ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Vignon, P.; Mekontso-Dessap, A.; Tran, S.; Prat, G.; Chew, M.; Balik, M.; Sanfilippo, F.; Banauch, G.; Clau-Terre, F.; et al. Echocardiography Findings in COVID-19 Patients Admitted to Intensive Care Units: A Multi-National Observational Study (the ECHO-COVID Study). Intensive Care Med. 2022, 48, 667–678. [Google Scholar] [CrossRef]
- Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation 2020, 142, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, Biochemical and Immune Biomarker Abnormalities Associated with Severe Illness and Mortality in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; Martucci, G.; La Via, L.; Cuttone, G.; Dimarco, G.; Pulizzi, C.; Arcadipane, A.; Astuto, M. Hemoperfusion and Blood Purification Strategies in Patients with COVID-19: A Systematic Review. Artif. Organs 2021, 45, 1466–1476. [Google Scholar] [CrossRef]
- Whittaker, A.; Anson, M.; Harky, A. Neurological Manifestations of COVID-19: A Systematic Review and Current Update. Acta Neurol. Scand. 2020, 142, 14–22. [Google Scholar] [CrossRef]
- Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J. Med. Virol. 2020, 92, 699–702. [Google Scholar] [CrossRef]
- Klimkiewicz, J.; Pankowski, D.; Wytrychiewicz-Pankowska, K.; Klimkiewicz, A.; Siwik, P.; Klimczuk, J.; Lubas, A. Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital-Preliminary Report. Nutrients 2022, 14, 1580. [Google Scholar] [CrossRef]
- Pei, G.; Zhang, Z.; Peng, J.; Liu, L.; Zhang, C.; Yu, C.; Ma, Z.; Huang, Y.; Liu, W.; Yao, Y.; et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. J. Am. Soc. Nephrol. 2020, 31, 1157–1165. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Der Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 0-89042-575-2. [Google Scholar] [CrossRef]
- Ely, E.W.; Margolin, R.; Francis, J.; May, L.; Truman, B.; Dittus, R.; Speroff, T.; Gautam, S.; Bernard, G.R.; Inouye, S.K. Evaluation of Delirium in Critically Ill Patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit. Care Med. 2001, 29, 1370–1379. [Google Scholar] [CrossRef]
- Maclullich, A.M.J.; Ferguson, K.J.; Miller, T.; de Rooij, S.E.J.A.; Cunningham, C. Unravelling the Pathophysiology of Delirium: A Focus on the Role of Aberrant Stress Responses. J. Psychosom. Res. 2008, 65, 229–238. [Google Scholar] [CrossRef]
- Figiel, G.S.; Krishnan, K.R.; Doraiswamy, P.M. Subcortical Structural Changes in ECT-Induced Delirium. J. Geriatr. Psychiatry Neurol. 1990, 3, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Swartz, R.H.; Sahlas, D.J.; Black, S.E. Strategic Involvement of Cholinergic Pathways and Executive Dysfunction: Does Location of White Matter Signal Hyperintensities Matter? J. Stroke Cerebrovasc. Dis. 2003, 12, 29–36. [Google Scholar] [CrossRef]
- Girard, T.D.; Pandharipande, P.P.; Ely, E.W. Delirium in the Intensive Care Unit. Crit. Care 2008, 12 (Suppl. S3), S3. [Google Scholar] [CrossRef]
- Kotfis, K.; Williams Roberson, S.; Wilson, J.E.; Dabrowski, W.; Pun, B.T.; Ely, E.W. COVID-19: ICU Delirium Management during SARS-CoV-2 Pandemic. Crit. Care 2020, 24, 176. [Google Scholar] [CrossRef] [PubMed]
