Perinatal Outcomes of Monochorionic Twin Pregnancies Conceived Naturally Versus through Assisted Reproductive Techniques
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, A.; Copen, C.E.; Stephen, E.H. Infertility and impaired fecundity in the United States, 1982–2010: Data from the National Survey of Family Growth. Natl. Health Stat. Rep. 2013, 14, 1–8. [Google Scholar]
- Marques-Pinto, A.; Carvalho, D. Human infertility: Are endocrine disruptors to blame? Endocr. Connect. 2013, 2, R15–R29. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, F.; Souza, R.P.; Bento, J.C.; Teixeira, J.J.; Maria-Engler, S.S.; Bonini, M.G.; Consolaro, M.E. Male infertility: A public health issue caused by sexually transmitted pathogens. Nat. Rev. Urol. 2014, 11, 672–687. [Google Scholar] [CrossRef] [PubMed]
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Majzoub, A.; Parekh, N.; Henkel, R. A Schematic Overview of the Current Status of Male Infertility Practice. World J. Mens. Health 2020, 38, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.; Finelli, R.; Agarwal, A.; Henkel, R. Diagnostic value of routine semen analysis in clinical andrology. Andrologia 2021, 53, e13614. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Roy, P.; Corbitt, C.; Kakar, S.S. Application of Stem Cell Therapy for Infertility. Cells 2021, 10, 1613. [Google Scholar] [CrossRef] [PubMed]
- Borumandnia, N.; Alavi Majd, H.; Khadembashi, N.; Alaii, H. Worldwide trend analysis of primary and secondary infertility rates over past decades: A cross-sectional study. Int. J. Reprod. Biomed. 2022, 20, 37–46. [Google Scholar] [CrossRef]
- Kundu, S.; Ali, B.; Dhillon, P. Surging trends of infertility and its behavioural determinants in India. PLoS ONE 2023, 18, e0289096. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Mamuris, Z. Male Infertility: From Genes to Genomes 2022. Genes 2023, 14, 959. [Google Scholar] [CrossRef]
- Sang, Q.; Ray, P.F.; Wang, L. Understanding the genetics of human infertility. Science 2023, 380, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012, 9, e1001356. [Google Scholar] [CrossRef] [PubMed]
- Chiware, T.M.; Vermeulen, N.; Blondeel, K.; Farquharson, R.; Kiarie, J.; Lundin, K.; Matsaseng, T.C.; Ombelet, W.; Toskin, I. IVF and other ART in low- and middle-income countries: A systematic landscape analysis. Hum. Reprod. Update 2021, 27, 213–228. [Google Scholar] [CrossRef]
- Niederberger, C.; Pellicer, A.; Cohen, J.; Gardner, D.K.; Palermo, G.D.; O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Cobo, A.; Swain, J.E.; et al. Forty years of IVF. Fertil Steril 2018, 110, 185–324.e5. [Google Scholar] [CrossRef] [PubMed]
- de Ziegler, D.; Toner, J.P. Fertility workups: The times they are a-changin’. Fertil Steril 2022, 118, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Sunderam, S.; Kissin, D.M.; Zhang, Y.; Folger, S.G.; Boulet, S.L.; Warner, L.; Callaghan, W.M.; Barfield, W.D. Assisted Reproductive Technology Surveillance—United States, 2016. MMWR Surveill. Summ. 2019, 68, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, S.C.; Wickins-Drazilova, D.; Wickins, J. The ethics of fertility treatment for same-sex male couples: Considerations for a modern fertility clinic. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 244, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Hemalal, S.; Yee, S.; Ross, L.; Loutfy, M.; Librach, C. Same-sex male couples and single men having children using assisted reproductive technology: A quantitative analysis. Reprod. Biomed. Online 2021, 42, 1033–1047. [Google Scholar] [CrossRef]
