Elevated Serum Concentration of Adipocyte Fatty Acid-Binding Protein Correlates with the Markers of Abdominal Obesity Independently of Thyroid Hormones in Non-Obese Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Biochemical Analyses
2.4. Calculations
2.5. Body Composition Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Legro, R.S.; Arslanian, S.A.; Ehrmann, D.A.; Hoeger, K.M.; Murad, M.H.; Pasquali, R.; Welt, C.K. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4565–4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teede, H.J.; Hutchison, S.; Zoungas, S.; Meyer, C. Insulin resistance, the metabolic syndrome, diabetes, and cardiovascular disease risk in women with PCOS. Endocrine 2006, 30, 45–53. [Google Scholar] [CrossRef]
- Azziz, R.; Woods, K.S.; Reyna, R.; Key, T.J.; Knochenhauer, E.S.; Yildiz, B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 2004, 89, 2745–2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kralisch, S.; Fasshauer, M. Adipocyte fatty acid binding protein: A novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 2013, 56, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Hoo, R.L.; Wu, X.; Pan, Y.; Lee, I.P.; Cheong, L.Y.; Bornstein, S.R.; Rong, X.; Guo, J.; Xu, A. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nat. Commun. 2017, 8, 14147. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Wang, Y.; Xu, J.Y.; Stejskal, D.; Tam, S.; Zhang, J.; Wat, N.M.; Wong, W.K.; Lam, K.S. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 2006, 52, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Tso, A.W.; Cheung, B.M.; Wang, Y.; Wat, N.M.; Fong, C.H.; Yeung, D.C.; Janus, E.D.; Sham, P.C.; Lam, K.S. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: A 5-year prospective study. Circulation 2007, 115, 1537–1543. [Google Scholar] [CrossRef]
- Yeung, D.C.; Xu, A.; Cheung, C.W.; Wat, N.M.; Yau, M.H.; Fong, C.H.; Chau, M.T.; Lam, K.S. Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1796–1802. [Google Scholar] [CrossRef] [Green Version]
- Fuseya, T.; Furuhashi, M.; Yuda, S.; Muranaka, A.; Kawamukai, M.; Mita, T.; Ishimura, S.; Watanabe, Y.; Hoshina, K.; Tanaka, M.; et al. Elevation of circulating fatty acid-binding protein 4 is independently associated with left ventricular diastolic dysfunction in a general population. Cardiovasc. Diabetol. 2014, 13, 126. [Google Scholar] [CrossRef] [Green Version]
- Baar, R.A.; Dingfelder, C.S.; Smith, L.A.; Bernlohr, D.A.; Wu, C.; Lange, A.J.; Parks, E.J. Investigation of in vivo fatty acid metabolism in AFABP/aP2(−/−) mice. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E187–E193. [Google Scholar] [CrossRef] [Green Version]
- Uysal, K.T.; Scheja, L.; Wiesbrock, S.M.; Bonner-Weir, S.; Hotamisligil, G.S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 2000, 141, 3388–3396. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Johnson, R.S.; Distel, R.J.; Ellis, R.; Papaioannou, V.E.; Spiegelman, B.M. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996, 274, 1377–1379. [Google Scholar] [CrossRef]
- Hu, W.; Qiao, J. Expression and regulation of adipocyte fatty acid binding protein in granulosa cells and its relation with clinical characteristics of polycystic ovary syndrome. Endocrine 2011, 40, 196–202. [Google Scholar] [CrossRef]
- Möhlig, M.; Weickert, M.O.; Ghadamgadai, E.; Machlitt, A.; Pfüller, B.; Arafat, A.M.; Pfeiffer, A.F.; Schöfl, C. Adipocyte fatty acid-binding protein is associated with markers of obesity, but is an unlikely link between obesity, insulin resistance, and hyperandrogenism in polycystic ovary syndrome women. Eur. J. Endocrinol. 2007, 157, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Laclaustra, M.; Moreno-Franco, B.; Lou-Bonafonte, J.M.; Mateo-Gallego, R.; Casasnovas, J.A.; Guallar-Castillon, P.; Cenarro, A.; Civeira, F. Impaired Sensitivity to Thyroid Hormones Is Associated With Diabetes and Metabolic Syndrome. Diabetes Care 2019, 42, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Ma, X.; Xu, Y.; Shen, Y.; Wang, Y.; Bao, Y. Increased Serum Adipocyte Fatty Acid-Binding Protein Levels Are Associated with Decreased Sensitivity to Thyroid Hormones in the Euthyroid Population. Thyroid 2020, 30, 1718–1723. [Google Scholar] [CrossRef]
