Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Patient Categorization
2.3. Statistical Analysis
3. Results
3.1. Genotype and Demographic Characteristics of the Patient Cohort
3.2. Effect of Shorter Dystrophin Isoforms Expressed in the CNS and PNS on the Performance in Motor Function Scales and Their Subsets
3.3. Follow-Up Evaluations of the Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salari, N.; Fatahi, B.; Valipour, E.; Kazeminia, M.; Fatahian, R.; Kiaei, A.; Shohaimi, S.; Mohammadi, M. Global prevalence of Duchenne and Becker muscular dystrophy: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 96. [Google Scholar] [CrossRef]
- Wang, R.T.; Barthelemy, F.; Martin, A.S.; Douine, E.D.; Eskin, A.; Lucas, A.; Lavigne, J.; Peay, H.; Khanlou, N.; Sweeney, L. DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum. Mutat. 2018, 39, 1193–1202. [Google Scholar] [CrossRef]
- Aartsma-Rus, A.; Van Deutekom, J.C.; Fokkema, I.F.; Van Ommen, G.J.B.; Den Dunnen, J.T. Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2006, 34, 135–144. [Google Scholar] [CrossRef]
- Taylor, P.J.; Betts, G.A.; Maroulis, S.; Gilissen, C.; Pedersen, R.L.; Mowat, D.R.; Johnston, H.M.; Buckley, M.F. Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy. PLoS ONE 2010, 5, e8803. [Google Scholar] [CrossRef]
- Doorenweerd, N.; Mahfouz, A.; van Putten, M.; Kaliyaperumal, R.; t’Hoen, P.A.; Hendriksen, J.G.; Aartsma-Rus, A.M.; Verschuuren, J.J.; Niks, E.H.; Reinders, M.J. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci. Rep. 2017, 7, 12575. [Google Scholar] [CrossRef]
- Falzarano, M.; Rachele, R.; Mietto, M.; Fortunato, F.; Selvatici, R.; Spitali, P.; Montanaro, F.; Muntoni, F.; Ferlini, A. DMD-BRAIN: EP. 133 Expression and localization of dystrophin isoforms transcripts in human adult control brain areas. Neuromuscul. Disord. 2021, 31, S89. [Google Scholar] [CrossRef]
- Maresh, K.; Papageorgiou, A.; Ridout, D.; Harrison, N.A.; Mandy, W.; Skuse, D.; Muntoni, F. Startle responses in Duchenne muscular dystrophy: A novel biomarker of brain dystrophin deficiency. Brain 2023, 146, 252–265. [Google Scholar] [CrossRef]
- Wijekoon, N.; Gonawala, L.; Ratnayake, P.; Dissanayaka, P.; Gunarathne, I.; Amaratunga, D.; Liyanage, R.; Senanayaka, S.; Wijesekara, S.; Gunasekara, H.H. Integrated genomic, proteomic and cognitive assessment in Duchenne Muscular Dystrophy suggest astrocyte centric pathology. Heliyon 2023, 9, e18530. [Google Scholar] [CrossRef]
- Moizard, M.P.; Billard, C.; Toutain, A.; Berret, F.; Marmin, N.; Moraine, C. Are Dp71 and Dp140 brain dystrophin isoforms related to cognitive impairment in Duchenne muscular dystrophy? Am. J. Med. Genet. 1998, 80, 32–41. [Google Scholar] [CrossRef]
- Ricotti, V.; Mandy, W.P.; Scoto, M.; Pane, M.; Deconinck, N.; Messina, S.; Mercuri, E.; Skuse, D.H.; Muntoni, F. Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev. Med. Child Neurol. 2016, 58, 77–84. [Google Scholar] [CrossRef]
- Felisari, G.; Boneschi, F.M.; Bardoni, A.; Sironi, M.; Comi, G.; Robotti, M.; Turconi, A.; Lai, M.; Corrao, G.; Bresolin, N. Loss of Dp140 dystrophin isoform and intellectual impairment in Duchenne dystrophy. Neurology 2000, 55, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Coratti, G.; Lenkowicz, J.; Norcia, G.; Lucibello, S.; Ferraroli, E.; d’Amico, A.; Bello, L.; Pegoraro, E.; Messina, S.; Ricci, F. Age, corticosteroid treatment and site of mutations affect motor functional changes in young boys with Duchenne Muscular Dystrophy. PLoS ONE 2022, 17, e0271681. [Google Scholar] [CrossRef]