- Uchikado, H.; Akiyama, H.; Kondo, H.; Ikeda, K.; Tsuchiya, K.; Kato, M.; Oda, T.; Togo, T.; Iseki, E.; Kosaka, K. Activation of Vascular Endothelial Cells and Perivascular Cells by Systemic Inflammation-an Immunohistochemical Study of Postmortem Human Brain Tissues. Acta Neuropathol. 2004, 107, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Mooradian, A.D. Potential Mechanisms of the Age-Related Changes in the Blood-Brain Barrier. Neurobiol. Aging 1994, 15, 751–755, discussion 761. [Google Scholar] [CrossRef]
- Starr, J.M.; Wardlaw, J.; Ferguson, K.; MacLullich, A.; Deary, I.J.; Marshall, I. Increased Blood-Brain Barrier Permeability in Type II Diabetes Demonstrated by Gadolinium Magnetic Resonance Imaging. J. Neurol. Neurosurg. Psychiatry 2003, 74, 70–76. [Google Scholar] [CrossRef]
- Bowman, G.L.; Kaye, J.A.; Moore, M.; Waichunas, D.; Carlson, N.E.; Quinn, J.F. Blood-Brain Barrier Impairment in Alzheimer Disease: Stability and Functional Significance. Neurology 2007, 68, 1809–1814. [Google Scholar] [CrossRef]
- Neufeld, K.J.; Yue, J.; Robinson, T.N.; Inouye, S.K.; Needham, D.M. Antipsychotic Medication for Prevention and Treatment of Delirium in Hospitalized Adults: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2016, 64, 705–714. [Google Scholar] [CrossRef]
- Burry, L.; Hutton, B.; Williamson, D.R.; Mehta, S.; Adhikari, N.K.J.; Cheng, W.; Wes Ely, E.; Egerod, I.; Fergusson, D.A.; Rose, L. Pharmacological Interventions for the Treatment of Delirium in Critically Ill Adults. Cochrane Database Syst. Rev. 2019, 2019, CD011749. [Google Scholar] [CrossRef]
- Aiello, G.; Cuocina, M.; La Via, L.; Messina, S.; Attaguile, G.A.; Cantarella, G.; Sanfilippo, F.; Bernardini, R. Melatonin or Ramelteon for Delirium Prevention in the Intensive Care Unit: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 435. [Google Scholar] [CrossRef]
- Mart, M.F.; Williams Roberson, S.; Salas, B.; Pandharipande, P.P.; Ely, E.W. Prevention and Management of Delirium in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2021, 42, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Barnes-Daly, M.A.; Phillips, G.; Ely, E.W. Improving Hospital Survival and Reducing Brain Dysfunction at Seven California Community Hospitals. Crit. Care Med. 2017, 45, 171–178. [Google Scholar] [CrossRef]
- Pun, B.T.; Balas, M.C.; Barnes-Daly, M.A.; Thompson, J.L.; Aldrich, J.M.; Barr, J.; Byrum, D.; Carson, S.S.; Devlin, J.W.; Engel, H.J.; et al. Caring for Critically Ill Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15,000 Adults. Crit. Care Med. 2019, 47, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Aung Thein, M.Z.; Pereira, J.V.; Nitchingham, A.; Caplan, G.A. A Call to Action for Delirium Research: Meta-Analysis and Regression of Delirium Associated Mortality. BMC Geriatr. 2020, 20, 325. [Google Scholar] [CrossRef] [PubMed]
- Ely, E.W.; Shintani, A.; Truman, B.; Speroff, T.; Gordon, S.M.; Harrell, F.E.; Inouye, S.K.; Bernard, G.R.; Dittus, R.S. Delirium as a Predictor of Mortality in Mechanically Ventilated Patients in the Intensive Care Unit. J. Am. Med. Assoc. 2004, 291, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Salluh, J.I.F.; Wang, H.; Schneider, E.B.; Nagaraja, N.; Yenokyan, G.; Damluji, A.; Serafim, R.B.; Stevens, R.D. Outcome of Delirium in Critically Ill Patients: Systematic Review and Meta-Analysis. BMJ 2015, 350, h2538. [Google Scholar] [CrossRef]
- Siddiqi, N.; House, A.O.; Holmes, J.D. Occurrence and outcome of delirium in medical in-patients: A systematic literature review. Age Ageing 2006, 35, 350–364. [Google Scholar] [CrossRef]
