Angiogenic and Microvascular Status Alterations after Endovascular Revascularization of Lower Limb Arteries among Patients with Diabetic Foot Syndrome: A Prospective 12-Month Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Angiography, PTA of Lower Limb Arteries, and Post-Revascularization Pharmacological Therapy
2.3. DFS Advancement Evaluation
2.4. Hemodynamic Parameters and Microcirculation Assessment
2.5. Circulating Angiogenic Factors Assessment
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Subjects
3.2. Changes in Circulating Angiogenic Factor Concentrations, Hemodynamic, and Microcirculatory Parameters over Follow-Up
3.3. Relationships between Baseline Plasma Angiogenic Factor Levels before PTA and Wound Healing during 12 Months According to Patients’ Age
3.4. Relationships between Plasma Angiogenic Factors Levels before and after PTA and Poor Outcome after 12 Months
3.5. Relationships between Mean Plasma FGF-2 Levels, Restenosis/Reocclusion of Treated Artery, and Ulcer Healing 12 Months after PTA
3.6. Relationships between Pre- and Post-Intervention Changes in LDF and Angiogenic Factor Concentrations
3.7. Relationship between VEGF-A, PDGF-BB, and ANG-1 Levels in WS and Plasma at Three Time Points
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Criqui, M.H.; Aboyans, V. Epidemiology of Peripheral Artery Disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef]
- Jude, E.B.; Eleftheriadou, I.; Tentolouris, N. Peripheral arterial disease in diabetes—A review. Diabet. Med. 2010, 27, 4–14. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Stoberock, K.; Kaschwich, M.; Nicolay, S.S.; Mahmoud, N.; Heidemann, F.; Rieß, H.C.; Debus, E.S.; Behrendt, C.-A. The interrelationship between diabetes mellitus and peripheral arterial disease: A systematic review. Vasa—Eur. J. Vasc. Med. 2021, 50, 323–330. [Google Scholar] [CrossRef]
- Yang, S.L.; Zhu, L.Y.; Han, R.; Sun, L.L.; Li, J.X.; Dou, J.T. Pathophysiology of peripheral arterial disease in diabetes mellitus. J. Diabetes 2017, 9, 133–140. [Google Scholar] [CrossRef]
- Martins-Mendes, D.; Monteiro-Soares, M.; Boyko, E.J.; Ribeiro, M.; Barata, P.; Lima, J.; Soares, R. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. J. Diabetes Complicat. 2014, 28, 632–638. [Google Scholar] [CrossRef]
- Okonkwo, U.A.; Dipietro, L.A. Diabetes and wound angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 2019, 112, 108615. [Google Scholar] [CrossRef] [PubMed]
- Jhamb, S.; Vangaveti, V.N.; Malabu, U.H. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J. Tissue Viability 2016, 25, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, R.O.; Brownrigg, J.; Hinchliffe, R.J. Peripheral arterial disease and revascularization of the diabetic foot. Diabetes Obes. Metab. 2015, 17, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, R.J.; Andros, G.; Apelqvist, J.; Bakker, K.; Friederichs, S.; Lammer, J.; Lepantalo, M.; Mills, J.L.; Reekers, J.; Shearman, C.P.; et al. A systematic review of the effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral arterial disease. Diabetes Metab. Res. Rev. 2012, 28 (Suppl. S1), 179–217. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoate, W.J. Wound healing—A practical algorithm. Diabetes/Metab. Res. Rev. 2012, 28, 85–88. [Google Scholar] [CrossRef]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48 (Suppl. S102), 1–79. [Google Scholar] [CrossRef]