- Doorenweerd, N. Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy-a narrative review. Neuromuscul. Disord. 2020, 30, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Chesshyre, M.; Ridout, D.; Hashimoto, Y.; Ookubo, Y.; Torelli, S.; Maresh, K.; Ricotti, V.; Abbott, L.; Gupta, V.A.; Main, M. Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle 2022, 13, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Abbs, S.; Tuffery-Giraud, S.; Bakker, E.; Ferlini, A.; Sejersen, T.; Mueller, C.R. Best practice guidelines on molecular diagnostics in Duchenne/Becker muscular dystrophies. Neuromuscul. Disord. 2010, 20, 422–427. [Google Scholar] [CrossRef]
- Fratter, C.; Dalgleish, R.; Allen, S.K.; Santos, R.; Abbs, S.; Tuffery-Giraud, S.; Ferlini, A. EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur. J. Hum. Genet. 2020, 28, 1141–1159. [Google Scholar] [CrossRef]
- Tyagi, R.; Kumar, S.; Dalal, A.; Mohammed, F.; Mohanty, M.; Kaur, P.; Anand, A. Repurposing pathogenic variants of DMD gene and its isoforms for DMD exon skipping intervention. Curr. Genom. 2019, 20, 519–530. [Google Scholar] [CrossRef]
- Vengalil, S.; Preethish-Kumar, V.; Polavarapu, K.; Mahadevappa, M.; Sekar, D.; Purushottam, M.; Thomas, P.T.; Nashi, S.; Nalini, A. Duchenne muscular dystrophy and Becker muscular dystrophy confirmed by multiplex ligation-dependent probe amplification: Genotype-phenotype correlation in a large cohort. J. Clin. Neurol. 2017, 13, 91–97. [Google Scholar] [CrossRef]
- Polavarapu, K.; Preethish-Kumar, V.; Sekar, D.; Vengalil, S.; Nashi, S.; Mahajan, N.P.; Thomas, P.T.; Sadasivan, A.; Warrier, M.; Gupta, A. Mutation pattern in 606 Duchenne muscular dystrophy children with a comparison between familial and non-familial forms: A study in an Indian large single-center cohort. J. Neurol. 2019, 266, 2177–2185. [Google Scholar] [CrossRef]
- Ansar, Z.; Nasir, A.; Moatter, T.; Khan, S.; Kirmani, S.; Ibrahim, S.; Imam, K.; Ather, A.; Samreen, A.; Hasan, Z. MLPA analyses reveal a spectrum of dystrophin gene deletions/duplications in Pakistani patients suspected of having Duchenne/Becker muscular dystrophy: A retrospective study. Genet. Test. Mol. Biomark. 2019, 23, 468–472. [Google Scholar] [CrossRef]
- Mirski, K.T.; Crawford, T.O. Motor and cognitive delay in Duchenne muscular dystrophy: Implication for early diagnosis. J. Pediatr. 2014, 165, 1008–1010. [Google Scholar] [CrossRef]
- Connolly, A.; Florence, J.; Cradock, M.; Malkus, E.; Schierbecker, J.; Siener, C.; Wulf, C.; Anand, P.; Lowes, L.; Alfano, L. Motor and Cognitive Assessment of Infants and Young Boys with Duchenne Muscular Dystrophy; Results from the Muscular Dystrophy Association DMD Clinical Research Center Network (P04. 084). Neuromuscul. Disord. 2012, 23, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Cyrulnik, S.E.; Fee, R.J.; Darryl, C.; Goldstein, E.; Hinton, V.J. Delayed developmental language milestones in children with Duchenne’s muscular dystrophy. J. Pediatr. 2007, 150, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Parsons, E.P.; Clarke, A.J.; Bradley, D.M. Developmental progress in Duchenne muscular dystrophy: Lessons for earlier detection. Eur. J. Paediatr. Neurol. 2004, 8, 145–153. [Google Scholar] [CrossRef]