- Brandao, P.; de Pinho, A.; Ceschin, N.; Sousa-Santos, R.; Reis-Soares, S.; Bellver, J. ROPA—Lesbian shared in vitro fertilization—Ethical aspects. Eur. J. Obs. Gynecol. Reprod. Biol. 2022, 272, 230–233. [Google Scholar] [CrossRef]
- Brandao, P.; Ceschin, N.; Cruz, F.; Sousa-Santos, R.; Reis-Soares, S.; Bellver, J. Similar reproductive outcomes between lesbian-shared IVF (ROPA) and IVF with autologous oocytes. J. Assist. Reprod. Genet. 2022, 39, 2061–2067. [Google Scholar] [CrossRef]
- Wrande, T.; Kristjansdottir, B.H.; Tsiartas, P.; Hadziosmanovic, N.; Rodriguez-Wallberg, K.A. Live birth, cumulative live birth and perinatal outcome following assisted reproductive treatments using donor sperm in single women vs. women in lesbian couples: A prospective controlled cohort study. J. Assist. Reprod. Genet. 2022, 39, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Diez, M.; Gonzalez, M.; Morgado, B. Single mothers by choice in Spain: Parenting and psychosocial adjustment in adopted and ART children. J. Fam. Psychol. 2021, 35, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Volgsten, H.; Schmidt, L. Exploring Swedish single women’s decision to choose motherhood through medically assisted reproduction—A qualitative study. Hum. Fertil. (Camb.) 2023, 26, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Cobo, A.; Garcia-Velasco, J.A.; Remohi, J.; Pellicer, A. Oocyte vitrification for fertility preservation for both medical and nonmedical reasons. Fertil Steril 2021, 115, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Bakkensen, J.B.; Goldman, K.N. After the thaw: When patients return to use cryopreserved oocytes. Fertil Steril 2021, 115, 1437–1438. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M. Fertility preservation in men and women: Where are we in 2021? Are we rising to the challenge? Fertil Steril 2021, 115, 1089–1090. [Google Scholar] [CrossRef] [PubMed]
- Multifetal Gestations: Twin, Triplet, and Higher-Order Multifetal Pregnancies: ACOG Practice Bulletin, Number 231. Obs. Gynecol 2021, 137, e145–e162. [CrossRef]
- Bonnelykke, B. Maternal age and parity as predictors of human twinning. Acta Genet. Med. Gemellol. 1990, 39, 329–334. [Google Scholar] [CrossRef]
- Bortolus, R.; Parazzini, F.; Chatenoud, L.; Benzi, G.; Bianchi, M.M.; Marini, A. The epidemiology of multiple births. Hum Reprod Update 1999, 5, 179–187. [Google Scholar] [CrossRef]
- McLennan, A.S.; Gyamfi-Bannerman, C.; Ananth, C.V.; Wright, J.D.; Siddiq, Z.; D’Alton, M.E.; Friedman, A.M. The role of maternal age in twin pregnancy outcomes. Am. J. Obs. Gynecol. 2017, 217, 80.e1–80.e8. [Google Scholar] [CrossRef]
- Bulmer, M.G. The Biology of Twinning in Man; Clarendon Press: Oxford, UK, 1970. [Google Scholar]
- Crawford, N.M.; Steiner, A.Z. Age-related infertility. Obs. Gynecol. Clin. N. Am. 2015, 42, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Attali, E.; Yogev, Y. The impact of advanced maternal age on pregnancy outcome. Best Pract. Res. Clin. Obs. Gynaecol. 2021, 70, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Rodgers, M.; Baschat, A.; Bhide, A.; Gratacos, E.; Hecher, K.; Kilby, M.D.; Lewi, L.; Nicolaides, K.H.; Oepkes, D.; et al. ISUOG Practice Guidelines: Role of ultrasound in twin pregnancy. Ultrasound Obs. Gynecol. 