- Hardman, R.L.; Jazaeri, O.; Yi, J.; Smith, M.; Gupta, R. Overview of classification systems in peripheral artery disease. Semin. Interv. Radiol. 2014, 31, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Soares, M.; Hamilton, E.J.; Russell, D.A.; Srisawasdi, G.; Boyko, E.J.; Mills, J.L.; Jeffcoate, W.; Game, F. Guidelines on the classification of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2023, e3648. [Google Scholar] [CrossRef]
- Mills, J.L., Sr.; Conte, M.S.; Armstrong, D.G.; Pomposelli, F.B.; Schanzer, A.; Sidawy, A.N.; Andros, G. The society for vascular surgery lower extremity threatened limb classification system: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J. Vasc. Surg. 2014, 59, 220–234.e2. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.J.; Choi, H.J.; Kang, J.S.; Tak, M.S.; Park, E.S. Comparison of five systems of classification of diabetic foot ulcers and predictive factors for amputation. Int. Wound J. 2017, 14, 537–545. [Google Scholar] [CrossRef]
- Aboyans, V.; Criqui, M.H.; Abraham, P.; Allison, M.A.; Creager, M.A.; Diehm, C.; Fowkes, F.G.; Hiatt, W.R.; Jönsson, B.; Lacroix, P.; et al. Measurement and interpretation of the ankle-brachial index: A scientific statement from the American Heart Association. Circulation 2012, 126, 2890–2909. [Google Scholar] [CrossRef]
- Porcu, P.; Emanueli, C.; Kapatsoris, M.; Chao, J.; Chao, L.; Madeddu, P. Reversal of angiogenic growth factor upregulation by revascularization of lower limb ischemia. Circulation 2002, 105, 67–72. [Google Scholar] [CrossRef]
- Semenova, A.E.; Sergienko, I.V.; Masenko, V.P.; Ezhov, M.V.; Gabrusenko, S.A.; Kuharchuk, V.V.; Belenkov, Y.N. The influence of rosuvastatin therapy and percutaneous coronary intervention on angiogenic growth factors in coronary artery disease patients. Acta Cardiol. 2009, 64, 405–409. [Google Scholar] [CrossRef]
- Shibata, Y.; Kikuchi, R.; Ishii, H.; Suzuki, S.; Harada, K.; Hirayama, K.; Suzuki, A.; Tatami, Y.; Kondo, K.; Murohara, T. Balance between angiogenic and anti-angiogenic isoforms of VEGF-A is associated with the complexity and severity of coronary artery disease. Clinica. Chimica. Acta. 2018, 478, 114–119. [Google Scholar] [CrossRef]
- Gregorczyk-Maga, I.; Szustkiewicz-Karoń, A.; Gajda, M.; Kapusta, M.; Maga, W.; Schönborn, M. The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes. Biomedicines 2023, 11, 1596. [Google Scholar] [CrossRef]
- Khurshid, Z.; Warsi, I.; Moin, S.F.; Slowey, P.D.; Latif, M.; Zohaib, S.; Zafar, M.S. Biochemical analysis of oral fluids for disease detection. Adv. Clin. Chem. 2021, 100, 205–253. [Google Scholar] [PubMed]