- van Dommelen, P.; van Dijk, O.; de Wilde, J.A.; Verkerk, P.H. Early developmental milestones in Duchenne muscular dystrophy. Dev. Med. Child Neurol. 2020, 62, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.F.; Alfano, L.N.; Iammarino, M.A.; Connolly, A.M.; Moore-Clingenpeel, M.; Powers, B.R.; Tsao, C.-Y.; Waldrop, M.A.; Flanigan, K.M.; Mendell, J.R. Natural history of steroid-treated young boys with Duchenne muscular dystrophy using the NSAA, 100m, and timed functional tests. Pediatr. Neurol. 2020, 113, 15–20. [Google Scholar] [CrossRef]
- Coratti, G.; Brogna, C.; Norcia, G.; Ricotti, V.; Abbott, L.; D’Amico, A.; Berardinelli, A.; Vita, G.L.; Lucibello, S.; Messina, S. Longitudinal natural history in young boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 2019, 29, 857–862. [Google Scholar] [CrossRef]
- Connolly, A.M.; Florence, J.M.; Cradock, M.M.; Eagle, M.; Flanigan, K.M.; McDonald, C.M.; Karachunski, P.I.; Darras, B.T.; Bushby, K.; Malkus, E.C. One year outcome of boys with Duchenne muscular dystrophy using the Bayley-III scales of infant and toddler development. Pediatr. Neurol. 2014, 50, 557–563. [Google Scholar] [CrossRef]
- Pane, M.; Scalise, R.; Berardinelli, A.; D’Angelo, G.; Ricotti, V.; Alfieri, P.; Moroni, I.; Hartley, L.; Pera, M.C.; Baranello, G. Early neurodevelopmental assessment in Duchenne muscular dystrophy. Neuromuscul. Disord. 2013, 23, 451–455. [Google Scholar] [CrossRef]
- Samaranayake, N.; Dissanayaka, P.; Gunarathna, I.; Gonawala, L.; Wijekoon, N.; Rathnayake, P.; Sirisena, D.; Gunasekara, H.; Dissanayake, A.; Senanayake, S. What we fail to see in neuro-genetic diseases: A bird’s eye view from the developing world. Ann. Neurosci. 2020, 27, 91–97. [Google Scholar] [CrossRef]
- Counterman, K.J.; Furlong, P.; Wang, R.T.; Martin, A.S. Delays in diagnosis of Duchenne muscular dystrophy: An evaluation of genotypic and sociodemographic factors. Muscle Nerve 2020, 61, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Ciafaloni, E.; Fox, D.J.; Pandya, S.; Westfield, C.P.; Puzhankara, S.; Romitti, P.A.; Mathews, K.D.; Miller, T.M.; Matthews, D.J.; Miller, L.A. Delayed diagnosis in duchenne muscular dystrophy: Data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). J. Pediatr. 2009, 155, 380–385. [Google Scholar] [CrossRef]
- Darras, B.; Korf, B.; Urion, D. Dystrophinopathies. In Gene Reviews; University of Washington: Seattle, WA, USA, 2000. [Google Scholar]
- Rao, M.V.; Sindhav, G.M.; Mehta, J.J. Duchenne/Becker muscular dystrophy: A report on clinical, biochemical, and genetic study in Gujarat population, India. Ann. Indian Acad. Neurol. 2014, 17, 303–307. [Google Scholar] [CrossRef]
- Zamani, G.; Hosseinpour, S.; Ashrafi, M.R.; Mohammadi, M.; Badv, R.S.; Tavasoli, A.R.; Akbari, M.G.; Bereshneh, A.H.; Malamiri, R.A.; Heidari, M. Characteristics of disease progression and genetic correlation in ambulatory Iranian boys with Duchenne muscular dystrophy. BMC Neurol. 2022, 22, 162. [Google Scholar] [CrossRef] [PubMed]