- De Pergola, G.; Ciampolillo, A.; Paolotti, S.; Trerotoli, P.; Giorgino, R. Free triiodothyronine and thyroid stimulating hormone are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure in overweight and obese women. Clin. Endocrinol. 2007, 67, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Romero, C.; Jorge-Galarza, E.; Posadas-Sánchez, R.; Acuña-Valerio, J.; Juárez-Rojas, J.G.; Kimura-Hayama, E.; Medina-Urrutia, A.; Cardoso-Saldaña, G.C. Fatty liver largely explains associations of subclinical hypothyroidism with insulin resistance, metabolic syndrome, and subclinical coronary atherosclerosis. Eur. J. Endocrinol. 2014, 171, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosi, B.; Masserini, B.; Iorio, L.; Delnevo, A.; Malavazos, A.E.; Morricone, L.; Sburlati, L.F.; Orsi, E. Relationship of thyroid function with body mass index and insulin-resistance in euthyroid obese subjects. J. Endocrinol. Investig. 2010, 33, 640–643. [Google Scholar] [CrossRef]
- Walczak, K.; Sieminska, L. Obesity and Thyroid Axis. Int. J. Environ. Res. Public Health 2021, 18, 9434. [Google Scholar] [CrossRef]
- Lu, S.; Guan, Q.; Liu, Y.; Wang, H.; Xu, W.; Li, X.; Fu, Y.; Gao, L.; Zhao, J.; Wang, X. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis. 2012, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Nannipieri, M.; Cecchetti, F.; Anselmino, M.; Camastra, S.; Niccolini, P.; Lamacchia, M.; Rossi, M.; Iervasi, G.; Ferrannini, E. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: Effects of weight loss. Int. J. Obes. 2009, 33, 1001–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, A.M.; Adamska, A.; Krentowska, A.; Łebkowska, A.; Hryniewicka, J.; Adamski, M.; Kowalska, I. Body Composition, Serum Concentrations of Androgens and Insulin Resistance in Different Polycystic Ovary Syndrome Phenotypes. J. Clin. Med. 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamska, A.; Krentowska, A.; Łebkowska, A.; Hryniewicka, J.; Leśniewska, M.; Adamski, M.; Kowalska, I. Decreased deiodinase activity after glucose load could lead to atherosclerosis in euthyroid women with polycystic ovary syndrome. Endocrine 2019, 65, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azziz, R. Controversy in clinical endocrinology: Diagnosis of polycystic ovarian syndrome: The Rotterdam criteria are premature. J. Clin. Endocrinol. Metab. 2006, 91, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Lázaro, I.; Díaz, M.; Cabré, A.; Masana, L.; Ibáñez, L. Fatty acid-binding protein-4 plasma levels are associated to metabolic abnormalities and response to therapy in girls and young women with androgen excess. Gynecol. Endocrinol. 2011, 27, 935–939. [Google Scholar] [CrossRef]
- Wehr, E.; Möller, R.; Horejsi, R.; Giuliani, A.; Kopera, D.; Schweighofer, N.; Groselj-Strele, A.; Pieber, T.R.; Obermayer-Pietsch, B. Subcutaneous adipose tissue topography and metabolic disturbances in polycystic ovary syndrome. Wien. Klin. Wochenschr. 2009, 121, 262–269. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, X.; Luo, Y.; Hu, X.; Pan, X.; Xiao, Y.; Bao, Y.; Jia, W. Associations of serum adipocyte fatty acid binding protein with body composition and fat distribution in nondiabetic Chinese women. J. Clin. Endocrinol. Metab. 2015, 100, 2055–2062. [Google Scholar] [CrossRef] [Green Version]
