Associations between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Data Sources and Participants
2.2. Laboratory Analyses
2.3. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.H.; Silventoinen, K.; Hu, G.; Jacobs, D.R., Jr.; Jousilahti, P.; Sundvall, J.; Tuomilehto, J. Serum gamma-glutamyltransferase predicts non-fatal myocardial infarction and fatal coronary heart disease among 28,838 middle-aged men and women. Eur. Heart J. 2006, 27, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 2009, 136, 477–485. [Google Scholar] [CrossRef]
- Söderberg, C.; Stål, P.; Askling, J.; Glaumann, H.; Lindberg, G.; Marmur, J.; Hultcrantz, R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 2010, 51, 595–602. [Google Scholar] [CrossRef]
- Ho, F.K.; Ferguson, L.D.; Celis-Morales, C.A.; Gray, S.R.; Forrest, E.; Alazawi, W.; Gill, J.M.; Katikireddi, S.V.; Cleland, J.G.; Welsh, P.; et al. Association of gamma-glutamyltransferase levels with total mortality, liver-related and cardiovascular outcomes: A prospective cohort study in the UK Biobank. EClinicalMedicine 2022, 48, 101435. [Google Scholar] [CrossRef] [PubMed]
- Ruttmann, E.; Brant, L.J.; Concin, H.; Diem, G.; Rapp, K.; Ulmer, H.; Vorarlberg Health Monitoring Monitoring and Promotion Program Study Group. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: An epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation 2005, 112, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di, A.E.; Stampfer, M.; Willett, W.C.; et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef]
- Rehm, J.; Shield, K.D. The impact of confounding and alcohol consumption patterns on the calculated risks of alcohol-related diseases. Addiction 2013, 108, 1544–1545. [Google Scholar] [CrossRef]
- Paradis, C.; Butt, P.; Shield, K.; Poole, N.; Wells, S.; Naimi, T.; Sherk, A. The Low-Risk Alcohol Drinking Guidelines Scientific Expert Panels. Update of Canada’s Low-Risk Alcohol Drinking Guidelines: Final Report for Public Consultation; Canadian Centre on Substance Use and Addiction: Ottawa, ON, Canada, 2022. Available online: https://www.drugsandalcohol.ie/36944/1/CCSA-LRDG-Update-of-Canada-LRDG-Final-report-for-public.pdf (accessed on 20 April 2023).
- Behrens, G.; Fischer, B.; Kohler, S.; Park, Y.; Hollenbeck, A.R.; Leitzmann, M.F. Healthy lifestyle behaviors and decreased risk of mortality in a large prospective study of U.S. women and men. Eur. J. Epidemiol. 2013, 28, 361–372. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Rutten-Jacobs, L.C.; Larsson, S.C.; Malik, R.; Rannikmae, K.; Sudlow, C.L.; Dichgans, M.; Markus, H.S.; Traylor, M. Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: Cohort study of 306 473 UK Biobank participants. BMJ 2018, 363, k4168. [Google Scholar] [CrossRef]
- Nivukoski, U.; Niemelä, M.; Bloigu, A.; Bloigu, R.; Aalto, M.; Laatikainen, T.; Niemelä, O. Impacts of unfavourable lifestyle factors on biomarkers of liver function, inflammation and lipid status. PLoS ONE 2019, 14, e0218463. [Google Scholar] [CrossRef]
- Tsai, J.; Ford, E.S.; Zhao, G.; Li, C.; Greenlund, K.J.; Croft, J.B. Co-occurrence of obesity and patterns of alcohol use associated with elevated serum hepatic enzymes in US adults. J. Behav. Med. 2012, 35, 200–210. [Google Scholar] [CrossRef]
- Tamakoshi, A.; Tamakoshi, K.; Lin, Y.; Yagyu, K.; Kikuchi, S.; JACC Study Group. Healthy lifestyle and preventable death: Findings from the Japan Collaborative Cohort (JACC) study. Prev. Med. 2009, 48, 486–492. [Google Scholar] [CrossRef]
- Tolonen, H.; Koponen, P.; Aromaa, A.; Conti, S.; Graff-Iversen, S.; Grøtvedt, L.; Kanieff, M.; Mindell, J.; Natunen, S.; Primatesta, P.; et al. Recommendations for the Health Examination Surveys in Europe; National Public Health Institute: Helsinki, Finland, 2008; Volume B21/2008, ISBN 978-951-740-838-7.
