocardial infarction patients undergoing percutaneous coronary intervention. BMC Cardiovasc. Disord. 2022, 22, 3. [Google Scholar] [CrossRef]
- Kim, H.R.; Kang, M.G.; Kim, K.; Koh, J.S.; Park, J.R.; Hwang, S.J.; Jeong, Y.H.; Ahn, J.H.; Park, Y.; Bae, J.S.; et al. Comparative analysis of three nutrition scores in predicting mortality after acute myocardial infarction. Nutrition 2021, 90, 111243. [Google Scholar] [CrossRef]
- Yamamoto, E.; Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Ozasa, N.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; et al. Appetite loss at discharge from acute decompensated heart failure: Observation from KCHF registry. PLoS ONE 2022, 17, e0267327. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Sakakura, K.; Yuri, K.; Nomura, Y.; Tamanaha, Y.; Akashi, N.; Tsukui, T.; Yamamoto, K.; Wada, H.; Momomura, S.I.; et al. Appetite Predicts Clinical Outcomes in High Risk Patients Undergoing Trans-Femoral TAVI. Int. Heart J. 2019, 60, 1350–1357. [Google Scholar] [CrossRef]
- Shutta, R.; Nakatani, D.; Sakata, Y.; Hikoso, S.; Mizuno, H.; Suna, S.; Kitamura, T.; Okada, K.; Dohi, T.; Kojima, T.; et al. Hydrophilic vs. Lipophilic Statins in Diabetic Patients—Comparison of Long-Term Outcomes after Acute Myocardial Infarction. Circ. Rep. 2020, 2, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Sakakura, K.; Asada, S.; Taniguchi, Y.; Jinnouchi, H.; Tsukui, T.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Factors associated with difficulty in crossing the culprit lesion of acute myocardial infarction. Sci. Rep. 2021, 11, 21403. [Google Scholar] [CrossRef]
- Ishibashi, S.; Sakakura, K.; Asada, S.; Taniguchi, Y.; Yamamoto, K.; Tsukui, T.; Seguchi, M.; Jinnouchi, H.; Wada, H.; Fujita, H. Clinical Factors Associated with Long Fluoroscopy Time in Percutaneous Coronary Interventions to the Culprit Lesion of Non-ST-Segment Elevation Myocardial Infarction. Int. Heart J. 2021, 62, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Association of peak C-reactive protein with long-term clinical outcomes in patients with ST-segment elevation myocardial infarction. Heart Vessel. 2023, 38, 764–772. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Seguchi, M.; Sakakura, K.; Tsukui, T.; Yamamoto, K.; Taniguchi, Y.; Wada, H.; Momomura, S.I.; Fujita, H. Determinants of In-Hospital Death among the Very Elderly with Acute Myocardial Infarction. Int. Heart J. 2020, 61, 879–887. [Google Scholar] [CrossRef]
- Liu, L.; Qian, J.; Li, Y.; Ni, Y.; Zhao, Y.; Che, L. Effects of obesity on short-term mortality in patients with acute heart failure under different nutritional status. BMC Cardiovasc. Disord. 2023, 23, 221. [Google Scholar] [CrossRef]
