Development of a Cardiovascular Disease Risk Prediction Model: A Preliminary Retrospective Cohort Study of a Patient Sample in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Identification and Data Abstraction
2.2. Sample Size
2.3. Variables
2.4. Statistical Analysis
2.5. Construction of the Model
2.6. Scoring System
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
The potential risk factors that were collected: |
|
Any history of the following diseases. If yes, specify the date of diagnosis: |
|
Medications information: |
|
Lab results: |
|
Appendix B
Risk factor | Value | Points |
FBS | 6.8 | 2 |
HDL-c | 1.4 | 7 |
Anti-hypertensivetherapy | Yes | 6 |
Antithrombotic therapy Antihyperlipidemic therapy | Yes No | 4 0 |
Heart failure | No | 0 |
Point total | 19 | |
Estimate of risk | 0.140647873 |
References
- Boutayeb, A.; Boutayeb, S. The burden of non communicable diseases in developing countries. Int. J. Equity Health 2005, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Mendis, S.; World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Aljefree, N.; Ahmed, F. Prevalence of cardiovascular disease and associated risk factors among adult population in the Gulf region: A systematic review. Adv. Public Health 2015, 2015, 235101. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.A.; Winkel, M.; Ali, M.K.; Narayan, K.M.; Mehta, N.K. Cardiovascular mortality associated with 5 leading risk factors: National and state preventable fractions estimated from survey data. Ann. Intern. Med. 2015, 163, 245–253. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Noncommunicable Diseases Country Profiles 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Alqahtani, B.; Elnaggar, R.K.; Alshehri, M.M.; Khunti, K.; Alenazi, A. National and regional prevalence rates of diabetes in Saudi Arabia: Analysis of national survey data. Int. J. Diabetes Dev. Ctries. 2023, 43, 392–397. [Google Scholar] [CrossRef]
- Alqunaibet, A.; Herbst, C.; El-Saharty, S.; Algwizani, A. Noncommunicable Diseases in Saudi Arabia: Toward Effective Interventions for Prevention; World Bank Publications: Washington, DC, USA, 2021. [Google Scholar]
- General Authority for Statistics. Household Health Survey. Kingdom of Saudi Arabia. 2017. Available online: https://www.stats.gov.sa/en/6047 (accessed on 25 April 2023).
- Baynouna, L.M.; Revel, A.D.; Nagelkerke, N.J.; Jaber, T.M.; Omar, A.O.; Ahmed, N.M.; Naziruldeen, M.K.; Al-Sayed, M.F.; Nour, F.A. High prevalence of the cardiovascular risk factors in Al-Ain, United Arab Emirates. An emerging health care priority. Saudi Med. J. 2008, 29, 1173–1178. [Google Scholar]
- Grundy, S.M.; Balady, G.J.; Criqui, M.H.; Fletcher, G.; Greenland, P.; Hiratzka, L.F.; Houston-Miller, N.; Kris-Etherton, P.; Krumholz, H.M.; LaRosa, J.; et al. Primary prevention of coronary heart disease: Guidance from Framingham: A statement for healthcare professionals from the AHA Task Force on Risk Reduction. American Heart Association. Circulation 1998, 97, 1876–1887. [Google Scholar] [CrossRef]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawahi, A.; Lee, P. Applicability of the Existing CVD Risk Assessment Tools to Type II Diabetics in Oman: A Review. Oman Med. J. 2015, 30, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Alrawahi, A.H.; Lee, P. Validation of the cardiovascular risk model developed for Omanis with type 2 diabetes. Diabetes Metab. Syndr. 2018, 12, 387–391. [Google Scholar] [CrossRef]