- Luepker, R.V.; Evans, A.; McKeigue, P.; Srinath Reddy, K. Cardiovascular Survey Methods; World Health Organization: Geneva, Switzerland, 2004. Available online: https://apps.who.int/iris/handle/10665/42569 (accessed on 15 October 2022).
- Borodulin, K.; Tolonen, H.; Jousilahti, P.; Jula, A.; Juolevi, A.; Koskinen, S.; Kuulasmaa, K.; Laatikainen, T.; Männistö, S.; Peltonen, M.; et al. Cohort Profile: The National FINRISK Study. Int. J. Epidemiol. 2018, 47, 696–696i. [Google Scholar] [CrossRef]
- Niemelä, O.; Aalto, M.; Bloigu, A.; Bloigu, R.; Halkola, A.S.; Laatikainen, T. Alcohol drinking patterns and laboratory indices of health: Does type of alcohol preferred make a difference? Nutrients 2022, 14, 4529. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Nakagawa, N. Fatty liver index has potential as a predictor of hypertension in the Japanese general population. Hypertens. Res. 2023, 46, 896–897. [Google Scholar] [CrossRef] [PubMed]
- Rosen, A.; Zeger, S.L. Precision medicine: Discovering clinically relevant and mechanistically anchored disease subgroups at scale. J. Clin. Investig. 2019, 129, 944–945. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes. Metab. 2022, 24, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Harris, R.; Sattar, N.; Ebrahim, S.; Davey Smith, G.; Lawlor, D.A. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: The British Women’s Heart and Health Study and meta-analysis. Diabetes Care 2009, 32, 741–750. [Google Scholar] [CrossRef]
- Ghouri, N.; Preiss, D.; Sattar, N. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: A narrative review and clinical perspective of prospective data. Hepatology 2010, 52, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Kim, W.R.; Benson, J.T.; Therneau, T.M.; Melton, L.J., III. Serum aminotransferase activity and mortality risk in a United States community. Hepatology 2008, 47, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Bertolini, L.; Rodella, S.; Tessari, R.; Zenari, L.; Lippi, G.; Arcaro, G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 2007, 30, 2119–2121. [Google Scholar] [CrossRef] [PubMed]
- Fentiman, I.S.; Allen, D.S. Gamma-glutamyl transferase and breast cancer risk. Br. J. Cancer 2010, 103, 90–93. [Google Scholar] [CrossRef]
- Strasak, A.M.; Pfeiffer, R.M.; Klenk, J.; Hilbe, W.; Oberaigner, W.; Gregory, M.; Concin, H.; Diem, G.; Pfeiffer, K.P.; Ruttmann, E.; et al. Prospective study of the association of gamma-glutamyltransferase with cancer incidence in women. Int. J. Cancer 2008, 123, 1902–1906. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Jacobs, D.R., Jr.; Gross, M.; Kiefe, C.I.; Roseman, J.; Lewis, C.E.; Steffes, M. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin. Chem. 2003, 49, 1358–1366. [Google Scholar] [CrossRef]
- Ilmarinen, P.; Tuomisto, L.E.; Kankaanranta, H. Phenotypes, risk factors, and mechanisms of adult-onset asthma. Mediat. Inflamm. 2015, 2015, 514868. [Google Scholar] [CrossRef]
- Aguilar-Latorre, A.; Serrano-Ripoll, M.J.; Oliván-Blázquez, B.; Gervilla, E.; Navarro, C. Associations between severity of depression, lifestyle patterns, and personal factors related to health behavior: Secondary data analysis from a randomized controlled trial. Front. Psychol. 2022, 13, 856139. [Google Scholar] [CrossRef]
- Claessen, H.; Brenner, H.; Drath, C.; Arndt, V. Gamma-glutamyltransferase and disability pension: A cohort study of construction workers in Germany. Hepatology 2010, 51, 482–490. [Google Scholar] [CrossRef]