- Rahim, M.A.; Rahim, Z.H.; Ahmad, W.A.; Hashim, O.H. Can Saliva Proteins Be Used to Predict the Onset of Acute Myocardial Infarction among High-Risk Patients? Int. J. Med. Sci. 2015, 12, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.X.; Ma, H.F.; Xing, N.; Hou, L.; Zhou, C.X.; Du, Y.P.; Wang, F.J. Five-year follow-up observation of interventional therapy for lower extremity vascular disease in type 2 diabetes and analysis of risk factors for restenosis. J. Diabetes 2021, 13, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Paraskevas, K.I.; Baker, D.M.; Pompella, A.; Mikhailidis, D.P. Does Diabetes Mellitus Play a Role in Restenosis and Patency Rates Following Lower Extremity Peripheral Arterial Revascularization? A Critical Overview. Ann. Vasc. Surg. 2008, 22, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Kansakar, U.; Jankauskas, S.S.; Gambardella, J.; Santulli, G. Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 2021, 324, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Faries, P.L.; Rohan, D.I.; Takahara, H.; Wyers, M.C.; Contreras, M.A.; Quist, W.C.; King, G.L.; Logerfo, F.W. Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration. J. Vasc. Surg. 2001, 33, 601–607. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and clinical significance of in-stent restenosis in patients with diabetes. Int. J. Environ. Res. Public. Health 2021, 18, 11970. [Google Scholar] [CrossRef]
- Wilson, S.; Mone, P.; Kansakar, U.; Jankauskas, S.S.; Donkor, K.; Adebayo, A.; Varzideh, F.; Eacobacci, M.; Gambardella, J.; Lombardi, A.; et al. Diabetes and restenosis. Cardiovasc. Diabetol. 2022, 21, 1–14. [Google Scholar] [CrossRef]
- Orbach, A.; Halon, D.A.; Jaffe, R.; Rubinshtein, R.; Karkabi, B.; Flugelman, M.Y.; Zafrir, B. Impact of diabetes and early revascularization on the need for late and repeat procedures. Cardiovasc. Diabetol. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Schönborn, M.; Gregorczyk-Maga, I.; Batko, K.; Bogucka, K.; Maga, M.; Płotek, A.; Pasieka, P.; Słowińska-Solnica, K.; Maga, P. Angiogenic Factors and Ischemic Diabetic Foot Syndrome Advancement—A Pilot Study. Biomedicines 2023, 11, 1559. [Google Scholar] [CrossRef]
- Cross, M.J.; Claesson-Welsh, L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 2001, 22, 201–207. [Google Scholar] [CrossRef]
- Tanaka, K.; Nagata, D.; Hirata, Y.; Tabata, Y.; Nagai, R.; Sata, M. Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice. Atherosclerosis 2011, 215, 366–373. [Google Scholar] [CrossRef]
- Liu, M.H.; Tang, Z.H.; Li, G.H.; Qu, S.L.; Zhang, Y.; Ren, Z.; Liu, L.S.; Jiang, Z.S. Janus-like role of fibroblast growth factor 2 in arteriosclerotic coronary artery disease: Atherogenesis and angiogenesis. Atherosclerosis 2013, 229, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Fu, Y.; Wang, Y.; Li, W.; Zhao, J.; Wang, X.; Wang, H.; Zhao, Y.; Fu, X. FGF-23 correlates with endocrine and metabolism dysregulation, worse cardiac and renal function, inflammation level, stenosis degree, and independently predicts in-stent restenosis risk in coronary heart disease patients underwent drug-eluting-stent PCI. BMC Cardiovasc. Disord. 2021, 21, 24. [Google Scholar] [CrossRef]