- AlSaman, A.S.; Al Ghamdi, F.; Bamaga, A.K.; AlShaikh, N.; Al Muqbil, M.; Muthaffar, O.; Bashiri, F.A.; Ali, B.; Mulayim, A.; Heider, E. Patient demographics and characteristics from an ambispective, observational study of patients with duchenne muscular dystrophy in Saudi Arabia. Front. Pediatr. 2022, 10, 1020059. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergen, J.; Ginjaar, H.; Van Essen, A.; Pangalila, R.; De Groot, I.; Wijkstra, P.; Zijnen, M.; Cobben, N.; Kampelmacher, M.; Wokke, B. Forty-five years of Duchenne muscular dystrophy in the Netherlands. J. Neuromuscul. Dis. 2014, 1, 99–109. [Google Scholar] [CrossRef]
- Muntoni, F.; Domingos, J.; Manzur, A.Y.; Mayhew, A.; Guglieri, M.; Network, U.N.; Sajeev, G.; Signorovitch, J.; Ward, S.J. Categorising trajectories and individual item changes of the North Star Ambulatory Assessment in patients with Duchenne muscular dystrophy. PLoS ONE 2019, 14, e0221097. [Google Scholar] [CrossRef]
- Duan, D.; Goemans, N.; Takeda, S.I.; Mercuri, E.; Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef]
- Zhang, S.; Qin, D.; Wu, L.; Li, M.; Song, L.; Wei, C.; Lu, C.; Zhang, X.; Hong, S.; Ma, M. Genotype characterization and delayed loss of ambulation by glucocorticoids in a large cohort of patients with Duchenne muscular dystrophy. Orphanet J. Rare Dis. 2021, 16, 188. [Google Scholar] [CrossRef]
- Bello, L.; Morgenroth, L.P.; Gordish-Dressman, H.; Hoffman, E.P.; McDonald, C.M.; Cirak, S. DMD genotypes and loss of ambulation in the CINRG Duchenne Natural History Study. Neurology 2016, 87, 401–409. [Google Scholar] [CrossRef]
- Jumah, M.A.; Muhaizea, M.A.; Rumayyan, A.A.; Saman, A.A.; Shehri, A.A.; Cupler, E.; Jan, M.; Madani, A.A.; Fathalla, W.; Kashyape, P. Current management of Duchenne muscular dystrophy in the Middle East: Expert report. Neurodegener. Dis. Manag. 2019, 9, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.A.; Miall, R.C.; Ivry, R.B. The cerebellum: Adaptive prediction for movement and cognition. Trends Cogn. Sci. 2017, 21, 313–332. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.S.; Tsai, P. The role of the pediatric cerebellum in motor functions, cognition, and behavior: A clinical perspective. Neuroimaging Clin. 2016, 26, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Daoud, F.; Angeard, N.; Demerre, B.; Martie, I.; Benyaou, R.; Leturcq, F.; Cossee, M.; Deburgrave, N.; Saillour, Y.; Tuffery, S. Analysis of Dp71 contribution in the severity of mental retardation through comparison of Duchenne and Becker patients differing by mutation consequences on Dp71 expression. Hum. Mol. Genet. 2009, 18, 3779–3794. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Niba, E.T.E.; Rani, A.Q.M.; Onishi, Y.; Koizumi, M.; Awano, H.; Matsumoto, M.; Nagai, M.; Yoshida, S.; Sakakibara, S. Detection of dystrophin Dp71 in human skeletal muscle using an automated capillary western assay system. Int. J. Mol. Sci. 2018, 19, 1546. [Google Scholar] [CrossRef]
- Naidoo, M.; Anthony, K. Dystrophin Dp71 and the neuropathophysiology of Duchenne muscular dystrophy. Mol. Neurobiol. 2020, 57, 1748–1767. [Google Scholar] [CrossRef]
- Gosselin, M.R.; Mournetas, V.; Borczyk, M.; Verma, S.; Occhipinti, A.; Róg, J.; Bozycki, L.; Korostynski, M.; Robson, S.C.; Angione, C. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. eLife 2022, 11, e75521. [Google Scholar] [CrossRef]