2016, 47, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Styer, A.K.; Wright, D.L.; Wolkovich, A.M.; Veiga, C.; Toth, T.L. Single-blastocyst transfer decreases twin gestation without affecting pregnancy outcome. Fertil Steril 2008, 89, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Min, J.K.; Hughes, E.; Young, D.; Joint Sogc-Cfas Clinical Practice Guidelines, C.; Reproductive, E.; Infertility, C. Elective single embryo transfer following in vitro fertilization. J. Obs. Gynaecol. Can. 2010, 32, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Tobias, T.; Sharara, F.I.; Franasiak, J.M.; Heiser, P.W.; Pinckney-Clark, E. Promoting the use of elective single embryo transfer in clinical practice. Fertil Res. Pract. 2016, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, K.K.; Berglund, L.; Tilly, J.; Hadziosmanovic, N.; Brodin, T.; Holte, J. Construction and validation of a prediction model to minimize twin rates at preserved high live birth rates after IVF. Reprod. Biomed. Online 2019, 38, 22–29. [Google Scholar] [CrossRef]
- Huang, X.; Liu, R.; Shen, W.; Cai, Y.; Ding, M.; Sun, H.; Zhou, J. An elective single cleavage embryo transfer strategy to minimize twin live birth rate based on a prediction model from double cleavage embryos transfer patients. J. Matern. Fetal. Neonatal. Med. 2022, 35, 1775–1782. [Google Scholar] [CrossRef]
- Kawachiya, S.; Bodri, D.; Shimada, N.; Kato, K.; Takehara, Y.; Kato, O. Blastocyst culture is associated with an elevated incidence of monozygotic twinning after single embryo transfer. Fertil Steril 2011, 95, 2140–2142. [Google Scholar] [CrossRef]
- Knopman, J.M.; Krey, L.C.; Oh, C.; Lee, J.; McCaffrey, C.; Noyes, N. What makes them split? Identifying risk factors that lead to monozygotic twins after in vitro fertilization. Fertil Steril 2014, 102, 82–89. [Google Scholar] [CrossRef]
- Kanter, J.R.; Boulet, S.L.; Kawwass, J.F.; Jamieson, D.J.; Kissin, D.M. Trends and correlates of monozygotic twinning after single embryo transfer. Obs. Gynecol. 2015, 125, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Wei, Z.L.; Xu, X.F.; Wang, X.; He, X.J.; Wu, H.; Zhou, P.; Cao, Y.X. Prevalence and risk factors of monochorionic diamniotic twinning after assisted reproduction: A six-year experience base on a large cohort of pregnancies. PLoS ONE 2017, 12, e0186813. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, J.; Chen, S.; Kang, X.; Du, H.; Li, L. Elevated incidence of monozygotic twinning is associated with extended embryo culture, but not with zona pellucida manipulation or freeze-thaw procedure. Fertil Steril 2018, 109, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Busnelli, A.; Dallagiovanna, C.; Reschini, M.; Paffoni, A.; Fedele, L.; Somigliana, E. Risk factors for monozygotic twinning after in vitro fertilization: A systematic review and meta-analysis. Fertil Steril 2019, 111, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Dallagiovanna, C.; Vanni, V.S.; Somigliana, E.; Busnelli, A.; Papaleo, E.; Villanacci, R.; Candiani, M.; Reschini, M. Risk Factors for Monozygotic Twins in IVF-ICSI Cycles: A Case-Control Study. Reprod. Sci. 2021, 28, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Couck, I.; Van Nylen, L.; Deprest, J.; Lewi, L. Monochorionic twins after in-vitro fertilization: Do they have poorer outcomes? Ultrasound Obs. Gynecol. 2020, 56, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Simoes, T.; Queiros, A.; Marujo, A.T.; Valdoleiros, S.; Silva, P.; Blickstein, I. Outcome of monochorionic twins conceived by assisted reproduction. Fertil Steril 2015, 104, 629–632. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, M.; Chai, J. Comparison of outcomes of monochorionic twin pregnancies conceived by assisted reproductive technology vs. spontaneous conceptions: A systematic review and meta-analysis. Front. Pediatr. 2022, 10, 962190. [Google Scholar] [CrossRef]