- Terra, X.; Quintero, Y.; Auguet, T.; Porras, J.A.; Hernández, M.; Sabench, F.; Aguilar, C.; Luna, A.M.; Del Castillo, D.; Richart, C. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur. J. Endocrinol. 2011, 164, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzystek-Korpacka, M.; Patryn, E.; Bednarz-Misa, I.; Mierzchala, M.; Hotowy, K.; Czapinska, E.; Kustrzeba-Wojcicka, I.; Gamian, A.; Noczynska, A. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome. J. Pediatr. Endocrinol. Metab. 2011, 24, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Doğanay, M.; Ozyer, S.S.; Var, T.; Tonguc, E.; Gun Eryilmaz, O.; Ozer, I.; Guzel, A.I. Associations between adipocyte fatty acid-binding protein and clinical parameters in polycystic ovary syndrome. Arch. Gynecol. Obstet. 2015, 291, 447–450. [Google Scholar] [CrossRef]
- Koh, J.H.; Shin, Y.G.; Nam, S.M.; Lee, M.Y.; Chung, C.H.; Shin, J.Y. Serum adipocyte fatty acid-binding protein levels are associated with nonalcoholic fatty liver disease in type 2 diabetic patients. Diabetes Care 2009, 32, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barilla, S.; Treuter, E.; Venteclef, N. Transcriptional and epigenetic control of adipocyte remodeling during obesity. Obesity 2021, 29, 2013–2025. [Google Scholar] [CrossRef]
- Polak, A.M.; Krentowska, A.; Łebkowska, A.; Buczyńska, A.; Adamski, M.; Adamska-Patruno, E.; Fiedorczuk, J.; Krętowski, A.J.; Kowalska, I.; Adamska, A. The Association of Serum Levels of Leptin and Ghrelin with the Dietary Fat Content in Non-Obese Women with Polycystic Ovary Syndrome. Nutrients 2020, 12, 2753. [Google Scholar] [CrossRef]
- Jalilian, N.; Haghnazari, L.; Rasolinia, S. Leptin and body mass index in polycystic ovary syndrome. Indian J. Endocrinol. Metab. 2016, 20, 324–328. [Google Scholar] [CrossRef]
- Clark, N.M.; Podolski, A.J.; Brooks, E.D.; Chizen, D.R.; Pierson, R.A.; Lehotay, D.C.; Lujan, M.E. Prevalence of Polycystic Ovary Syndrome Phenotypes Using Updated Criteria for Polycystic Ovarian Morphology: An Assessment of Over 100 Consecutive Women Self-reporting Features of Polycystic Ovary Syndrome. Reprod. Sci. 2014, 21, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Moghetti, P.; Carmina, E.; De Leo, V.; Lanzone, A.; Orio, F.; Pasquali, R.; Toscano, V. How to manage the reproductive issues of PCOS: A 2015 integrated endocrinological and gynecological consensus statement of the Italian Society of Endocrinology. J. Endocrinol. Investig. 2015, 38, 1025–1037. [Google Scholar] [CrossRef]
- Legro, R.S.; Bentley-Lewis, R.; Driscoll, D.; Wang, S.C.; Dunaif, A. Insulin resistance in the sisters of women with polycystic ovary syndrome: Association with hyperandrogenemia rather than menstrual irregularity. J. Clin. Endocrinol. Metab. 2002, 87, 2128–2133. [Google Scholar] [CrossRef] [PubMed]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Song, R.H.; Wang, B.; Yao, Q.M.; Li, Q.; Jia, X.; Zhang, J.A. The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis. Front. Immunol. 2019, 10, 2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macek Jílková, Z.; Pavelka, S.; Flachs, P.; Hensler, M.; Kůs, V.; Kopecký, J. Modulation of type I iodothyronine 5′-deiodinase activity in white adipose tissue by nutrition: Possible involvement of leptin. Physiol. Res. 2010, 59, 561–569. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 67) | PCOS (n = 66) | p Value | |
---|---|---|---|
Age (years) | 26 (23.0–28.0) | 24.0 (22.0–27.0) | 0.06 |
BMI (kg/m2) | 22.19 (21.01–24.20) | 22.82 (21.4–25.39) | 0.37 |
WHR | 0.8 (0.77–0.85) | 0.79 (0.76–0.84) | 0.61 |
Percentage of adipose tissue (%) | 29.9 (25.2–33.4) | 29.6 (24.5–36.4) | 0.77 |
TT (ng/mL) | 0.6 (0.45–0.72) | 0.71 (0.58–0.88) | <0.01 * |