- Baldemir, R.; Öztürk, A.; Eraslan Doganay, G.; Cirik, M.O.; Alagoz, A. Evaluation of Nutritional Status in Hospitalized Chronic Obstructive Pulmonary Disease Patients and Can C-reactive Protein-to-Albumin Ratio Be Used in the Nutritional Risk Assessment in These Patients. Cureus 2022, 14, e21833. [Google Scholar] [CrossRef]
- Askin, L.; Tanriverdi, O.; Tibilli, H.; Turkmen, S. Prognostic value of C-reactive protein/albumin ratio in ST-segment elevation myocardial infarction. Interv. Med. Appl. Sci. 2020, 11, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Grinstead, C.; George, T.; Han, B.; Yoon, S.L. Associations of Overall Survival with Geriatric Nutritional Risk Index in Patients with Advanced Pancreatic Cancer. Nutrients 2022, 14, 3800. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Shibata, R.; Miyagaki, Y.; Takemoto, K.; Ishikawa, S.; Murohara, T.; Watarai, M. A Comparative Study of Three Nutritional Risk/Screening Indices for Predicting Cardiac Events and Physical Functioning among Patients with Acute Heart Failure. Int. Heart J. 2022, 63, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Westmoreland, P.; Krantz, M.J.; Mehler, P.S. Medical Complications of Anorexia Nervosa and Bulimia. Am. J. Med. 2016, 129, 30–37. [Google Scholar] [CrossRef]
- Maeda, H.; Michiue, T.; Zhu, B.L.; Ishikawa, T.; Quan, L.; Bessho, Y.; Okazaki, S.; Kamikodai, Y.; Tsuda, K.; Komatsu, A.; et al. Potential risk factors for sudden cardiac death: An analysis of medicolegal autopsy cases. Leg. Med. 2009, 11 (Suppl. S1), S263–S265. [Google Scholar] [CrossRef] [PubMed]
- Gharib, M.S.; Nazeih, M.S.; El Said, T.W. Effect of intradialytic oral nutritional supplementation on nutritional markers in malnourished chronic hemodialysis patients: Prospective randomized trial. BMC Nephrol. 2023, 24, 125. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yu, X.L.; Lu, B.; Shang, Y.Y.; Shen, L.F.; Li, Y.L.; Zhang, W.; Zhong, M.; Han, L.; Wang, Z.H. Malnutrition and infection lead to poor prognosis and heavy financial burden of patients with chronic heart failure. Front. Cardiovasc. Med. 2022, 9, 1045262. [Google Scholar] [CrossRef]
- Tsutsui, H.; Isobe, M.; Ito, H.; Ito, H.; Okumura, K.; Ono, M.; Kitakaze, M.; Kinugawa, K.; Kihara, Y.; Goto, Y.; et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure—Digest Version. Circ. J. 2019, 83, 2084–2184. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.J.; Ibrahim, K.; Sayer, A.A.; Robinson, S.M.; Roberts, H.C. Assessment and Treatment of the Anorexia of Aging: A Systematic Review. Nutrients 2019, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Fauerbach, J.A.; Bush, D.E.; Thombs, B.D.; McCann, U.D.; Fogel, J.; Ziegelstein, R.C. Depression following acute myocardial infarction: A prospective relationship with ongoing health and function. Psychosomatics 2005, 46, 355–361. [Google Scholar] [CrossRef]