- Ding, Y.; He, L.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; et al. Organ Distribution of Severe Acute Respiratory Syndrome (SARS) Associated Coronavirus (SARS-CoV) in SARS Patients: Implications for Pathogenesis and Virus Transmission Pathways. J. Pathol. 2004, 203, 622–630. [Google Scholar] [CrossRef]
- Gu, J.; Gong, E.; Zhang, B.; Zheng, J.; Gao, Z.; Zhong, Y.; Zou, W.; Zhan, J.; Wang, S.; Xie, Z.; et al. Multiple Organ Infection and the Pathogenesis of SARS. J. Exp. Med. 2005, 202, 415–424. [Google Scholar] [CrossRef]
- Li, Y.-C.; Bai, W.-Z.; Hirano, N.; Hayashida, T.; Taniguchi, T.; Sugita, Y.; Tohyama, K.; Hashikawa, T. Neurotropic Virus Tracing Suggests a Membranous-Coating-Mediated Mechanism for Transsynaptic Communication. J. Comp. Neurol. 2013, 521, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Bai, W.-Z.; Hashikawa, T. The Neuroinvasive Potential of SARS-CoV2 May Play a Role in the Respiratory Failure of COVID-19 Patients. J. Med. Virol. 2020, 92, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Glass, W.G.; Subbarao, K.; Murphy, B.; Murphy, P.M. Mechanisms of Host Defense Following Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) Pulmonary Infection of Mice. J. Immunol. 2004, 173, 4030–4039. [Google Scholar] [CrossRef]
- Arbour, N.; Day, R.; Newcombe, J.; Talbot, P.J. Neuroinvasion by Human Respiratory Coronaviruses. J. Virol. 2000, 74, 8913–8921. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Fan, R.; Wen, B.; Zhang, J.; Cao, X.; Wang, C.; Song, Z.; Li, S.; Li, X.; et al. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology 2016, 59, 163–169. [Google Scholar] [CrossRef]
- Wiesmann, M.; Kiliaan, A.J.; Claassen, J.A.H.R. Vascular Aspects of Cognitive Impairment and Dementia. J. Cereb. Blood Flow Metab. 2013, 33, 1696–1706. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.C.; Tayler, H.M.; Love, S. Endothelin-Converting Enzyme-1 Activity, Endothelin-1 Production, and Free Radical-Dependent Vasoconstriction in Alzheimer’s Disease. J. Alzheimer’s Dis. 2013, 36, 577–587. [Google Scholar] [CrossRef]
- Martire, S.; Mosca, L.; d’Erme, M. PARP-1 Involvement in Neurodegeneration: A Focus on Alzheimer’s and Parkinson’s Diseases. Mech. Ageing Dev. 2015, 146–148, 53–64. [Google Scholar] [CrossRef]
- Iacono, K.T.; Kazi, L.; Weiss, S.R. Both Spike and Background Genes Contribute to Murine Coronavirus Neurovirulence. J. Virol. 2006, 80, 6834–6843. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Stohlman, S.A.; Hinton, D.R.; Marten, N.W. Neutrophils Promote Mononuclear Cell Infiltration during Viral-Induced Encephalitis. J. Immunol. 2003, 170, 3331–3336. [Google Scholar] [CrossRef] [PubMed]
- Templeton, S.P.; Kim, T.S.; O’Malley, K.; Perlman, S. Maturation and Localization of Macrophages and Microglia during Infection with a Neurotropic Murine Coronavirus. Brain Pathol. 2008, 18, 40–51. [Google Scholar] [CrossRef]
- Beghi, E.; Giussani, G.; Westenberg, E.; Allegri, R.; Garcia-Azorin, D.; Guekht, A.; Frontera, J.; Kivipelto, M.; Mangialasche, F.; Mukaetova-Ladinska, E.B.; et al. Acute and post-acute neurological manifestations of COVID-19: Present findings, critical appraisal, and future directions. J. Neurol. 2021, 269, 2265–2274. [Google Scholar] [CrossRef]
- Akbarialiabad, H.; Taghrir, M.H.; Abdollahi, A.; Ghahramani, N.; Kumar, M.; Paydar, S.; Razani, B.; Mwangi, J.; Asadi-Pooya, A.A.; Malekmakan, L.; et al. Long COVID, a comprehensive systematic scoping review. Infection 2021, 49, 1163–1186. [Google Scholar] [CrossRef]
- Tauber, S.C.; Djukic, M.; Gossner, J.; Eiffert, H.; Brück, W.; Nau, R. Sepsis-associated encephalopathy and septic encephalitis: An update. Expert Rev. Anti-Infect. Ther. 2020, 19, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Gofton, T.E.; Bryan Young, G. Sepsis-Associated Encephalopathy. Nat. Rev. Neurol. 2012, 8, 557–566. [Google Scholar] [CrossRef]
- Pan, S.; Lv, Z.; Wang, R.; Shu, H.; Yuan, S.; Yu, Y.; Shang, Y. Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. Oxidative Med. Cell. Longev. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Rebora, P.; Rozzini, R.; Bianchetti, A.; Blangiardo, P.; Marchegiani, A.; Piazzoli, A.; Mazzeo, F.; Cesaroni, G.; Chizzoli, A.; Guerini, F.; et al. Delirium in Patients with SARS-CoV-2 Infection: A Multicenter Study. J. Am. Geriatr. Soc. 2021, 69, 293–299. [Google Scholar] [CrossRef]
- Kotfis, K.; Witkiewicz, W.; Szylińska, A.; Witkiewicz, K.; Nalewajska, M.; Feret, W.; Wojczyński, Ł.; Duda, Ł.; Ely, E.W. Delirium Severely Worsens Outcome in Patients with COVID-19-A Retrospective Cohort Study from Temporary Critical Care Hospitals. J. Clin. Med. 2021, 10, 2974. [Google Scholar] [CrossRef]
- Saini, A.; Oh, T.H.; Ghanem, D.A.; Castro, M.; Butler, M.; Sin Fai Lam, C.C.; Posporelis, S.; Lewis, G.; David, A.S.; Rogers, J.P. Inflammatory and Blood Gas Markers of COVID-19 Delirium Compared to Non-COVID-19 Delirium: A Cross-Sectional Study. Aging Ment. Health 2022, 26, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Herrmann, F.R.; Périvier, S.; Gold, G.; Graf, C.E.; Zekry, D. Delirium in Older Patients With COVID-19: Prevalence, Risk Factors, and Clinical Relevance. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, e142–e146. [Google Scholar] [CrossRef]
- Wilke, V.; Sulyok, M.; Stefanou, M.-I.; Richter, V.; Bender, B.; Ernemann, U.; Ziemann, U.; Malek, N.; Kienzle, K.; Klein, C.; et al. Delirium in Hospitalized COVID-19 Patients: Predictors and Implications for Patient Outcome. PLoS ONE 2022, 17, e0278214. [Google Scholar] [CrossRef] [PubMed]
- A Geerse, D.; Bindels, A.J.; A Kuiper, M.; Roos, A.N.; E Spronk, P.; Schultz, M.J. Treatment of hypophosphatemia in the intensive care unit: A review. Crit. Care 2010, 14, R147. [Google Scholar] [CrossRef] [PubMed]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef]
- Barak, V.; Schwartz, A.; Kalickman, I.; Nisman, B.; Gurman, G.; Shoenfeld, Y. Prevalence of Hypophosphatemia in Sepsis and Infection: The Role of Cytokines. Am. J. Med. 1998, 104, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Shor, R.; Halabe, A.; Rishver, S.; Tilis, Y.; Matas, Z.; Fux, A.; Boaz, M.; Weinstein, J. Severe hypophosphatemia in sepsis as a mortality predictor. Ann. Clin. Lab. Sci. 2006, 36, 67–72. [Google Scholar]
- Wang, H.; Zhang, L.; Liao, W.; Huang, J.; Xu, J.; Yang, J.; Chen, C.; He, Z. Hyperphosphatemia rather than hypophosphatemia indicates a poor prognosis in patients with sepsis. Clin. Biochem. 2021, 91, 9–15. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines 2. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 27 July 2023).
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Executive Summary: Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, 1532–1548. [Google Scholar] [CrossRef]
- Anekar, A.A.; Hendrix, J.M.; Cascella, M. WHO Analgesic Ladder. J. R. Coll. Physicians Edinb. 2023, 38, 284. [Google Scholar] [CrossRef]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Majewski, P.; Rotter, I.; Kotfis, K. COVID-19: Pain Management in Patients with SARS-CoV-2 Infection-Molecular Mechanisms, Challenges, and Perspectives. Brain Sci. 2020, 10, 465. [Google Scholar] [CrossRef] [PubMed]
- Chanques, G.; Constantin, J.-M.; Devlin, J.W.; Ely, E.W.; Fraser, G.L.; Gélinas, C.; Girard, T.D.; Guérin, C.; Jabaudon, M.; Jaber, S.; et al. Analgesia and Sedation in Patients with ARDS. Intensive Care Med. 2020, 46, 2342–2356. [Google Scholar] [CrossRef]
- Duprey, M.S.; Dijkstra-Kersten, S.M.A.; Zaal, I.J.; Briesacher, B.A.; Saczynski, J.S.; Griffith, J.L.; Devlin, J.W.; Slooter, A.J.C. Opioid Use Increases the Risk of Delirium in Critically Ill Adults Independently of Pain. Am. J. Respir. Crit. Care Med. 2021, 204, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Cascella, M. ICU Delirium. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559280/ (accessed on 27 July 2023).
Variable | n | % | |
---|---|---|---|
Status | Deceased | 118 | 35.2 |
Moved to non-COVID-19 ward | 73 | 21.8 | |
Discharged | 114 | 34,0 | |
Gender | Female | 141 | 42.1 |
Male | 194 | 57.9 | |
Ward type | Intensive care unit | 71 | 21.2 |
High-dependency unit | 264 | 78.8 | |
Obesity | 69 | 20.6 | |
Malignancy | 44 | 13.1 | |
Hypertension | 192 | 57.3 | |
Chronic kidney disease | 43 | 12.8 | |
Diabetes | 85 | 25.4 | |
Coronary heart disease | 54 | 16.1 | |
Heart failure | 37 | 11.0 | |
History of myocardial Infarction | 24 | 7.2 | |
Chronic atrial fibrillation | 51 | 15.2 | |
Tobacco smoker | 27 | 8.1 | |
Asthma | 18 | 5.4 | |
Chronic obstructive pulmonary disease | 17 | 5.1 | |
Dementia | 15 | 4.5 | |
Delirium onset | 72 | 21.5 |
Variable | Delirium | Non-Delirium | Significance p | ||
---|---|---|---|---|---|
(n = 72) | (n = 263) | ||||
N | % | n | % | ||
Deceased | 43 | 59.7% | 75 | 28.5% | <0.001 |
Gender (female) | 42 | 58.3% | 99 | 37.6% | 0.002 |
Ward (HDU) | 64 | 88.9% | 200 | 76.0% | 0.022 |
Obesity | 11 | 15.3% | 58 | 22.1% | 0.208 |
Malignancy | 7 | 9.7% | 37 | 14.1% | 0.432 |
Hypertension | 44 | 61.1% | 148 | 56.3% | 0.462 |
Chronic kidney disease | 13 | 18.1% | 30 | 11.4% | 0.135 |
Diabetes | 22 | 30.6% | 63 | 24.0% | 0.254 |
Coronary artery disease | 18 | 25.0% | 36 | 13.7% | 0.021 |
Heart failure | 9 | 12.5% | 28 | 10.6% | 0.673 |
History of myocardial infarction | 11 | 15.3% | 13 | 4.9% | 0.003 |
Chronic atrial fibrillation | 22 | 30.6% | 29 | 11.0% | <0.001 |
Tobacco smoker | 5 | 6.9% | 22 | 8.4% | 0.811 |
Asthma | 3 | 4.2% | 15 | 5.7% | 0.773 |
Chronic obstructive pulmonary disease | 3 | 4.2% | 14 | 5.3% | 0.969 |
Preexisting dementia | 6 | 8.33% | 9 | 3.42% | 0.002 |
Delirium (n = 72) | Non-Delirium (n = 263) | Significance p | |||
---|---|---|---|---|---|
Variable | Mean ± SD | Median (Min, Max) | Mean ± SD | Median (Min, Max) | |
Age (years) | 76.1 ± 13.7 | 78 (35, 100) | 63.1 ± 14.4 | 66 (19, 97) | <0.001 |
HGB [g/dL] | 11.9 ± 2.4 | 11.9 (7.1, 20.1) | 12.4 ± 2.2 | 11.9 (6.4, 16.7) | 0.186 |
Albumin [g/dL] | 2.9 ± 0.4 | 3.0 (2.2, 3.8) | 3.3 ± 3.6 | 2.9 (1.6, 32.7) | 0.638 |
ALT [U/L] | 81.9 ± 246.8 | 39.0 (5.0, 1697.0) | 63.8 ± 52.1 | 50.0 (5.0, 386.0) | 0.02 |
AST [U/L] | 99.3 ± 339.4 | 47.0 (10.0, 2317.0) | 45.1 ± 28.2 | 37.0 (10.0, 163.0) | 0.35 |
CRP [mg/L] | 11.2 ± 8.1 | 10.4 (0.6, 38.9) | 7.6 ± 10.8 | 3.3 (0.1, 58.2) | <0.001 |
TP [g/dL] | 5.9 ± 0.6 | 6.0 (4.6, 6.8) | 5.6 ± 0.7 | 5.6 (4.8, 7.0) | 0.276 |
Bilirubin [mg/dL] | 1.2 ± 3.4 | 0.5 (0.1, 19.5) | 0.5 ± 0.3 | 0.5 (0.2, 2.2) | 0.395 |
CHOL [mg/dL] | 175.8 ± 61.4 | 168.5 (110.0, 292.0) | 170.8 ± 50.5 | 178.0 (40.0, 302.0) | 0.791 |
LDH [U/L] | 674.9 ± 1282.7 | 387.5 (61.0, 7087.0) | 428.6 ± 196.6 | 386.5 (87.0, 1096.0) | 0.708 |
Ferritin [ug/L] | 2064.2 ± 5520.5 | 825.0 (117.0, 34,243.0) | 1928.3 ± 4432.1 | 1100.0 (45.0, 46,830.0) | 0.41 |
Fibrinogen [mg/dL] | 543.6 ± 192.6 | 538.0 (177.0, 915.0) | 470.3 ± 178.9 | 448.0 (175.0, 993.0) | 0.115 |
Phosphates [mg/dL] | 3.6 ± 1.0 | 3.3 (2.0, 5.6) | 4.9 ± 2.1 | 4.3 (1.7, 12.4) | 0.016 |
INR | 1.7 ± 1.8 | 1.2 (0.8, 11.6) | 1.2 ± 0.2 | 1.14 (0.9; 2,1) | <0.001 |
Creatinine [mg/dL] | 1.6 ± 1.7 | 1.0 (0.3, 9.8) | 1.5 ± 2.0 | 0.8 (0.3, 13.5) | 0.026 |
Urea [mg/dL] | 89.9 ± 67.5 | 70.0 (25.0, 417.0) | 67.6 ± 50.0 | 47.0 (13.0, 280.0) | 0.001 |
PLT [K/uL] | 250.6 ± 125.2 | 231.5 (46.0, 577.0) | 284.9 ± 112.5 | 278.0 (32.0, 624.0) | 0.04 |
Dimer D [ug/L] | 6.3 ± 14.8 | 1.7(0.3, 87.5) | 6.7 ± 15.8 | 1.6 (0.18, 113.13) | 0.717 |
PCT [ng/mL] | 6.20 ± 16.85 | 0.34 (0.04, 75.42) | 1.87 ± 5.14 | 0.19 (0,03; 31.64) | 0.048 |
WBC [109/L] | 11.1 ± 6.5 | 9.9 (3.41, 46.59) | 12.4 ± 7.4 | 10.7(1.5, 49.0) | 0.251 |
Variable | Odds Ratio | 95% CI | Significance p |
---|---|---|---|
Male gender | 0.43 | 0.25–0.73 | 0.002 |
Age | 1.08 | 1.05–1.11 | <0.001 |
HDU stay | 2.52 | 1.15–5.54 | 0.022 |
Coronary artery disease | 2.10 | 1.11–3.98 | 0.022 |
History of myocardial infarction | 3.47 | 1.48–8.12 | 0.004 |
Chronic atrial fibrillation | 3.55 | 1.89–6.68 | <0.001 |
C-reactive protein | 1.31 | 1.03–1.06 | 0.003 |
Procalcitonin | 1.04 | 1.00–1.09 | 0.047 |
Phosphates | 0.59 | 0.37–0.95 | 0.03 |
International normalized ratio | 16.31 | 2.62–101.40 | 0.003 |
Creatinine | 1.04 | 0.91–1.19 | 0.588 |
Urea | 1.01 | 1.00–1.11 | 0.01 |
Platelets | 0.98 | 0.99–1.00 | 0.041 |
Variable | Odds Ratio | 95% CI | p-Value | AUC | Significance p (AUC) |
---|---|---|---|---|---|
Age | 1.07 | 1.05–1.10 | <0.001 | 0.767 | 0.033 |
Chronic atrial fibrillation | 2.90 | 1.06–4.14 | 0.035 |
Variable | Odds Ratio | 95% CI | p-Value | AUC | Significance p (AUC) |
---|---|---|---|---|---|
Phosphates | 0.62 | 0.44–0.88 | 0.008 | 0.683 | 0.037 |
Urea | 1.01 | 1.00–1.01 | 0.008 | ||
INR | 12.60 | 1.83–86.81 | 0.010 | ||
Procalcitonin | 1.05 | 1.00–1.10 | 0.033 |
Medication | Delirium | Non-Delirium | Significance p | ||
---|---|---|---|---|---|
(n = 72) | (n = 263) | ||||
n | % | n | % | ||
Ketoprofen | 1 | 1.39 | 9 | 3.42 | 0.696 |
Metamizole | 4 | 5.56 | 15 | 5.70 | 1.000 |
Paracetamol | 21 | 29.17 | 100 | 38.02 | 0.166 |
Dexmedetomidine | 10 | 13.89 | 23 | 8.75 | 0.194 |
Tramadol | 5 | 6.94 | 9 | 3.24 | 0.186 |
Morphine | 26 | 36.11 | 19 | 7.22 | <0.001 |
Fentanyl | 6 | 8.45 | 51 | 19.39 | 0.030 |
BZD | 13 | 18.06 | 44 | 16.73 | 0.791 |
Hydroxyzine | 16 | 22.22 | 65 | 24.71 | 0.662 |
Quetiapine | 23 | 31.94 | 22 | 8.37 | <0.001 |
Haloperidol | 20 | 27.78 | 14 | 5.32 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutowski, M.; Klimkiewicz, J.; Michałowski, A.; Ordak, M.; Możański, M.; Lubas, A. ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia. J. Clin. Med. 2023, 12, 5049. https://doi.org/10.3390/jcm12155049
Gutowski M, Klimkiewicz J, Michałowski A, Ordak M, Możański M, Lubas A. ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia. Journal of Clinical Medicine. 2023; 12(15):5049. https://doi.org/10.3390/jcm12155049
Chicago/Turabian StyleGutowski, Mateusz, Jakub Klimkiewicz, Andrzej Michałowski, Michal Ordak, Marcin Możański, and Arkadiusz Lubas. 2023. "ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia" Journal of Clinical Medicine 12, no. 15: 5049. https://doi.org/10.3390/jcm12155049
APA StyleGutowski, M., Klimkiewicz, J., Michałowski, A., Ordak, M., Możański, M., & Lubas, A. (2023). ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia. Journal of Clinical Medicine, 12(15), 5049. https://doi.org/10.3390/jcm12155049