- Haring, R.; Wallaschofski, H.; Nauck, M.; Dörr, M.; Baumeister, S.E.; Völzke, H. Ultrasonographic hepatic steatosis increases prediction of mortality risk from elevated serum gamma-glutamyl transpeptidase levels. Hepatology 2009, 50, 1403–1411. [Google Scholar] [CrossRef]
- Kozakova, M.; Palombo, C.; Eng, M.P.; Dekker, J.; Flyvbjerg, A.; Mitrakou, A.; Gastaldelli, A.; Ferrannini, E. Fatty liver index, gamma-glutamyltransferase, and early carotid plaques. Hepatology 2012, 55, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Brunt, E.M. Non-alcoholic fatty liver disease: What’s new under the microscope? Gut 2011, 60, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Brancati, F.L.; Diehl, A.M. The prevalence and etiology of elevated aminotransferase levels in the United States. Am. J. Gastroenterol. 2003, 98, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Iqbal, U.; Perumpail, B.J.; Akhtar, D.; Kim, D.; Ahmed, A. The epidemiology, risk profiling and diagnostic challenges of nonalcoholic fatty liver disease. Medicines 2019, 6, 41. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhao, G.J.; Chen, Z.; She, Z.G.; Cai, J.; Li, H. Nonalcoholic fatty liver disease: An emerging driver of hypertension. Hypertension 2020, 75, 275–284. [Google Scholar] [CrossRef]
- Stranges, S.; Trevisan, M.; Dorn, J.M.; Dmochowski, J.; Donahue, R.P. Body fat distribution, liver enzymes, and risk of hypertension: Evidence from the Western New York Study. Hypertension 2005, 46, 1186–1193. [Google Scholar] [CrossRef]
- Siafi, E.; Andrikou, I.; Thomopoulos, C.; Konstantinidis, D.; Kakouri, N.; Tatakis, F.; Kariori, M.; Filippou, C.; Zamanis, I.; Manta, E.; et al. Fatty liver index and cardiovascular outcomes in never-treated hypertensive patients: A prospective cohort. Hypertens. Res. 2023, 46, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Taurio, J.; Hautaniemi, E.; Koskela, J.K.; Eräranta, A.; Hämäläinen, M.; Tikkakoski, A.; Kettunen, J.A.; Kähönen, M.; Niemelä, O.; Moilanen, E.; et al. The characteristics of elevated blood pressure in abdominal obesity correspond to primary hypertension: A cross-sectional study. BMC Cardiovasc. Disord. 2023, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-induced hypertension: Interaction of neurohumoral and renal mechanisms. Circ. Res. 2015, 116, 991–1006. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Teeriniemi, A.M.; Salonurmi, T.; Jokelainen, T.; Vähänikkilä, H.; Alahäivälä, T.; Karppinen, P.; Enwald, H.; Huotari, M.L.; Laitinen, J.; Oinas-Kukkonen, H.; et al. A randomized clinical trial of the effectiveness of a Web-based health behaviour change support system and group lifestyle counselling on body weight loss in overweight and obese subjects: 2-year outcomes. J. Intern. Med. 2018, 284, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Shida, T.; Yamagishi, K.; Tanaka, K.; So, R.; Tsujimoto, T.; Shoda, J. Moderate to vigorous physical activity volume is an important factor for managing nonalcoholic fatty liver disease: A retrospective study. Hepatology 2015, 61, 1205–1215. [Google Scholar] [CrossRef]
- Li, K.; Hüsing, A.; Kaaks, R. Lifestyle risk factors and residual life expectancy at age 40: A German cohort study. BMC Med. 2014, 12, 59. [Google Scholar] [CrossRef]
- Manuel, D.G.; Perez, R.; Sanmartin, C.; Taljaard, M.; Hennessy, D.; Wilson, K.; Tanuseputro, P.; Manson, H.; Bennett, C.; Tuna, M.; et al. Measuring burden of unhealthy behaviours using a multivariable predictive approach: Life expectancy lost in Canada attributable to smoking, alcohol, physical inactivity, and diet. PLoS Med. 2016, 13, e1002082. [Google Scholar] [CrossRef]