- Anderson, K.C.; Hasan, F.; Grammer, E.E.; Kranz, S. Endogenous Ghrelin Levels and Perception of Hunger: A Systematic Review and Meta-Analysis. Adv. Nutr. 2023, 14, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.H.; Hage, C.; Pironti, G.; Thorvaldsen, T.; Ljung-Faxén, U.; Zabarovskaja, S.; Shahgaldi, K.; Webb, D.L.; Hellström, P.M.; Andersson, D.C.; et al. Acyl ghrelin improves cardiac function in heart failure and increases fractional shortening in cardiomyocytes without calcium mobilization. Eur. Heart J. 2023, 44, 2009–2025. [Google Scholar] [CrossRef]
- Kida, K.; Miyajima, I.; Suzuki, N.; Greenberg, B.H.; Akashi, Y.J. Nutritional management of heart failure. J. Cardiol. 2023, 81, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Nakatsu, N.; Sawa, R.; Misu, S.; Ueda, Y.; Ono, R. Reliability and validity of the Japanese version of the simplified nutritional appetite questionnaire in community-dwelling older adults. Geriatr. Gerontol. Int. 2015, 15, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
All (n = 1006) | Good Appetite Group (n = 860) | Poor Appetite Group (n = 146) | p-Value | |
---|---|---|---|---|
Age, years | 69.5 ± 12.5 | 68.6 ± 12.6 | 74.5 ± 10.7 | <0.001 |
male, n (%) | 764 (75.9) | 681 (79.2) | 83 (56.8) | <0.001 |
Physical examination | ||||
Body mass index (kg/m2) | 24.3 ± 5.9 | 24.5 ± 6.2 | 23.1 ± 3.8 | <0.001 |
Systolic blood pressure at admission (mmHg) | 143.8 ± 31.6 | 144.6 ± 30.1 | 139.0 ± 36.0 | 0.056 |
Diastolic blood pressure at admission (mmHg) | 82.5 ± 20.4 | 83.1 ± 19.8 | 78.8 ± 23.2 | 0.009 |
Heart rate at admission (beat per minute) | 81.4 ± 22.2 | 80.5 ± 21.4 | 86.7 ± 25.9 | 0.001 |
Underlying disease | ||||
Hypertension, n (%) | 835 (83.0) | 716 (83.3) | 119 (81.5) | 0.603 |
Diabetes mellitus, n (%) | 547/1005 (44.1) | 380/859 (44.2) | 63 (43.2) | 0.807 |
Dyslipidemia, n (%) | 622/1005 (61.9) | 531/859 (61.8) | 91 (62.3) | 0.906 |
Hemodialysis, n (%) | 76 (7.6) | 54 (6.3) | 22 (15.1) | <0.001 |
History of previous PCI, n (%) | 191 (19.0) | 158 (18.4) | 33 (22.6) | 0.228 |
History of previous CABG, n (%) | 34 (3.4) | 27 (3.1) | 7 (4.8) | 0.306 |
History of previous MI, n (%) | 119 (11.8) | 103 (12.0) | 16 (11.0) | 0.725 |
Current smoker, n (%) | 332/989 (33.6) | 303/844 (35.9) | 29/145 (20.0) | <0.001 |
Medication before admission | ||||
Aspirin, n (%) | 299/1002 (29.8) | 252/856 (29.4) | 47 (32.2) | 0.502 |
Thienopyridine, n (%) | 160/1002 (16.0) | 135/856 (15.8) | 25 (15.6) | 0.680 |
Beta-blocker, n (%) | 219/985 (22.2) | 181/841 (21.5) | 38/144 (26.4) | 0.194 |
ACE-inhibitor, ARB, n (%) | 378/986 (38.3) | 316/842 (37.5) | 62/144 (43.1) | 0.208 |
Calcium channel blocker, n (%) | 386/984 (39.2) | 319/840 (38.0) | 67/144 (46.5) | 0.052 |
Statin, n (%) | 349/990 (35.3) | 292/846 (34.5) | 57/144 (39.6) | 0.239 |
Diuretic, n (%) | 135/988 (13.7) | 111/844 (13.2) | 24/144 (16.7) | 0.256 |
Hypoglycemic agents, n (%) | 265/993 (26.7) | 225/849 (26.5) | 40/144 (27.8) | 0.749 |