- Alrawahi, A.H.; Lee, P.; Al-Anqoudi, Z.A.M.; Alrabaani, M.; Al-Busaidi, A.; Almahrouqi, F.; Albusaidi, A.M. Cardiovascular risk prediction model for Omanis with type 2 diabetes. Diabetes Metab. Syndr. 2018, 12, 105–110. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Xie, W.; Qi, Y. Cardiovascular risk assessment: A global perspective. Nat. Rev. Cardiol. 2015, 12, 301–311. [Google Scholar] [CrossRef]
- Bertoluci, M.C.; Rocha, V.Z. Cardiovascular risk assessment in patients with diabetes. Diabetol. Metab. Syndr. 2017, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Collett, D. Modelling Survival Data in Medical Research; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Burnham, K.P. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Chowdhury, M.Z.I.; Turin, T.C. Variable selection strategies and its Importance in clinical prediction modelling. Fam. Med. Community Health 2020, 8, e000262. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, L.M.; Massaro, J.M.; D’Agostino, R.B., Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat. Med. 2004, 23, 1631–1660. [Google Scholar] [CrossRef]
- DeFilippis, A.P.; Young, R.; Carrubba, C.J.; McEvoy, J.W.; Budoff, M.J.; Blumenthal, R.S.; Kronmal, R.A.; McClelland, R.L.; Nasir, K.; Blaha, M.J. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann. Intern. Med. 2015, 162, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.J.; Jang, Y.; Oh, D.J.; Oh, B.-H.; Lee, S.H.; Park, S.-W.; Seung, K.-B.; Kim, H.-K.; Yun, Y.D.; Choi, S.H. The ACC/AHA 2013 pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease. Atherosclerosis 2015, 242, 367–375. [Google Scholar] [CrossRef]
- Khambhati, J.; Allard-Ratick, M.; Dhindsa, D.; Lee, S.; Chen, J.; Sandesara, P.B.; O’Neal, W.; Quyyumi, A.A.; Wong, N.D.; Blumenthal, R.S. The art of cardiovascular risk assessment. Clin. Cardiol. 2018, 41, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.W.; Castelli, W.P.; Kannel, W.B. Coronary risk prediction in adults (the Framingham Heart Study). Am. J. Cardiol. 1987, 59, G91–G94. [Google Scholar] [CrossRef]
- Leal, J.; Alva, M.; Gregory, V.; Hayes, A.; Mihaylova, B.; Gray, A.M.; Holman, R.R.; Clarke, P. Estimating risk factor progression equations for the UKPDS Outcomes Model 2 (UKPDS 90). Diabet. Med. 2021, 38, e14656. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.A.; Knuiman, M.W.; Davis, T.M. An Australian cardiovascular risk equation for type 2 diabetes: The Fremantle Diabetes Study. Intern. Med. J. 2010, 40, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Cooney, M.T.; Dudina, A.; D’Agostino, R.; Graham, I.M. Cardiovascular risk-estimation systems in primary prevention: Do they differ? Do they make a difference? Can we see the future? Circulation 2010, 122, 300–310. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Frequency/Mean | % |
---|---|---|
Age (years), mean ± SD | 43.9 ± 15.5 | |
BMI (kg/m2), mean ± SD 1 | 30.8 ± 6.5 | |
FBS (mmol/L) 2 <5.6 5.6 < FBS < 7.0 >7.0 | 224 129 71 | 52.83 30.42 16.75 |
Gender Male Female | 181 270 | 40.13 59.87 |
Smoking status 3 Current smoker Former smoker Never smoked | 44 6 290 | 12.94 1.76 85.29 |
Family history of premature CVD | 6 | 1.33 |
CVD events | 35 | 7.7 |
Chronic kidney disease | 25 | 5.54 |
Rheumatoid arthritis | 3 | 0.67 |
Antidiabetic therapy | 172 | 38.14 |
Antihyperlipidemic therapy | 199 | 55.88 |
Antithrombotic therapy | 131 | 29.05 |
Antihypertensive therapy | 207 | 45.90 |
Heart failure | 10 | 2.22 |
Lipid Profile Range | Frequency | % |
---|---|---|
LDL-c 1 <2.59 mmol/L 2.59–3.36 mmol/L 3.37–4.14 mmol/L 4.15–4.90 mmol/L ≥4.90 mmol/L | 116 172 115 31 6 | 26.36 39.09 26.14 7.05 1.36 |
HDL-c 1 <1.04 mmol/L 1.04–1.55 mmol/L >1.55 mmol/L | 74 257 109 | 16.82 58.41 24.77 |
Triglycerides 1 <1.7 mmol/L 1.7–2.25 mmol/LL 2.26–5.64 mmol/L ≥5.65 mmol/L | 318 66 54 2 | 72.27 15 12.27 0.45 |