- Hack, K.E.A.; Vereycken, M.; Torrance, H.L.; Koopman-Esseboom, C.; Derks, J.B. Perinatal outcome of monochorionic and dichorionic twins after spontaneous and assisted conception: A retrospective cohort study. Acta Obs. Gynecol. Scand. 2018, 97, 717–726. [Google Scholar] [CrossRef]
- Trojner Bregar, A.; Blickstein, I.; Verdenik, I.; Lucovnik, M.; Tul, N. Outcome of monochorionic-biamniotic twins conceived by assisted reproduction: A population-based study. J. Perinat Med. 2016, 44, 881–885. [Google Scholar] [CrossRef]
- Prats, P.; Zarragoitia, J.; Rodriguez, M.A.; Rodriguez, I.; Martinez, F.; Rodriguez-Melcon, A.; Serra, B. Outcome in a series of 1135 twin pregnancies: Does the type of conception play a role? AJOG Glob. Rep. 2022, 2, 100129. [Google Scholar] [CrossRef] [PubMed]
- Osterman, M.J.K.; Hamilton, B.E.; Martin, J.A.; Driscoll, A.K.; Valenzuela, C.P. Births: Final Data for 2021. Natl. Vital. Stat. Rep. 2023, 72, 1–53. [Google Scholar]
- Lewi, L. Monochorionic diamniotic twin pregnancies. Am. J. Obs. Gynecol. MFM 2022, 4, 100501. [Google Scholar] [CrossRef] [PubMed]
- Al Riyami, N.; Al-Rusheidi, A.; Al-Khabori, M. Perinatal outcome of monochorionic in comparison to dichorionic twin pregnancies. Oman Med. J. 2013, 28, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Lewi, L.; Jani, J.; Blickstein, I.; Huber, A.; Gucciardo, L.; Van Mieghem, T.; Done, E.; Boes, A.S.; Hecher, K.; Gratacos, E.; et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: A prospective cohort study. Am. J. Obs. Gynecol. 2008, 199, 514.e1–514.e8. [Google Scholar] [CrossRef]
- Sun, L.; Zou, G.; Wei, X.; Chen, Y.; Zhang, J.; Okun, N.; Duan, T. Clinical outcomes after assisted reproductive technology in twin pregnancies: Chorionicity-based comparison. Sci. Rep. 2016, 6, 26869. [Google Scholar] [CrossRef]
Total Sample (n = 184) | ART (n = 35) | Natural Conception (n = 149) | p | |
---|---|---|---|---|
Maternal age | 33.0 (30.0–37.0) | 38.0 (35.5–42.5) | 32.0 (29.0–36.0) | <0.001 |
Nulliparity | 103 (56.0) | 28 (80.0) | 75 (50.3) | 0.001 |
BMI | 25.0 (22.7–28.3) | 27.0 (22.7–30.2) | 25.0 (22.7–28.0) | 0.103 |
Smoking habit | 21 (11.4) | 2 (5.7) | 19 (12.8) | 0.376 |
Pregnancy Complications | Total Sample (n = 184) | ART (n = 35) | Natural Conception (n = 149) | p |
---|---|---|---|---|
Hypertensive disorders during pregnancy | 22 (12.0) | 8 (22.9) | 14 (9.4) | 0.04 |
Other pregnancy complications | 59 (32.1) | 5 (14.3) | 54 (36.2) | 0.015 |
Miscarriage | 24 (13.4) | 5 (14.3) | 19 (13.2) | 0.789 |
TTTS | 57 (31.0) | 7 (20.0) | 50 (33.6) | 0.155 |
FGR both twins | 7 (3.8) | 1 (2.9) | 6 (4.0) | 1.0 |
sFGR | 39 (21.2) | 5 (14.3) | 34 (22.8) | 0.359 |
Gestational diabetes | 12 (6.5) | 8 (22.9) | 4 (2.7) | <0.001 |
Vaginal delivery | 26 (14.1) | 1 (2.9) | 25 (16.8) | 0.032 |
Neonatal Outcomes | Total Sample (n = 368) | ART (n = 70) | Natural Conception (n = 298) | p |
---|---|---|---|---|
Birthweight (grams) | 2082.5 (1485.0–2420.0) | 2110.0 (1466.3–2453.8) | 2075.0 (1500.0–2395.0) | 0.634 |
Male sex | 148 (50.3) | 20 (35.7) | 128 (53.8) | 0.017 |
Apgar score 1 | 9.0 (8.0–9.0) | 9.0 (7.0–9.0) | 9.0 (8.0–9.0) | 0.107 |
Apgar score 5 | 10.0 (9.0–10.0) | 10.0 (9.0–10.0) | 10.0 (9.0–10.0) | 0.797 |
Apgar score 10 | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.963 |
pHa | 7.300 (7.260–7.330) | 7.280 (7.250–7.320) | 7.310 (7.268–7.333) | 0.015 |
pHv | 7.340 (7.310–7.370) | 7.330 (7.290–7.360) | 7.350 (7.310–7.370) | 0.061 |
NICU admission | 94 (33.6) | 19 (33.9) | 75 (33.5) | 1.0 |
Demise first 30 days | 14 (4.9) | 1 (1.8) | 13 (5.7) | 0.317 |
Demise after 30 days | 4 (1.5) | 0 (0.0) | 4 (1.8) | 0.586 |