- Farea, M.; Rani, A.Q.M.; Maeta, K.; Nishio, H.; Matsuo, M. Dystrophin Dp71ab is monoclonally expressed in human satellite cells and enhances proliferation of myoblast cells. Sci. Rep. 2020, 10, 17123. [Google Scholar] [CrossRef]
- Farea, M.; Maeta, K.; Nishio, H.; Matsuo, M. Human Dystrophin Dp71ab Enhances the Proliferation of Myoblasts Across Species But Not Human Nonmyoblast Cells. Front. Cell Dev. Biol. 2022, 10, 877612. [Google Scholar] [CrossRef]
- Zambon, A.A.; Ayyar Gupta, V.; Ridout, D.; Manzur, A.Y.; Baranello, G.; Trucco, F.; Muntoni, F.; Network, U.N.C.; Tirupath, S.; Douglas, M. Peak functional ability and age at loss of ambulation in Duchenne muscular dystrophy. Dev. Med. Child Neurol. 2022, 64, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Biggar, W.; Politano, L.; Harris, V.; Passamano, L.; Vajsar, J.; Alman, B.; Palladino, A.; Comi, L.; Nigro, G. Deflazacort in Duchenne muscular dystrophy: A comparison of two different protocols. Neuromuscul. Disord. 2004, 14, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, F.; Nakamura, H.; Yonemoto, N.; Komaki, H.; Rosales, R.L.; Kornberg, A.J.; Bretag, A.H.; Dejthevaporn, C.; Goh, K.J.; Jong, Y.-J. Clinical practice with steroid therapy for Duchenne muscular dystrophy: An expert survey in Asia and Oceania. Brain Dev. 2020, 42, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Apkon, S.D.; Blackwell, A.; Colvin, M.K.; Cripe, L.; Herron, A.R.; Kennedy, A.; Kinnett, K. Diagnosis and management of Duchenne muscular dystrophy, part 3: Primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018, 17, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Wijekoon, N.; Gonawala, L.; Ratnayake, P.; Sirisena, D.; Gunasekara, H.; Dissanayake, A.; Senanayake, S.; Keshavaraj, A.; Hathout, Y.; Steinbusch, H.W. Gene Therapy for selected Neuromuscular and Trinucleotide Repeat Disorders-An Insight to Subsume South Asia for Multicenter Clinical Trials. IBRO Neurosci. Rep. 2023, 14, 146–153. [Google Scholar] [CrossRef]
Details/Assessment | Baseline Assessment | p-Value | |
---|---|---|---|
Group 1 | Group 2 | ||
Number of patients | 98 | 35 | - |
Median age (Yrs) | 7 | 7 | NS |
Number of patients wheelchair-bound | 18/98 (18%) | 7/35 (20%) | - |
Median age upon becoming wheelchair-bound (Yrs) | 9 | 11 | 0.02 |
Minimum age upon becoming wheelchair-bound (Yrs) | 8 | 9 | NS |
Median age of onset | 4 | 4 | NS |
Developmental Delay | |||
Number of patients with any type of developmental delay | 66 | 8 | 0.001 |
Motor developmental delay | 59/66 | 8/8 | 0.001 |
Language delay | 51/66 | 4/8 | 0.001 |
Vision and fine motor developmental delay | 27/66 | 3/8 | 0.038 |
Clinical Assessments | |||
Average of NSAA | 15 | 15 | NS |
Average of Brooke scale | 2 | 1 | NS |
Average of Vignos scale | 4 | 4 | NS |
Average of MRC scale total power | 7 | 7 | NS |
Average CPK Levels for Different Age Groups | |||
Age of 0–5.5 Yrs | 17,180.90 | 18,697.41 | NS |
Age of 5.5–9.75 Yrs | 15,487.31 | 13,987.78 | NS |
Age of 9.75+ Yrs | 7197.11 | 9116.60 | NS |
Details on Corticosteroid Usage | |||
Number of patients on corticosteroids | 62/98 (63%) | 28/35 (80%) | - |
Mean age (Yrs) when corticosteroids were initiated | 5.68 ± 0.95 | 5.64 ± 0.91 | NS |
Mean duration of the corticosteroid treatment (months) | 5 months ± 1.39 | 4.46 months ± 1.26 | NS |