- Akin, F.; Celik, O.; Altun, I.; Ayca, B.; Diker, V.O.; Satılmıs, S.; Sahin, C. Relationship of fibroblast growth factor 23 and fetuin—A to coronary atherosclerosis. J. Diabetes Complicat. 2015, 29, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Hasdai, D.; Barak, V.; Leibovitz, E.; Herz, I.; Sclarovsky, S.; Eldar, M.; Scheinowitz, M. Serum basic fibroblast growth factor levels in patients with ischemic heart disease. Int. J. Cardiol. 1997, 59, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Zimering, M.B.; Anderson, R.J.; Ge, L.; Moritz, T.E. Increased plasma basic fibroblast growth factor is associated with coronary heart disease in adult type 2 diabetes mellitus. Metab. Clin. Exp. 2011, 60, 284–291. [Google Scholar] [CrossRef]
- Zubair, M.; Ahmad, J. Transcutaneous oxygen pressure (TcPO2) and ulcer outcome in diabetic patients: Is there any correlation? Diabetes Metab. Syndr. 2019, 13, 953–958. [Google Scholar] [CrossRef]
- Lalka, S.G.; Malone, J.M.; Anderson, G.G.; Hagaman, R.M.; McIntyre, K.E.; Bernhard, V.M. Transcutaneous oxygen and carbon dioxide pressure monitoring to determine severity of limb ischemia and to predict surgical outcome. J. Vasc. Surg. 1988, 7, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; Venermo, M.; et al. Effectiveness of revascularisation of the ulcerated foot in patients with diabetes and peripheral artery disease: A systematic review. Diabetes Metab. Res. Rev. 2020, 36, e3279. [Google Scholar] [PubMed]
- Caruso, P.; Longo, M.; Gicchino, M.; Scappaticcio, L.; Caputo, M.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Long-term diabetic complications as predictors of foot ulcers healing failure: A retrospective study in a tertiary-care center. Diabetes Res. Clin. Pract. 2020, 163, 108147. [Google Scholar] [CrossRef] [PubMed]
- Caruso, P.; Maiorino, M.I.; Macera, M.; Signoriello, G.; Castellano, L.; Scappaticcio, L.; Longo, M.; Gicchino, M.; Campitiello, F.; Bellastella, G.; et al. Antibiotic resistance in diabetic foot infection: How it changed with COVID-19 pandemic in a tertiary care center. Diabetes Res. Clin. Pract. 2021, 175, 108797. [Google Scholar] [CrossRef]
Variable | ≤65 Years (n = 15) | >65 Years (n = 26) | Total (n = 41) | p Value |
---|---|---|---|---|
Age, years | <0.01 | |||
mean (SD) | 57.67 (4.73) | 72.81 (5.03) | 67.27 (8.84) | |
median (IQR) | 58.00 (55.00, 61.50) | 72.50 (69.00, 74.75) | 68.00 (61.00, 73.00) | |
sex | ||||
male | 13 (86.7%) | 21 (80.8%) | 34 (82.9%) | 1.00 |
BMI, kg/m2 | 0.19 | |||
mean (SD) | 28.48 (3.74) | 26.98 (3.24) | 27.55 (3.47) | |
median (IQR) | 28.73 (26.01, 31.39) | 26.01 (24.70, 29.48) | 26.87 (24.70, 29.48) | |
active or past smoker | 12 (80.0%) | 17 (65.4%) | 29 (70.7%) | 0.48 |
Concomitant disorders | ||||
arterial hypertension | 13 (86.7%) | 24 (92.3%) | 37 (90.2%) | 0.61 |
CAD | 5 (33.3%) | 10 (38.5%) | 15 (36.6%) | 1.00 |
previous MI | 4 (26.7%) | 3 (11.5%) | 7 (17.1%) | 0.39 |
atrial fibrillation | 2 (13.3%) | 6 (23.1%) | 8 (19.5%) | 0.69 |
CKD | 1 (6.7%) | 3 (11.5%) | 4 (9.8%) | 1.00 |
eGFR, mL/min/1.73 m2 | 0.20 | |||
mean (SD) | 84.14 (16.09) | 76.00 (20.15) | 78.85 (19.03) | |
median (IQR) | 90 (86.25, 90.00) | 77.00 (61.50, 89.75) | 84.50 (65.25, 90.00) | |
Used medications | ||||
insulin | 12 (80.0%) | 21 (80.8%) | 33 (80.5%) | 1.00 |