Neonatal morbidity first 30 days | 116 (41.3) | 23 (41.1) | 93 (41.3) | 1.0 |
Chronic neonatal morbidity | 43 (16.0) | 6 (10.9) | 37 (17.3) | 0.306 |
Neonatal Outcomes | Total Sample (n = 184) | ART (n = 35) | Natural Conception (n = 149) | p |
---|---|---|---|---|
Birthweight newborn 1 (grams) | 2080.0 (1580.0–2427.5) | 2245.0 (1593.8–2480.0) | 2080.0 (1580.0–2420.0) | 0.692 |
Male sex newborn 1 | 78 (50.3) | 11 (36.7) | 67 (53.6) | 0.108 |
Apgar score 1, newborn 1 | 9.0 (8.0–9.0) | 9.0 (7.3–9.0) | 9.0 (8.0–9.0) | 0.708 |
Apgar score 5, newborn 1 | 10.0 (9.0–10.0) | 10.0 (9.0–10.0) | 10.0 (9.0–10.0) | 0.513 |
Apgar score 10, newborn 1 | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.584 |
pHa, newborn 1 | 7.3 (7.3–7.3) | 7.3 (7.3–7.3) | 7.3 (7.3–7.3) | 0.22 |
pHv, newborn 1 | 7.4 (7.3–7.4) | 7.4 (7.3–7.4) | 7.4 (7.3–7.4) | 0.549 |
NICU admission, newborn 1 | 51 (34.7) | 12 (40.0) | 39 (33.3) | 0.523 |
Demise newborn 1 first 30 days | 8 (5.3) | 0 (0.0) | 8 (6.7) | 0.358 |
Demise newborn 1 after 30 days | 2 (1.4) | 0 (0.0) | 2 (1.8) | 1.0 |
Neonatal morbidity newborn 1 first 30 days | 61 (41.5) | 13 (43.3) | 48 (41.0) | 0.838 |
Chronic neonatal morbidity, newborn 1 | 21 (14.9) | 3 (10.0) | 18 (16.2) | 0.566 |
Birthweight newborn 2 (grams) | 2085.0 (1450.0–2380.0) | 2105.0 (1451.3–2413.8) | 2055.0 (1450.0–2375.0) | 0.869 |
Male sex newborn 2 | 70 (50.4) | 9 (34.6) | 61 (54.0) | 0.085 |
Apgar score 1, newborn 2 | 9.0 (8.0–9.0) | 9.0 (7.3–9.0) | 9.0 (8.0–9.0) | 0.052 |
Apgar score 5, newborn 2 | 10.0 (9.0–10.0) | 10.0 (9.0–10.0) | 10.0 (9.0–10.0) | 0.744 |
Apgar score 10, newborn 2 | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.383 |
Days of hospital admission, newborn 2 | 7.0 (3.0–24.0) | 5.5 (3.0–19.8) | 7.0 (3.0–24.0) | 0.698 |
Demise newborn 2 first 30 days | 6 (4.4) | 1 (3.8) | 5 (4.6) | 1.0 |
Demise newborn 2 after 30 days | 2 (1.5) | 0 (0.0) | 2 (1.9) | 1.0 |
Neonatal morbidity newborn 2 first 30 days | 55 (41.0) | 10 (38.5) | 45 (41.7) | 0.827 |
pHa, newborn 2 | 7.3 (7.3–7.3) | 7.3 (7.2–7.3) | 7.3 (7.3–7.3) | 0.018 |
pHv, newborn 2 | 7.3 (7.3–7.4) | 7.3 (7.3–7.4) | 7.3 (7.3–7.4) | 0.032 |
NICU admission, newborn 2 | 43 (32.3) | 7 (26.9) | 36 (33.6) | 0.642 |
Chronic neonatal morbidity, newborn 2 | 22 (17.2) | 3 (12.0) | 19 (18.4) | 0.564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Varea, A.; Martínez-Gómez, M.; Novillo, B.; Domenech, J.; Morales-Roselló, J.; Diago-Almela, V. Perinatal Outcomes of Monochorionic Twin Pregnancies Conceived Naturally Versus through Assisted Reproductive Techniques. J. Clin. Med. 2023, 12, 6097. https://doi.org/10.3390/jcm12186097
Martínez-Varea A, Martínez-Gómez M, Novillo B, Domenech J, Morales-Roselló J, Diago-Almela V. Perinatal Outcomes of Monochorionic Twin Pregnancies Conceived Naturally Versus through Assisted Reproductive Techniques. Journal of Clinical Medicine. 2023; 12(18):6097. https://doi.org/10.3390/jcm12186097
Chicago/Turabian StyleMartínez-Varea, Alicia, Martha Martínez-Gómez, Blanca Novillo, Josep Domenech, José Morales-Roselló, and Vicente Diago-Almela. 2023. "Perinatal Outcomes of Monochorionic Twin Pregnancies Conceived Naturally Versus through Assisted Reproductive Techniques" Journal of Clinical Medicine 12, no. 18: 6097. https://doi.org/10.3390/jcm12186097
APA StyleMartínez-Varea, A., Martínez-Gómez, M., Novillo, B., Domenech, J., Morales-Roselló, J., & Diago-Almela, V. (2023). Perinatal Outcomes of Monochorionic Twin Pregnancies Conceived Naturally Versus through Assisted Reproductive Techniques. Journal of Clinical Medicine, 12(18), 6097. https://doi.org/10.3390/jcm12186097