Mean dosage with a regime of 10 days on/off (mg) | Prednisolone 9.87 ± 4.17 | Prednisolone 8.83 ± 3.56 | NS |
Number of corticosteroid-naïve patients | 25/98 (26%) | 6/35 (17%) | - |
Mean age (Yrs) of corticosteroid-naïve patients | 4.92 ± 1.15 | 4 ± 1.26 | NS |
Data not available on corticosteroid usage | 11/98 (11%) | 1/35 (2.8%) | - |
MRC Scale for Muscle Strength | ||
---|---|---|
Muscle Group | Regression Coefficient G1 | Regression Coefficient G2 |
Ankle | −0.748 | −0.641 |
Hip | −0.744 | −0.496 |
Knee | −0.593 | −0.425 |
Elbow | −0.742 | −0.617 |
Shoulder | −0.570 | −0.419 |
Wrist | −0.551 | −0.458 |
Fingers | −0.539 | −0.437 |
Thumb | −0.552 | −0.437 |
Neck | −0.192 | −0.320 |
North Star Ambulatory Assessment (NSAA) | ||
Subcategory/Activity | Regression Coefficient G1 | Regression Coefficient G2 |
Stand | −0.214 | −0.175 |
Walk | −0.197 | −0.143 |
Sit to Stand | −0.213 | −0.165 |
Stand on One Leg R | −0.193 | −0.109 |
Stand on One Leg L | −0.173 | −0.111 |
Climb Steps R | −0.113 | −0.118 |
Climb Steps L | −0.119 | −0.088 |
Descend Steps R | −0.132 | −0.123 |
Descend Steps L | −0.130 | −0.103 |
Get to Sitting | −0.214 | −0.175 |
Rise from Floor | −0.113 | −0.100 |
Lift Head | −0.196 | −0.195 |
Stand on Heels | −0.138 | −0.111 |
Hop R | −0.123 | −0.124 |
Hop L | −0.082 | −0.135 |
Jump | −0.083 | −0.135 |
Run | −0.121 | −0.105 |
Details/Assessment | Follow-Up 1 * | Follow-Up 2 | Follow-Up 3 | |||
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 1 | Group 2 | Group 1 | Group 2 | |
Number of patients | 38 | 14 | 15 | 5 | 2 | 1 |
Median age (Yrs) | 9 | 11 | 11 | 15 | 13 | 20 |
Number of patients wheelchair-bound | 14/38 (37%) | 4/14 (29%) | 12/15 (80%) | 5/5 (100%) | 2/2 (100%) | 1/1 (100%) |
Median age upon becoming wheelchair-bound (Yrs) | 10 | 11 | 10 | 12 | 9 | 11 |
Minimum age upon becoming wheelchair-bound (Yrs) | 8 | 10 | 8 | 11 | 9 | 11 |
Median age of onset | 4 | 5 | 4 | 4 | 5 | 4 |
Average of NSAA | 9 | 9 | 1 | 0 | 0 | 0 |
Average of Brooke scale | 2 | 2 | 4 | 4 | 6 | 6 |
Average of Vignos scale | 6 | 6 | 8 | 9 | 9 | 9 |
Average of MRC scale total power | 6 | 6 | 4 | 3 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijekoon, N.; Gonawala, L.; Ratnayake, P.; Amaratunga, D.; Hathout, Y.; Mohan, C.; Steinbusch, H.W.M.; Dalal, A.; Hoffman, E.P.; de Silva, K.R.D. Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. J. Clin. Med. 2023, 12, 5637. https://doi.org/10.3390/jcm12175637
Wijekoon N, Gonawala L, Ratnayake P, Amaratunga D, Hathout Y, Mohan C, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. Journal of Clinical Medicine. 2023; 12(17):5637. https://doi.org/10.3390/jcm12175637
Chicago/Turabian StyleWijekoon, Nalaka, Lakmal Gonawala, Pyara Ratnayake, Dhammika Amaratunga, Yetrib Hathout, Chandra Mohan, Harry W. M. Steinbusch, Ashwin Dalal, Eric P. Hoffman, and K. Ranil D. de Silva. 2023. "Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions" Journal of Clinical Medicine 12, no. 17: 5637. https://doi.org/10.3390/jcm12175637
APA StyleWijekoon, N., Gonawala, L., Ratnayake, P., Amaratunga, D., Hathout, Y., Mohan, C., Steinbusch, H. W. M., Dalal, A., Hoffman, E. P., & de Silva, K. R. D. (2023). Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. Journal of Clinical Medicine, 12(17), 5637. https://doi.org/10.3390/jcm12175637