metformin | 10 (66.7%) | 18 (69.2%) | 28 (68.3%) | 1.00 |
SGLT-2 inhibitor | 5 (33.3%) | 5 (19.2%) | 10 (24.2%) | 0.45 |
GLP-1 agonist | 0 (0.00%) | 2 (7.7%) | 2 (4.9%) | 0.52 |
acarbose | 0 (0.00%) | 1 (3.8%) | 1 (2.4%) | 1.00 |
statins | 7 (46.7%) | 17 (65.4%) | 24 (58.5%) | 0.33 |
ASA/clopidogrel/both | 8 (53.3%) | 16 (61.5%) | 24 (58.5%) | 0.74 |
Hemodynamic parameters and microvascular status | ||||
Baseline ABI | 0.26 | |||
mean (SD) | 0.74 (0.49) | 1.01 (0.81) | 0.91 (0.71) | |
median (IQR) | 0.67 (0.49, 0.87) | 0.73 (0.46, 1.00) | 0.72 (0.46, 1.00) | |
Baseline TBI | 0.72 | |||
mean (SD) | 0.18 (0.15) | 0.16 (0.09) | 0.17 (0.12) | |
median (IQR) | 0.16 (0.06, 0.23) | 0.14 (0.11, 0.20) | 0.15 (0.11, 0.21) | |
Baseline LDF, PU | 0.11 | |||
mean (SD) | 11.57 (3.55) | 13.92 (4.95) | 13.06 (4.59) | |
median (IQR) | 11.00 (8.75, 14.00) | 13.75 (10.12, 16.75) | 12.00 (9.00, 16.00) | |
Baseline tcpO2, mmHg | 0.49 | |||
mean (SD) | 15.50 (9.97) | 18.31 (13.23) | 17.32 (12.13) | |
median (IQR) | 12.50 (9.00, 24.50) | 15.00 (10.00, 26.25) | 14.50 (9.75, 25.25) |
Factor | Before PTA (Timepoint 0) | 24 h after PTA (Timepoint 1) | 1 Month after PTA (Timepoint 2) | 3 Months after PTA (Timepoint 3) |
---|---|---|---|---|
FGF-2, pg/mL | ||||
mean (SD) | 7.09 (5.06) | 8.12 (6.72) | 7.08 (6.74) | 7.04 (6.86) |
median (IQR) | 6.07 (3.52–9.42) | 5.76 (3.52–10.6) | 4.17 (3.19–8.32) | 4.49 (3.19–7.50) |
range (min–max) | 0.53–20.3 | 0.53–27.1 | 0.53–30.1 | 0.53–30.6 |
VEGF-A, pg/mL | ||||
mean (SD) | 51.5 (75.8) | 36.2 (63.0) | 72.5 (116.0) | 70.6 (118.0) |
median (IQR) | 19.1 (3.67–55.6) | 16.2 (2.84–35.7) | 30.7 (3.67–86.7) | 15.2 (3.67–90.8) |
range (min–max) | 0.51–298.0 | 0.51–357.0 | 1.01–587.0 | 0.51–557.0 |
VEGF-R2, pg/mL | ||||
mean (SD) | 12,407.0 (2723.0) | 12,579.0 (2784.0) | 12,127.0 (2626.0) | 12,571.0 (3288.0) |
median (IQR) | 11,928.0 (10,540–13,801.0) | 12035.0 (10,647.0–14,458.0) | 11,819.0 (10,391.0–13,204.0) | 12,292.0 (9951.0–14,667.0) |
range (min–max) | 7308.0–19,119.0 | 8078.0–18,557.0 | 8067.0–19,298.0 | 7308.0–19,575.0 |
PlGF, pg/mL | ||||
mean (SD) | 13.4 (3.31) | 13.0 (3.46) | 13.6 (3.71) | 14.8 (5.78) |
median (IQR) | 12.3 (10.8–15.5) | 12.5 (10.7–15.2) | 13.7 (10.4–15.8) | 13.4 (11.6–16.4) |
range (min–max) | 7.74–24.5 | 6.55–21.0 | 7.17–22.1 | 6.02–38.4 |
PDGF-BB, pg/mL | ||||
mean (SD) | 393.0 (357.0) | 388.0 (334.0) | 521.0 (464.0) | 483.0 (463.0) |
median (IQR) | 300.0 (215.0–472.0) | 249.0 (165.0–534.0) | 377.0 (240.0–627.0) | 353.0 (181.0–506.0) |
range (min–max) | 22.4–1887.0 | 40.3–1492.0 | 84.5–2093.0 | 51.1–2100.0 |
PEDF, µg/mL | ||||
mean (SD) | 14,334.0 (6566.0) | 12,292.0 (5258.0) | 13,340.0 (6703.0) | 11,647.0 (4644.0) |
median (IQR) | 13,870.0 (9721.0–17,803.0) | 11,773 (9307.0–15,083.0) | 11,962.0 (8066.0–18,361.0) | 10,720.0 (7497.0–14,818.0) |
range (min–max) | 5274.0–41,798.0 | 345.0–28,376.0 | 368.0–28,328.0 | 5087.0–23,276.0 |
Ang-1, pg/mL | ||||
mean (SD) | 3855.0 (4611.0) | 2882.0 (2949.0) | 4641.0 (3642.0) | 5041.0 (4257.0) |
median (IQR) | 2744.0 (1662.0–4033.0) | 1855.0 (1223.0–3468.0) | 3955.0 (19.21–6970.0) | 4039.0 (15.60–7090.0) |