- Zheng, J.S.; Sharp, S.J.; Imamura, F.; Koulman, A.; Schulze, M.B.; Ye, Z.; Griffin, J.; Guevara, M.; Huerta, J.M.; Kröger, J.; et al. Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: A cross-sectional analysis in the EPIC-InterAct study. BMC Med. 2017, 15, 203. [Google Scholar] [CrossRef]
- Koenig, W. C-reactive protein and cardiovascular risk: Will the controversy end after CANTOS? Clin. Chem. 2017, 63, 1897–1898. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Catena, C.; Colussi, G.; Verheyen, N.D.; Novello, M.; Fagotto, V.; Soardo, G.; Sechi, L.A. Moderate alcohol consumption is associated with left ventricular diastolic dysfunction in nonalcoholic hypertensive patients. Hypertension 2016, 68, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.D.; Yin, X.; Gladstone, R.; Vittinghoff, E.; Vasan, R.S.; Larson, M.G.; Benjamin, E.J.; Marcus, G.M. Alcohol consumption, left atrial diameter, and atrial fibrillation. J. Am. Heart Assoc. 2016, 5, e004060. [Google Scholar] [CrossRef]
- Schwarzinger, M.; Pollock, B.G.; Hasan, O.S.M.; Dufouil, C.; Rehm, J. Contribution of alcohol use disorders to the burden of dementia in France 2008–13: A nationwide retrospective cohort study. Lancet Public Health 2018, 3, e124–e132. [Google Scholar] [CrossRef]
- Topiwala, A.; Allan, C.L.; Valkanova, V.; Zsoldos, E.; Filippini, N.; Sexton, C.; Mahmood, A.; Fooks, P.; Singh-Manoux, A.; Mackay, C.E.; et al. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: Longitudinal cohort study. BMJ 2017, 357, j2353. [Google Scholar] [CrossRef]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Light alcohol drinking and cancer: A meta-analysis. Ann. Oncol. 2013, 24, 301–308. [Google Scholar] [CrossRef]
- Cao, Y.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J.; Giovannucci, E.L. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: Results from two prospective US cohort studies. BMJ 2015, 351, h4238. [Google Scholar] [CrossRef]
- Choi, Y.J.; Myung, S.K.; Lee, J.H. Light alcohol drinking and risk of cancer: A meta-analysis of cohort studies. Cancer Res. Treat. 2018, 50, 474–487. [Google Scholar] [CrossRef]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599,912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef]
- Sipilä, P.; Rose, R.J.; Kaprio, J. Drinking and mortality: Long-term follow-up of drinking-discordant twin pairs. Addiction 2016, 111, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Day, C.P.; James, O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology 1998, 114, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Alatalo, P.I.; Koivisto, H.M.; Hietala, J.P.; Puukka, K.S.; Bloigu, R.; Niemelä, O.J. Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index. Am. J. Clin. Nutr. 2008, 88, 1097–1103. [Google Scholar] [CrossRef]
- Loomba, R.; Bettencourt, R.; Barrett-Connor, E. Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: The Rancho Bernardo Study. Aliment. Pharmacol. Ther. 2009, 30, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Connor, J.P.; Haber, P.S.; Hall, W.D. Alcohol use disorders. Lancet 2016, 387, 988–998. [Google Scholar] [CrossRef]
- Lau, K.; Baumeister, S.E.; Lieb, W.; Meffert, P.J.; Lerch, M.M.; Mayerle, J.; Völzke, H. The combined effects of alcohol consumption and body mass index on hepatic steatosis in a general population sample of European men and women. