Percutaneous Treatment of Left Main Disease: A Review of Current Status
Abstract
:1. Introduction
2. Anatomy and Relevant Aspects during Treatment
3. Available Evidence
4. Current Guideline Recommendations for Unprotected Left Main PCI
5. Provisional Technique: Rationale and Technical Aspects
6. Two-Sent Technique: Rationale and Technical Aspects
7. Technical Considerations during PCI
8. Intracoronary Imaging Guidance before, during and after PCI
9. Coronary Physiology Guidance
10. The Risk of Hemodynamic Compromise and Mechanical Support Devices
11. Management in Specific Subsets
11.1. In-Stent Restenosis
11.2. Calcified Lesions
11.3. Acute Coronary Syndromes
12. Gaps in Evidence
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchis-Gomar, F.; Perez-Quilis, C.; Leischik, R.; Lucia, A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med. 2016, 4, 256. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, M.V.; Gersh, B.J.; Alexander, K.P.; Granger, C.B.; Stone, G.W. Coronary Artery Disease in Patients ≥80 Years of Age. J. Am. Coll. Cardiol. 2018, 71, 2015–2040. [Google Scholar] [CrossRef]
- Lee, P.H.; Ahn, J.M.; Chang, M.; Baek, S.; Yoon, S.H.; Kang, S.J.; Lee, S.W.; Kim, Y.H.; Lee, C.W.; Park, S.W.; et al. Left Main Coronary Artery Disease: Secular Trends in Patient Characteristics, Treatments, and Outcomes. J. Am. Coll. Cardiol. 2016, 68, 1233–1246. [Google Scholar] [CrossRef]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Aimaretti, G.; Marino, P.; Sinigaglia, F.; Suryapranata, H.; De Luca, G. Novara Atherosclerosis Study Group Impact of diabetes on neutrophil-to-lymphocyte ratio and its relationship to coronary artery disease. Diabetes Metab. 2015, 41, 304–311. [Google Scholar] [CrossRef]
- De Luca, G.; Verdoia, M.; Cassetti, E.; Schaffer, A.; Cavallino, C.; Bolzani, V.; Marino, P. Novara Atherosclerosis Study Group (NAS) High fibrinogen level is an independent predictor of presence and extent of coronary artery disease among Italian population. J. Thromb. Thrombolysis 2011, 31, 458–463. [Google Scholar] [CrossRef]
- Mintz, G.S.; Guagliumi, G. Intravascular imaging in coronary artery disease. Lancet 2017, 390, 793–809. [Google Scholar] [CrossRef]
- Palmerini, T.; Benedetto, U.; Biondi-Zoccai, G.; Della Riva, D.; Bacchi-Reggiani, L.; Smits, P.C.; Vlachojannis, G.J.; Jensen, L.O.; Christiansen, E.H.; Berencsi, K.; et al. Long-Term Safety of Drug-Eluting and Bare-Metal Stents: Evidence from a Comprehensive Network Meta-Analysis. J. Am. Coll. Cardiol. 2015, 65, 2496–2507. [Google Scholar] [CrossRef] [Green Version]
- De Luca, G.; Smits, P.; Hofma, S.H.; Di Lorenzo, E.; Vlachojannis, G.J.; Van’t Hof, A.W.; van Boven, A.J.; Kedhi, E.; Stone, G.W.; Suryapranata, H. Drug-Eluting Stent in Primary Angioplasty (DESERT 3) cooperation. Everolimus eluting stent vs first generation drug-eluting stent in primary angioplasty: A pooled patient-level meta-analysis of randomized trials. Int. J. Cardiol. 2017, 244, 121–127. [Google Scholar] [CrossRef]
- Secco, G.G.; Ghione, M.; Mattesini, A.; Dall’Ara, G.; Ghilencea, L.; Kilickesmez, K.; De Luca, G.; Fattori, R.; Parisi, R.; Marino, P.N.; et al. Very high-pressure dilatation for undilatable coronary lesions: Indications and results with a new dedicated balloon. EuroIntervention 2016, 12, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Conley, M.J.; Ely, R.L.; Kisslo, J.; Lee, K.L.; McNeer, J.F.; Rosati, R.A. The prognostic spectrum of left main stenosis. Circulation 1978, 57, 947–952. [Google Scholar] [CrossRef] [Green Version]
- El-Menyar, A.A.; Al Suwaidi, J.; Holmes, D.R. Left main coronary artery stenosis: State-of-the-art. Curr. Probl. Cardiol. 2007, 32, 103–193. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, E.A.; Davis, K.B.; Sopko, G.; Kaiser, G.C.; Corley, S.D.; Schaff, H.; Taylor, H.A.; Chaitman, B.R. Comparison of surgical and medical group survival in patients with left main coronary artery disease. Long-term CASS experience. Circulation 1995, 91, 2325–2334. [Google Scholar] [CrossRef] [PubMed]
- Takaro, T.; Peduzzi, P.; Detre, K.M.; Hultgren, H.N.; Murphy, M.L.; Van der Bel-Kahn, J.; Thomsen, J.; Meadows, W.R. Survival in subgroups of patients with left main coronary artery disease. Veterans Administration Cooperative Study of Surgery for Coronary Arterial Occlusive Disease. Circulation 1982, 66, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkikallio, T.; Holm, N.R.; Lindsay, M.; Spence, M.S.; Erglis, A.; Menown, I.B.; Trovik, T.; Eskola, M.; Romppanen, H.; Kellerth, T.; et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): A prospective, randomised, open-label, non-inferiority trial. Lancet 2016, 388, 2743–2752. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Sabik, J.F.; Serruys, P.W.; Simonton, C.A.; Généreux, P.; Puskas, J.; Kandzari, D.E.; Morice, M.C.; Lembo, N.; Brown, W.M., III; et al. Everolimus-Eluting Stents or Bypass Surgery for Left Main Coronary Artery Disease. N. Engl. J. Med. 2016, 375, 2223–2235. [Google Scholar] [CrossRef]
- Movahed, M.R.; Stinis, C.T. A new proposed simplified classification of coronary artery bifurcation lesions and bifurcation interventional techniques. J. Invasive Cardiol. 2006, 18, 199–204. [Google Scholar] [CrossRef]
- Papafaklis, M.I.; Bourantas, C.V.; Theodorakis, P.E.; Katsouras, C.S.; Fotiadis, D.I.; Michalis, L.K. Association of endothelial shear stress with plaque thickness in a real three-dimensional left main coronary artery bifurcation model. Int. J. Cardiol. 2007, 115, 276–278. [Google Scholar] [CrossRef]
- Chatzizisis, Y.S.; Coskun, A.U.; Jonas, M.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 2007, 49, 2379–2393. [Google Scholar] [CrossRef] [Green Version]
- Oviedo, C.; Maehara, A.; Mintz, G.S.; Araki, H.; Choi, S.Y.; Tsujita, K.; Kubo, T.; Doi, H.; Templin, B.; Lansky, A.J.; et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: Where is the plaque really located? Circ. Cardiovasc. Interv. 2010, 3, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Serruys, P.W.; Morice, M.-C.; Kappetein, A.P.; Colombo, A.; Holmes, D.R.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; Van Den Brand, M.; Bass, E.J.; et al. Percutaneous Coronary Intervention versus Coronary-Artery Bypass Grafting for Severe Coronary Artery Disease. New Engl. J. Med. 2009, 360, 961–972. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, Y.-H.; Park, D.-W.; Yun, S.C.; Ahn, J.M.; Song, H.G.; Lee, J.Y.; Kim, W.J.; Kang, S.J.; Lee, S.W.; et al. Randomized Trial of Stents versus Bypass Surgery for Left Main Coronary Artery Disease. N. Engl. J. Med. 2011, 364, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Holm, N.R.; Mäkikallio, T.; Lindsay, M.M.; Spence, M.S.; Erglis, A.; Menown, I.B.; Trovik, T.; Kellerth, T.; Kalinauskas, G.; Mogensen, L.J.H.; et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: Updated 5-year outcomes from the randomised, non-inferiority NOBLE trial. Lancet 2020, 395, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Boudriot, E.; Thiele, H.; Walther, T.; Liebetrau, C.; Boeckstegers, P.; Pohl, T.; Reichart, B.; Mudra, H.; Beier, F.; Gansera, B.; et al. Randomized Comparison of Percutaneous Coronary Intervention with Sirolimus-Eluting Stents versus Coronary Artery Bypass Grafting in Unprotected Left Main Stem Stenosis. J. Am. Coll. Cardiol. 2011, 57, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuijs, D.J.; Kappetein, A.P.; Serruys, P.W.; Mohr, F.W.; Morice, M.C.; Mack, M.J.; Holmes, D.R.; Curzen, N.; Davierwala, P.; Noack, T.; et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled syntax trial. Lancet 2019, 394, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Mohr, F.W.; Morice, M.-C.; Kappetein, A.P.; Feldman, T.E.; Ståhle, E.; Colombo, A.; Mack, M.J.; Holmes, D.R.; Morel, M.A.; Van Dyck, N.; et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 2013, 381, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Morice, M.-C.; Serruys, P.W.; Kappetein, A.P.; Feldman, T.E.; Ståhle, E.; Colombo, A.; Mack, M.J.; Holmes, D.R.; Torracca, L.; van Es, G.A.; et al. Outcomes in patients with de novo left main disease treated with either percutaneous coronary intervention using paclitaxel-eluting stents or coronary artery bypass graft treatment in the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial. Circulation 2010, 121, 2645–2653. [Google Scholar]
- Morice, M.-C.; Serruys, P.W.; Kappetein, A.P.; Feldman, T.E.; Ståhle, E.; Colombo, A.; Mack, M.J.; Holmes, D.R.; Choi, J.W.; Ruzyllo, W.; et al. Five-year outcomes in patients with left main disease treated with either percutaneous coronary intervention or coronary artery bypass grafting in the synergy between percutaneous coronary intervention with taxus and cardiac surgery trial. Circulation 2014, 129, 2388–2394. [Google Scholar] [CrossRef] [Green Version]
- Park, D.-W.; Ahn, J.-M.; Park, H.; Yun, S.C.; Kang, D.Y.; Lee, P.H.; Kim, Y.H.; Lim, D.S.; Rha, S.W.; Park, G.M.; et al. Ten-year outcomes after drug-eluting stents versus coronary artery bypass grafting for left main coronary disease. Circulation 2020, 141, 1437–1446. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Kappetein, A.P.; Sabik, J.F.; Pocock, S.J.; Morice, M.C.; Puskas, J.; Kandzari, D.E.; Karmpaliotis, D.; Brown, W.M., III; Lembo, N.J.; et al. Five-year outcomes after PCI or CABG for left main coronary disease. N. Engl. J. Med. 2019, 381, 1820–1830. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Bergmark, B.A.; Murphy, S.A.; T O’Gara, P.; Smith, P.K.; Serruys, P.W.; Kappetein, A.P.; Park, S.J.; Park, D.W.; Christiansen, E.H.; et al. Percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in left main coronary artery disease: An individual patient data meta-analysis. Lancet 2021, 398, 2247–2257. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [Green Version]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef]
- Chen, S.-L.; Sheiban, I.; Xu, B.; Jepson, N.; Paiboon, C.; Zhang, J.J.; Ye, F.; Sansoto, T.; Kwan, T.W.; Lee, M.; et al. Impact of the complexity of bifurcation lesions treated with drug-eluting stents: The DEFINITION study (Definitions and impact of complEx biFurcation lesIons on clinical outcomes after percutaNeous coronary IntervenTIOn using drug-eluting steNts). JACC Cardiovasc. Interv. 2014, 7, 1266–1276. [Google Scholar] [PubMed] [Green Version]
- Burzotta, F.; Lassen, J.F.; Banning, A.P.; Lefèvre, T.; Hildick-Smith, D.; Chieffo, A.; Darremont, O.; Pan, M.; Chatzizisis, Y.S.; Albiero, R.; et al. Percutaneous coronary intervention in left main coronary artery disease: The 13th consensus document from the European Bifurcation Club. EuroIntervention 2018, 14, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, J.; Burzotta, F.; Banning, A.; Lefèvre, T.; Darremont, O.; Hildick-Smith, D.; Chieffo, A.; Pan, M.; Holm, N.R.; Louvard, Y.; et al. Percutaneous coronary intervention for the left main stem and other bifurcation lesions: 12th consensus document from the European Bifurcation Club. EuroIntervention 2018, 13, 1540–1553. [Google Scholar] [CrossRef]
- Albiero, R.; Burzotta, F.; Lassen, J.F.; Lefèvre, T.; Banning, A.P.; Chatzizisis, Y.S.; Johnson, T.W.; Ferenc, M.; Pan, M.; Daremont, O.; et al. Treatment of coronary bifurcation lesions, part I: Implanting the first stent in the provisional pathway. The 16th expert consensus document of the European Bifurcation Club. EuroIntervention 2022, 18, e362–e376. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Ye, F.; Xu, K.; Kan, J.; Tao, L.; Santoso, T.; Munawar, M.; Tresukosol, D.; Li, L.I.; Sheiban, I.; et al. Multicentre, randomized comparison of two-stent and provisional stenting techniques in patients with complex coronary bifurcation lesions: The DEFINITION II trial. Eur. Heart J. 2020, 41, 2523–2536. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Zhang, J.-J.; Han, Y.; Kan, J.; Chen, L.; Qiu, C.; Santoso, T.; Paiboon, C.; Kwan, T.W.; et al. 3-Year Outcomes of the DKCRUSH-V Trial Comparing DK Crush With Provisional Stenting for Left Main Bifurcation Lesions. JACC Cardiovasc. Interv. 2019, 12, 1927–1937. [Google Scholar] [CrossRef]
- Hildick-Smith, D.; Egred, M.; Banning, A.; Brunel, P.; Ferenc, M.; Hovasse, T.; Wlodarczak, A.; Pan, M.; Schmitz, T.; Silvestri, M.; et al. The European bifurcation club Left Main Coronary Stent study: A randomized comparison of stepwise provisional vs. systematic dual stenting strategies (EBC MAIN). Eur. Heart J. 2021, 42, 3829–3839. [Google Scholar] [CrossRef]
- Lassen, J.F.; Albiero, R.; Johnson, T.W.; Burzotta, F.; Lefèvre, T.; Iles, T.L.; Pan, M.; Banning, A.P.; Chatzizisis, Y.S.; Ferenc, M.; et al. Treatment of coronary bifurcation lesions, part II: Implanting two stents. The 16th expert consensus document of the European Bifurcation Club. EuroIntervention 2022, 18, 457–470. [Google Scholar] [CrossRef]
- Toth, G.G.; Sasi, V.; Franco, D.; Prassl, A.J.; Di Serafino, L.; Ng, J.C.; Szanto, G.; Schneller, L.; Ang, H.Y.; Plank, G.; et al. Double-kissing culotte technique for coronary bifurcation stenting. EuroIntervention 2020, 16, e724–e733. [Google Scholar] [CrossRef] [PubMed]
- Lindstaedt, M.; Spiecker, M.; Perings, C.; Lawo, T.; Yazar, A.; Holland-Letz, T.; Muegge, A.; Bojara, W.; Germing, A. How good are experienced interventional cardiologists at predicting the functional significance of intermediate or equivocal left main coronary artery stenoses? Int. J. Cardiol. 2007, 120, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Kočka, V.; Thériault-Lauzier, P.; Xiong, T.-Y.; Ben-Shoshan, J.; Petr, R.; Laboš, M.; Buithieu, J.; Mousavi, N.; Pilgrim, T.; Praz, F.; et al. Optimal Fluoroscopic Projections of Coronary Ostia and Bifurcations Defined by Computed Tomographic Coronary Angiography. JACC Cardiovasc. Interv. 2020, 13, 2560–2570. [Google Scholar] [CrossRef] [PubMed]
- Murasato, Y.; Hikichi, Y.; Horiuchi, M. Examination of stent deformation and gap formation after complex stenting of left main coronary artery bifurcations using microfocus computed tomography. J. Interv. Cardiol. 2009, 22, 135–144. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, K.H.; Song, Y.B.; Lee, J.Y.; Lee, S.J.; Lee, S.Y.; Kim, S.M.; Yun, K.H.; Cho, J.Y.; Kim, C.J.; et al. Intravascular Imaging-Guided or Angiography-Guided Complex PCI. N. Engl. J. Med. 2023, 388, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-J.; Mintz, G.S.; Ahn, C.-M.; Kim, J.S.; Kim, B.K.; Ko, Y.G.; Kang, T.S.; Kang, W.C.; Kim, Y.H.; Hur, S.H.; et al. Effect of Intravascular Ultrasound-Guided Drug-Eluting Stent Implantation: 5-Year Follow-Up of the IVUS-XPL Randomized Trial. JACC Cardiovasc. Interv. 2020, 13, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yang, M.; Zhang, S.; Zeng, Y. Percutaneous coronary intervention in left main coronary artery disease with or without intravascular ultrasound: A meta-analysis. PLoS ONE 2017, 12, e0179756. [Google Scholar] [CrossRef] [Green Version]
- De Maria, G.L.; Testa, L.; de la Torre Hernandez, J.M.; Terentes-Printzios, D.; Emfietzoglou, M.; Scarsini, R.; Bedogni, F.; Spitzer, E.; Banning, A. A multi-center, international, randomized, 2-year, parallel-group study to assess the superiority of IVUS-guided PCI versus qualitative angio-guided PCI in unprotected left main coronary artery (ULMCA) disease: Study protocol for OPTIMAL trial. PLoS ONE 2022, 17, e0260770. [Google Scholar]
- Truesdell, A.G.; Alasnag, M.A.; Kaul, P.; Rab, S.T.; Riley, R.F.; Young, M.N.; Batchelor, W.B.; Maehara, A.; Welt, F.G.; Kirtane, A.J. ACC Interventional Council Intravascular Imaging During Percutaneous Coronary Intervention: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 81, 590–605. [Google Scholar] [CrossRef]
- Jasti, V.; Ivan, E.; Yalamanchili, V.; Wongpraparut, N.; Leesar, M.A. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 2004, 110, 2831–2836. [Google Scholar] [CrossRef] [Green Version]
- de la Torre Hernandez, J.M.; Hernández Hernandez, F.; Alfonso, F.; Rumoroso, J.R.; Lopez-Palop, R.; Sadaba, M.; Carrillo, P.; Rondan, J.; Lozano, I.; Ruiz Nodar, J.M.; et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J. Am. Coll. Cardiol. 2011, 58, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Torre Hernández, J.M.; Hernández, F.; Alfonso, F. The optimal cutoff value for left main minimal lumen area of 4.5 mm(2): A word of caution. JACC Cardiovasc. Interv. 2015, 8, 122–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Ahn, J.M.; Kang, S.J.; Yoon, S.H.; Koo, B.K.; Lee, J.Y.; Kim, W.J.; Park, D.W.; Lee, S.W.; Kim, Y.H.; et al. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc. Interv. 2014, 7, 868–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruyne, B.; Pijls, N.H.J.; Kalesan, B.; Barbato, E.; Tonino, P.A.; Piroth, Z.; Jagic, N.; Möbius-Winkler, S.; Rioufol, G.; Witt, N.; et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 2012, 367, 991–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götberg, M.; Christiansen, E.H.; Gudmundsdottir, I.J.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; Olsson, S.E.; Öhagen, P.; Olsson, H.; Omerovic, E.; et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. N. Engl. J. Med. 2017, 376, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Hamilos, M.; Muller, O.; Cuisset, T.; Ntalianis, A.; Chlouverakis, G.; Sarno, G.; Nelis, O.; Bartunek, J.; Vanderheyden, M.; Wyffels, E.; et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 2009, 120, 1505–1512. [Google Scholar] [CrossRef]
- Nakayama, M.; Sakai, K.; Munhoz, D.; Ohashi, H.; Collet, C.; Johnson, N.P.; Matsuo, H. Discordance in the Pattern of Coronary Artery Disease Between Resting and Hyperemic Conditions. JACC Cardiovasc. Interv. 2022, 15, e113–e116. [Google Scholar] [CrossRef]
- Fearon, W.F.; Yong, A.S.; Lenders, G.; Toth, G.G.; Dao, C.; Daniels, D.V.; Pijls, N.H.; De Bruyne, B. The impact of downstream coronary stenosis on fractional flow reserve assessment of intermediate left main coronary artery disease: Human validation. JACC Cardiovasc. Interv. 2015, 8, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Nam, C.-W.; Hur, S.-H.; Koo, B.-K.; Doh, J.H.; Cho, Y.K.; Park, H.S.; Yoon, H.J.; Kim, H.; Chung, I.S.; Kim, Y.N.; et al. Fractional flow reserve versus angiography in left circumflex ostial intervention after left main crossover stenting. Korean Circ. J. 2011, 41, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Christofferson, R.D.; Lehmann, K.G.; Martin, G.V.; Every, N.; Caldwell, J.H.; Kapadia, S.R. Effect of chronic total coronary occlusion on treatment strategy. Am. J. Cardiol. 2005, 95, 1088–1091. [Google Scholar] [CrossRef]
- Capodanno, D.; Di Salvo, M.E.; Tamburino, C. Impact of right coronary artery disease on mortality in patients undergoing percutaneous coronary intervention of unprotected left main coronary artery disease. EuroIntervention 2010, 6, 454–460. [Google Scholar] [CrossRef]
- Migliorini, A.; Valenti, R.; Parodi, G.; Buonamici, P.; Cerisano, G.; Carrabba, N.; Vergara, R.; Antoniucci, D. The impact of right coronary artery chronic total occlusion on clinical outcome of patients undergoing percutaneous coronary intervention for unprotected left main disease. J. Am. Coll. Cardiol. 2011, 58, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, K.; Ielasi, A.; Chieffo, A.; Basavarajaiah, S.; Latib, A.; Montorfano, M.; Carlino, M.; Mizuno, H.; Hasegawa, T.; Godino, C.; et al. Impact of residual chronic total occlusion of right coronary artery on the long-term outcome in patients treated for unprotected left main disease: The Milan and New-Tokyo registry. Circ. Cardiovasc. Interv. 2013, 6, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Aurigemma, C.; Burzotta, F.; Chieffo, A.; Briguori, C.; Piva, T.; De Marco, F.; Di Biasi, M.; Pagnotta, P.; Casu, G.; Garbo, R.; et al. IMP-IT Investigators. Clinical impact of revascularization extent in patients undergoing impella-protected PCI enrolled in a nationwide registry. JACC Cardiovasc. Interv. 2021, 14, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Chieffo, A.; Dudek, D.; Hassager, C.; Combes, A.; Gramegna, M.; Halvorsen, S.; Huber, K.; Kunadian, V.; Maly, J.; Møller, J.E.; et al. Joint EAPCI/ACVC expert consensus document on percutaneous ventricular assist devices. EuroIntervention 2021, 17, e274–e286. [Google Scholar] [CrossRef]
- Gaba, P.; Gersh, B.J.; Ali, Z.A.; Moses, J.W.; Stone, G.W. Complete versus incomplete coronary revascularization: Definitions, assessment and outcomes. Nat. Rev. Cardiol. 2021, 18, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Ielasi, A.; Shannon, J.; Latib, A.; Godino, C.; Davidavicius, G.; Mussardo, M.; Ferrarello, S.; Figini, F.; Carlino, M.; et al. Clinical and procedural predictors of suboptimal outcome after the treatment of drug-eluting stent restenosis in the unprotected distal left main stem. Circ. Cardiovasc. Interv. 2012, 5, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Kleber, F.X.; Rittger, H.; Bonaventura, K.; Zeymer, U.; Wöhrle, J.; Jeger, R.; Levenson, B.; Möbius-Winkler, S.; Bruch, L.; Fischer, D.; et al. Drug-coated balloons for treatment of coronary artery disease: Updated recommendations from a consensus group. Clin. Res. Cardiol. 2013, 102, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ielasi, A.; Kawamoto, H.; Latib, A.; Boccuzzi, G.G.; Sardella, G.; Garbo, R.; Meliga, E.; D’Ascenzo, F.; Presbitero, P.; Nakamura, S.; et al. In-hospital and 1-year outcomes of rotational atherectomy and stent implantation in patients with severely calcified unprotected left main narrowings (from the Multicenter Rotate Registry). Am. J. Cardiol. 2017, 119, 1331–1337. [Google Scholar] [CrossRef]
- Lee, M.S.; Shlofmitz, E.; Park, K.W.; Goldberg, A.; Jeremias, A.; Shlofmitz, R. Orbital Atherectomy of Severely Calcified Unprotected Left Main Coronary Artery Disease: One-Year Outcomes. J. Invasive Cardiol. 2018, 30, 270–274. [Google Scholar] [PubMed]
- Salazar, C.H.; Gonzalo, N.; Aksoy, A.; Tovar Forero, M.N.; Nef, H.; Van Mieghem, N.M.; Latib, A.; Ocaranza Sanchez, R.; Werner, N.; Escaned, J. Feasibility, safety, and efficacy of intravascular lithotripsy in severely calcified left main coronary stenosis. JACC Cardiovasc. Interv. 2020, 13, 1727–1729. [Google Scholar] [CrossRef] [PubMed]
- Gaba, P.; Christiansen, E.H.; Nielsen, P.H.; Murphy, S.A.; O’Gara, P.T.; Smith, P.K.; Serruys, P.W.; Kappetein, A.P.; Park, S.J.; Park, D.W.; et al. Percutaneous Coronary Intervention vs Coronary Artery Bypass Graft Surgery for Left Main Disease in Patients With and Without Acute Coronary Syndromes: A Pooled Analysis of 4 Randomized Clinical Trials. JAMA Cardiol. 2023, 8, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Higami, H.; Toyofuku, M.; Morimoto, T.; Ohya, M.; Fuku, Y.; Yamaji, K.; Muranishi, H.; Yamaji, Y.; Nishida, K.; Furukawa, D.; et al. Acute Coronary Syndrome With Unprotected Left Main Coronary Artery Culprit—An Observation From the AOI-LMCA Registry. Circ. J. 2018, 83, 198–208, published correction appears in Circ. J. 2020, 84, 1199–1206; published correction appears in Circ. J. 2021, 85, 958–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Boudriot et al. (2003–2009) [23] | SYNTAX (2005–2007) [20,24,25,26,27] | PRECOMBAT (2004–2009) [21,28] | EXCEL (2010–2014) [15,29] | NOBLE (2008–2015) [14,22] | |
---|---|---|---|---|---|
Design | RCT | RCT, subset analysis | RCT, non-inferiority | RCT, non-inferiority | RCT, non-inferiority |
Population (patients) | 201 | 700 | 600 | 1905 | 1201 |
Age (years) | 66 (62–73) PCI 69 (63–73) CABG | 65.2 ± 9.7 PCI 65.0 ± 9.8 CABG | 61.8 ± 10.0 PCI 62.7 ± 9.5 CABG | 66.0 ± 9.6 PCI 65.9 ± 9.5 CABG | 66.2 ± 9.9 PCI 66.2 ± 9.4 CABG |
Male sex | 72% PCI 77% CABG | 76.4% PCI 78.9% CABG | 76.0% PCI 77.0% CABG | 76.2% PCI 77.5% CABG | 80.0% PCI 76.0% CABG |
Diabetes (%) | 40% PCI 33% CABG | 25.6% PCI 24.6% CABG | 34.0% PCI 30.0% CABG | 30.2% PCI 28.0% CABG | 15% PCI 15% CABG |
Previous myocardial infarction (%) | 19% PCI 14% CABG | 31.9% PCI 33.8% CABG | 4.3% PCI 6.7% CABG | 18.1% PCI 16.9% CABG | N/A |
Left ventricular EF (%) | 65.0 (55.0–70.0) PCI 65.0 (55.0–68.0) CABG | N/A (EF < 30% in 1.3% and 2.5 of PCI and CABG group) | 61.7 ± 8.3 PCI 60.6 ± 8.5 CABG | 57.0 ± 9.6 PCI 57.3 ± 9.0 CABG | 60 (55–65) PCI 60 (52–64) CABG |
Logistic euroSCORE | 2.4 (1.5–3.7) PCI 2.6 (1.7–4.9) CABG | 3.8 ± 2.6 PCI 3.8 ± 2.7 CABG | 2.6 ± 1.8 PCI 2.8 ± 1.9 CABG | N/A | 2 (2–4) PCI 2 (2–4) CABG |
SYNTAX Score | 24.0 (19.0–29.0) PCI 23.0 (14.8–28.0) CABG | 28.4 ± 11.5 PCI 29.1 ± 11.4 CABG | N/A | 20.6 ± 6.2 PCI 20.5 ± 6.1 CABG | 22.5 ± 7.5 PCI 22.4 ± 8.0 CABG |
Use of intracoronary imaging | N/A | 4.8% | 91.2% | 77.2% | 74.9% |
Trial follow-up | 1 year | 1 year (extended to 5 years for primary endpoint and 10 years for mortality) | 1 year (extended to 10 years) | 3 years, (extended to5 years) | 5 years |
Cutoff for lesion severity | >50% stenosis | >50% stenosis | >50% stenosis | >70% stenosis or FFR ≤0.80 | >50% stenosis or FFR ≤0.80 |
Composite Primary endpoint |
|
|
|
|
|
Results | 19.0% PCI vs. 13.9% CABG | 5-year primary endpoint: 15.8% PCI vs. 13.7% CABG 10-year mortality 27% vs. 28% | 29.8% PCI vs. 24.7% CABG | 22.0% PCI vs. 19.2% CABG | 29% PCI vs. 19% CABG, p 0.007. HR 1.48 (95% CI 1.11–1.96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, D.; Ielasi, A.; Tespili, M.; Guagliumi, G.; De Luca, G. Percutaneous Treatment of Left Main Disease: A Review of Current Status. J. Clin. Med. 2023, 12, 4972. https://doi.org/10.3390/jcm12154972
Pellegrini D, Ielasi A, Tespili M, Guagliumi G, De Luca G. Percutaneous Treatment of Left Main Disease: A Review of Current Status. Journal of Clinical Medicine. 2023; 12(15):4972. https://doi.org/10.3390/jcm12154972
Chicago/Turabian StylePellegrini, Dario, Alfonso Ielasi, Maurizio Tespili, Giulio Guagliumi, and Giuseppe De Luca. 2023. "Percutaneous Treatment of Left Main Disease: A Review of Current Status" Journal of Clinical Medicine 12, no. 15: 4972. https://doi.org/10.3390/jcm12154972