range (min–max) | 296.0–28,908.0 | 316.0–16,210.0 | 719.0–18,907.0 | 475.0–18,134.0 |
Parameter | Before PTA | 24 h | 1 M | 3 M | 6 M | 12 M |
---|---|---|---|---|---|---|
tcpO2, mmHg | ||||||
mean (SD) | 17.3 (12.1) | 28.5 (17.7) | 35.1 (16.4) | 36.7 (18.0) | 37.3 (15.7) | 44.9 (14.8) |
median (IQR) | 14.5 (9.75–25.2) | 27.5 (15.0–37.8) | 40.0 (26.8–44.2) | 40.0 (23.0–48.0) | 40.0 (22.0–50.0) | 46.0 (34.0–55.0) |
range (min–max) | 0.0–51.0 | 0.0–80.0 | 2.0–62.0 | 3.0–78.0 | 7.0–62.0 | 6.0–70.0 |
LDF, PU | ||||||
mean (SD) | 13.1 (4.59) | 19.7 (15.5) | 18.3 (10.2) | 15.9 (7.09) | 15.1 (6.01) | 17.2 (6.95) |
median (IQR) | 12.0 (9.0–16.0) | 16.0 (10.8–22.8) | 15.5 (11.8–24.0) | 14 (11.0–20.0) | 13.5 (11.0–17.5) | 16.0 (13.2–20.0) |
range (min–max) | 7.0–26.0 | 6.0–84.0 | 6.0–61.0 | 7.0–38.0 | 8.0–29.0 | 7.0–35.0 |
ABI | ||||||
mean (SD) | 0.91 (0.71) | 1.08 (0.52) | 1.05 (0.51) | 1.15 (0.74) | 1.16 (0.88) | 0.99 (0.68) |
median (IQR) | 0.73 (0.46–1.0) | 0.92 (0.82–1.2) | 0.95 (0.81–1.07) | 0.89 (0.81–1.05) | 0.83 (0.66–1.06) | 0.83 (0.68–0.95) |
range (min–max) | 0.13–3.0 | 0.36–3.0 | 0.56–3.0 | 0.44–3.0 | 0.28–3.0 | 0.28–3.0 |
TBI | ||||||
mean (SD) | 0.17 (0.12) | 0.33 (0.18) | 0.38 (0.24) | 0.34 (0.25) | 0.35 (0.25) | 0.39 (0.21) |
median (IQR) | 0.16 (0.11–0.21) | 0.28 (0.19–0.42) | 0.35 (0.21–0.57) | 0.32 (0.19–0.53) | 0.37 (0.16–0.48) | 0.39 (0.25–0.5) |
range (min–max) | 0.0–0.57 | 0.11–0.73 | 0.0–0.93 | 0.0–0.8 | 0.0–0.94 | 0.0–0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönborn, M.; Gregorczyk-Maga, I.; Batko, K.; Maga, M.; Bogucka, K.; Gawlik, K.; Pawlica-Gosiewska, D.; Maga, P. Angiogenic and Microvascular Status Alterations after Endovascular Revascularization of Lower Limb Arteries among Patients with Diabetic Foot Syndrome: A Prospective 12-Month Follow-Up Study. J. Clin. Med. 2023, 12, 5581. https://doi.org/10.3390/jcm12175581
Schönborn M, Gregorczyk-Maga I, Batko K, Maga M, Bogucka K, Gawlik K, Pawlica-Gosiewska D, Maga P. Angiogenic and Microvascular Status Alterations after Endovascular Revascularization of Lower Limb Arteries among Patients with Diabetic Foot Syndrome: A Prospective 12-Month Follow-Up Study. Journal of Clinical Medicine. 2023; 12(17):5581. https://doi.org/10.3390/jcm12175581
Chicago/Turabian StyleSchönborn, Martyna, Iwona Gregorczyk-Maga, Krzysztof Batko, Mikołaj Maga, Katarzyna Bogucka, Katarzyna Gawlik, Dorota Pawlica-Gosiewska, and Paweł Maga. 2023. "Angiogenic and Microvascular Status Alterations after Endovascular Revascularization of Lower Limb Arteries among Patients with Diabetic Foot Syndrome: A Prospective 12-Month Follow-Up Study" Journal of Clinical Medicine 12, no. 17: 5581. https://doi.org/10.3390/jcm12175581
APA StyleSchönborn, M., Gregorczyk-Maga, I., Batko, K., Maga, M., Bogucka, K., Gawlik, K., Pawlica-Gosiewska, D., & Maga, P. (2023). Angiogenic and Microvascular Status Alterations after Endovascular Revascularization of Lower Limb Arteries among Patients with Diabetic Foot Syndrome: A Prospective 12-Month Follow-Up Study. Journal of Clinical Medicine, 12(17), 5581. https://doi.org/10.3390/jcm12175581