Insulin, n (%) | 69/994 (6.9) | 62/849 (7.3) | 7/145 (4.8) | 0.278 |
Laboratory data at admission | ||||
Albumin (g/dL) | 3.92 ± 0.52 (n = 1005) | 3.96 ± 0.51 (n = 859) | 3.69 ± 0.52 | <0.001 |
Serum creatinine (mg/dL) | 1.49 ± 2.07 | 1.39 ± 1.90 | 2.08 ± 2.84 | <0.001 |
Estimated GFR (ml/min/1.73 m2) | 63.5 ± 29.2 (n = 1005) | 65.4 ± 28.8 (n = 859) | 52.0 ± 29.4 | <0.001 |
Hemoglobin (g/dL) | 13.3 ± 2.13 | 13.5 ± 2.08 | 12.4 ± 2.16 | <0.001 |
BNP (pg/mL) | 385.4 ± 669.5 (n = 958) | 334.8 ± 584.1 (n = 824) | 696.2 ± 1000.4 (n = 134) | <0.001 |
LVEF, n (%) | 53.1 ± 13.6 (n = 1002) | 53.5 ± 13.3 (n = 856) | 50.9 ± 15.0 | 0.070 |
Killip class | <0.001 | |||
1 or 2 | 832 (82.7) | 731 (85.0) | 101 (69.2) | |
3 | 110 (10.9) | 81 (9.4) | 29 (19.9) | |
4 | 64 (6.4) | 48 (5.6) | 16 (11.0) | |
Cardiac arrest at prehospital or ER, n (%) | 27 (2.7) | 24 (2.8) | 3 (2.1) | 0.611 |
STEMI (vs NSTEMI) | 576 (57.3) | 503 (58.5) | 73 (50.0) | 0.055 |
Modified KATZ index | <0.001 | |||
0 | 506 (50.3) | 471 (54.8) | 35 (24.0) | |
1 | 157 (15.6) | 144 (16.7) | 13 (8.9) | |
2 | 124 (12.3) | 101 (11.7) | 23 (15.8) | |
3 | 60 (6.0) | 46 (5.3) | 14 (9.6) | |
4 | 43 (4.3) | 31 (3.6) | 12 (8.2) | |
5 | 59 (5.9) | 38 (4.4) | 21 (14.4) | |
6 | 57 (3.3) | 29 (3.4) | 28 (19.2) |
All (n = 1006) | Good Appetite Group (n = 860) | Poor Appetite Group (n = 146) | p-Value | |
---|---|---|---|---|
Culprit lesion | 0.501 | |||
Left main—left anterior descending artery, n (%) | 498 (49.5) | 422 (49.1) | 76 (52.1) | |
Right coronary artery, n (%) | 345 (34.3) | 294 (34.2) | 51 (34.9) | |
Left circumflex, n (%) | 154 (15.3) | 135 (15.7) | 19 (13.0) | |
Graft, n (%) | 9 (0.9) | 9 (1.0) | 0 (0) | |
Number of narrowed coronary arteries | 0.308 | |||
1 vessel disease, n (%) | 445 (44.2) | 381 (44.3) | 64 (43.8) | |
2 vessel disease, n (%) | 337 (33.5) | 294 (34.2) | 43 (29.5) | |
3 vessel disease, n (%) | 224 (22.3) | 185 (21.5) | 39 (26.7) | |
Left main trunk lesion, n (%) | 96 (9.5) | 77 (9.0) | 19 (13.0) | 0.123 |
Initial TIMI flow grade of the culprit | 0.768 | |||
0 | 373 (37.1) | 322 (37.4) | 51 (34.9) | |
1 | 83 (8.3) | 70 (8.1) | 13 (8.9) | |
2 | 163 (16.2) | 142 (16.5) | 21 (14.4) | |
3 | 387 (38.5) | 326 (37.9) | 61 (41.8) | |
Final TIMI flow grade of the culprit | 0.934 | |||
0 | 0 | 0 | 0 | |
1 | 7 (0.7) | 6 (0.7) | 1 (0.7) | |
2 | 17 (1.7) | 14 (1.6) | 3 (2.1) | |
3 | 982 (97.6) | 840 (97.7) | 142 (97.3) | |
Lesion length (mm) | 15.4 ± 9.53 | 15.1 ± 9.04 | 16.7 ± 11.9 | 0.336 |
Reference diameter (mm) | 2.54 ± 0.74 | 2.54 ± 0.75 | 2.51 ± 0.70 | 0.848 |
PCI procedure | 0.191 | |||
Plain old balloon angioplasty, n (%) | 37 (3.7) | 29 (3.4) | 8 (5.5) | |
Aspiration only, n (%) | 5 (0.5) | 4 (0.5) | 1 (0.7) | |
Drug coating balloon angioplasty, n (%) | 36 (3.6) | 28 (3.3) | 8 (5.5) | |
Bare metal stent, n (%) | 17 (1.7) | 13 (1.5) | 4 (2.7) | |