Total cholesterol 1 <5.2 mmol/L 5.2–6.2 mmol/L ≥6.2 mmol/L | 281 129 30 | 63.86 29.32 6.82 |
Risk Factor | HR (95% CI) | β | Mean | SE | p-Value |
---|---|---|---|---|---|
FBS (mmol/L) | 1.21 (1.11–1.32) | 0.199 | 6.379 | 0.042 | 0.000 |
HDL-c (mmol/L) | 0.13 (0.03–0.48) | −1.98 | 1.331 | 0.643 | 0.002 |
Heart failure | 3.59 (1.20–10.74) | 1.35 | 0.015 | 0.555 | 0.015 |
Antihyperlipidemic therapy | 3.17 (1.27–7.93) | 1.14 | 0.312 | 0.465 | 0.014 |
Antithrombotic therapy | 2.34 (1.02–5.37) | 0.79 | 0.206 | 0.425 | 0.062 |
Antihypertension therapy | 3.20 (1.14–8.99) | 1.22 | 0.375 | 0.528 | 0.021 |
Points Assigned | FBS (mmol/L) | HDL-c (mmol/L) | Antihyperlipidemic Therapy | Antithrombotic Therapy | Antihypertension Therapy | Heart Failure |
---|---|---|---|---|---|---|
0 | <5.6 | >1.55 | No | No | No | No |
1 | ||||||
2 | 5.6 < FBS < 7.0 | |||||
3 | ||||||
4 | Yes | |||||
5 | ||||||
6 | Yes | Yes | ||||
7 | 1.03 < HDL-c < 1.55 | Yes | ||||
8 | ||||||
9 | ||||||
10 | ||||||
11 | >7.0 | |||||
12 | ||||||
13 | <1.03 |
Points | Risk Estimate % | Points | Risk Estimate % |
---|---|---|---|
0 | 0.344996151 | 29 | 67.00661523 |
1 | 0.420798054 | 30 | 74.15401108 |
2 | 0.513212075 | 31 | 80.81275049 |
3 | 0.625857836 | 32 | 86.66033095 |
4 | 0.763133414 | 33 | 91.43913254 |
5 | 0.930377765 | 34 | 95.01715431 |
6 | 1.134064574 | 35 | 97.42554408 |
7 | 1.382032388 | 36 | 98.84986966 |
8 | 1.683755981 | 37 | 99.56971269 |
9 | 2.050663558 | 38 | 99.87035528 |
10 | 2.496503385 | 39 | 99.97000592 |
11 | 3.037761245 | 40 | 99.99497261 |
12 | 3.6941262 | 41 | 99.99943134 |
13 | 4.48899561 | 42 | 99.99996019 |
14 | 5.45 | 43 | 99.99999845 |
15 | 6.609512655 | 44 | 99.99999997 |
16 | 8.00508574 | 45 | 100 |
17 | 9.679722051 | 46 | 100 |
18 | 11.68184697 | 47 | 100 |
19 | 14.06478727 | ||
20 | 16.88549319 | ||
21 | 20.20216307 | ||
22 | 24.07036169 | ||
23 | 28.53719432 | ||
24 | 33.63316234 | ||
25 | 39.36156659 | ||
26 | 45.68584913 | ||
27 | 52.51618369 | ||
28 | 59.69798186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabduljabbar, K.; Alkhalifah, M.; Aldheshe, A.; Shihah, A.B.; Abu-Zaid, A.; DeVol, E.B.; Albedah, N.; Aldakhil, H.; Alzayed, B.; Mahmoud, A.; et al. Development of a Cardiovascular Disease Risk Prediction Model: A Preliminary Retrospective Cohort Study of a Patient Sample in Saudi Arabia. J. Clin. Med. 2023, 12, 5115. https://doi.org/10.3390/jcm12155115
Alabduljabbar K, Alkhalifah M, Aldheshe A, Shihah AB, Abu-Zaid A, DeVol EB, Albedah N, Aldakhil H, Alzayed B, Mahmoud A, et al. Development of a Cardiovascular Disease Risk Prediction Model: A Preliminary Retrospective Cohort Study of a Patient Sample in Saudi Arabia. Journal of Clinical Medicine. 2023; 12(15):5115. https://doi.org/10.3390/jcm12155115
Chicago/Turabian StyleAlabduljabbar, Khaled, Mohammed Alkhalifah, Abdulaziz Aldheshe, Abdulelah Bin Shihah, Ahmed Abu-Zaid, Edward B. DeVol, Norah Albedah, Haifa Aldakhil, Balqees Alzayed, Ahmed Mahmoud, and et al. 2023. "Development of a Cardiovascular Disease Risk Prediction Model: A Preliminary Retrospective Cohort Study of a Patient Sample in Saudi Arabia" Journal of Clinical Medicine 12, no. 15: 5115. https://doi.org/10.3390/jcm12155115
APA StyleAlabduljabbar, K., Alkhalifah, M., Aldheshe, A., Shihah, A. B., Abu-Zaid, A., DeVol, E. B., Albedah, N., Aldakhil, H., Alzayed, B., Mahmoud, A., & Alkhenizan, A. (2023). Development of a Cardiovascular Disease Risk Prediction Model: A Preliminary Retrospective Cohort Study of a Patient Sample in Saudi Arabia. Journal of Clinical Medicine, 12(15), 5115. https://doi.org/10.3390/jcm12155115