SHBG (nmol/L) | 61.74 (43.76–84.57) | 52.07 (36.57–66.60) | 0.09 |
FAI | 3.04 (1.99–4.54) | 4.43 (2.85–6.27) | <0.01 * |
FSH (IU/L) | 5.43 (4.25–6.58) | 5.57 (4.30–6.36) | 0.86 |
LH (IU/L) | 3.9 (2.97–5.08) | 4.07 (2.98–5.14) | 0.61 |
Total cholesterol (mg/dL) | 170.0 (153.0–196.0) | 171.5 (159.0–188.0) | 0.83 |
HDL-cholesterol (mg/dL) | 64.0 (57.0–78.0) | 70.0 (58.0–76.0) | 0.58 |
LDL-cholesterol (mg/dL) | 91.2 (72.6–106.8) | 90.3 (79.6–103.8) | 0.88 |
TG (mg/dL) | 57.0 (40.0–77.0) | 59.5 (47.0–76.0) | 0.48 |
Glucose 0′ OGTT (mg/dL) | 92.0 (87.0–96.0) | 90.5 (87.0–95.0) | 0.62 |
Glucose 120′ OGTT (mg/dL) | 90.0 (76.0–101.0) | 88.5 (79.0–100.0) | 0.89 |
Insulin 0′ OGTT (uIU/mL) | 8.28 (7.25–10.84) | 8.63 (6.73–12.07) | 0.8 |
Insulin 120′ OGTT (uIU/mL) | 25.46 (17.74–38.42) | 30.53 (23.38–51.42) | <0.01 * |
HOMA-IR | 1.91 (1.63–2.52) | 2.0 (1.46–2.80) | 0.75 |
TSH (µIU/mL) | 1.79 (1.37–2.48) | 1.96 (1.55–2.69) | 0.17 |
FT3 (pmol/L) | 3.24 (2.69–3.63) | 3.62 (3.27–3.9) | <0.01 * |
FT4 (pmol/L) | 16.87 (15.39–18.63) | 16.6 (15.45–18.74) | 0.71 |
FT3/FT4 ratio | 0.3 (0.23–0.37) | 0.34 (0.26–0.39) | 0.02 * |
TFQI | 0.07 (−0.35–0.31) | 0.01 (−0.23–0.25) | 0.71 |
TT4RI | 31.5 (22.9–40.2) | 32 (24.5–47.2) | 0.53 |
TSHI | 2.9 (2.5–3.2) | 2.9 (2.6–3.3) | 0.66 |
A-FABP | 1.62 (0.73–3.97) | 2.54 (1.15–8.73) | 0.04 * |
Control Group (n = 67) | PCOS (n = 66) | |
---|---|---|
BMI | r = 0.11 p = 0.36 | r = 0.22 p = 0.07 |
WHR | r = −0.06 p = 0.64 | r = 0.26 p = 0.04 * |
Percentage of adipose tissue | r = 0.16 p = 0.22 | r = 0.33 p = 0.01 * |
TT | r = 0.08 p = 0.5 | r = −0.09 p = 0.48 |
SHBG | r = 0.002 p = 0.99 | r = −0.06 p = 0.66 |
FAI | r = 0.08 p = 0.53 | r = 0.04 p = 0.76 |
TSH | r = 0.22 p = 0.07 | r = −0.1 p = 0.42 |
FT3 | r = 0.19 p = 0.13 | r = 0.08 p = 0.51 |
FT4 | r = 0.09 p = 0.5 | r = −0.12 p = 0.34 |
Control Group (n = 67) | PCOS (n = 66) | |
---|---|---|
FT3/FT4 | r = 0.09 p = 0.49 | r = 0.09 p = 0.46 |
FTQI | r = 0.22 p = 0.08 | r = −0.12 p = 0.33 |
TT4RI | r = 0.28 p = 0.02 * | r = −0.11 p = 0.36 |
TSHI | r = 0.28 p = 0.02 * | r = −0.12 p = 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, A.M.; Łebkowska, A.; Krentowska, A.; Buczyńska, A.; Adamski, M.; Krętowski, A.J.; Kowalska, I.; Adamska, A. Elevated Serum Concentration of Adipocyte Fatty Acid-Binding Protein Correlates with the Markers of Abdominal Obesity Independently of Thyroid Hormones in Non-Obese Women with Polycystic Ovary Syndrome. J. Clin. Med. 2023, 12, 4610. https://doi.org/10.3390/jcm12144610
Polak AM, Łebkowska A, Krentowska A, Buczyńska A, Adamski M, Krętowski AJ, Kowalska I, Adamska A. Elevated Serum Concentration of Adipocyte Fatty Acid-Binding Protein Correlates with the Markers of Abdominal Obesity Independently of Thyroid Hormones in Non-Obese Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine. 2023; 12(14):4610. https://doi.org/10.3390/jcm12144610
Chicago/Turabian StylePolak, Aleksandra Maria, Agnieszka Łebkowska, Anna Krentowska, Angelika Buczyńska, Marcin Adamski, Adam Jacek Krętowski, Irina Kowalska, and Agnieszka Adamska. 2023. "Elevated Serum Concentration of Adipocyte Fatty Acid-Binding Protein Correlates with the Markers of Abdominal Obesity Independently of Thyroid Hormones in Non-Obese Women with Polycystic Ovary Syndrome" Journal of Clinical Medicine 12, no. 14: 4610. https://doi.org/10.3390/jcm12144610
APA StylePolak, A. M., Łebkowska, A., Krentowska, A., Buczyńska, A., Adamski, M., Krętowski, A. J., Kowalska, I., & Adamska, A. (2023). Elevated Serum Concentration of Adipocyte Fatty Acid-Binding Protein Correlates with the Markers of Abdominal Obesity Independently of Thyroid Hormones in Non-Obese Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine, 12(14), 4610. https://doi.org/10.3390/jcm12144610