Drug-eluting stent, n (%) | 899 (89.4) | 778 (90.5) | 121 (82.9) | |
POBA and aspiration, n (%) | 6 (0.6) | 4 (0.5) | 2 (1.4) | |
Other, n (%) | 6 (0.6) | 4 (0.5) | 2 (1.4) | |
Temporary pacemaker, n (%) | 65 (6.5) | 57 (6.6) | 8 (5.5) | 0.602 |
Intra-aortic balloon pumping support, n (%) | 72 (7.2) | 56 (6.5) | 16 (11.0) | 0.054 |
V-A ECMO, n (%) | 10 (1.0) | 9 (1.0) | 1 (0.7) | 0.684 |
All (n = 1006) | Good Appetite Group (n = 860) | Poor Appetite Group (n = 146) | p-Value | |
---|---|---|---|---|
MACE, n (%) | 243 (24.2) | 181 (21.0) | 62 (42.5) | <0.001 |
All-cause death, n (%) | 109 (10.8) | 73 (8.5) | 36 (24.7) | <0.001 |
Non-fatal myocardial infarction, n (%) | 90 (8.9) | 70 (8.1) | 20 (13.7) | 0.030 |
Re-admission for heart failure, n (%) | 103 (10.2) | 83 (9.7) | 20 (13.7) | 0.136 |
Composite Endpoint | Hazard Ratios | 95% Confidence Interval | p Value |
---|---|---|---|
MACE | |||
Good appetite | Reference | ||
Unadjusted poor appetite | 2.204 | 1.651–2.941 | <0.001 |
Adjusted poor appetite | 1.698 | 1.243–2.319 | <0.001 |
All-cause death | |||
Good appetite | Reference | ||
Unadjusted poor appetite | 3.167 | 2.124–4.723 | <0.001 |
Adjusted poor appetite | 2.090 | 1.355–3.225 | 0.001 |
Non-fatal myocardial infarction | |||
Good appetite | Reference | ||
Unadjusted poor appetite | 1.874 | 1.140–3.083 | 0.013 |
Adjusted poor appetite | 2.023 | 1.187–3.448 | 0.010 |
Re-admission for heart failure | |||
Good appetite | Reference | ||
Unadjusted poor appetite | 1.527 | 0.937–2.489 | 0.089 |
Adjusted poor appetite | 1.124 | 0.669–1.889 | 0.658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishibashi, S.; Sakakura, K.; Ikeda, T.; Taniguchi, Y.; Jinnouchi, H.; Tsukui, T.; Watanabe, Y.; Hatori, M.; Yamamoto, K.; Seguchi, M.; et al. Appetite Predicts Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction. J. Clin. Med. 2023, 12, 6134. https://doi.org/10.3390/jcm12196134
Ishibashi S, Sakakura K, Ikeda T, Taniguchi Y, Jinnouchi H, Tsukui T, Watanabe Y, Hatori M, Yamamoto K, Seguchi M, et al. Appetite Predicts Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine. 2023; 12(19):6134. https://doi.org/10.3390/jcm12196134
Chicago/Turabian StyleIshibashi, Shun, Kenichi Sakakura, Tomoya Ikeda, Yousuke Taniguchi, Hiroyuki Jinnouchi, Takunori Tsukui, Yusuke Watanabe, Masashi Hatori, Kei Yamamoto, Masaru Seguchi, and et al. 2023. "Appetite Predicts Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction" Journal of Clinical Medicine 12, no. 19: 6134. https://doi.org/10.3390/jcm12196134
APA StyleIshibashi, S., Sakakura, K., Ikeda, T., Taniguchi, Y., Jinnouchi, H., Tsukui, T., Watanabe, Y., Hatori, M., Yamamoto, K., Seguchi, M., & Fujita, H. (2023). Appetite Predicts Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine, 12(19), 6134. https://doi.org/10.3390/jcm12196134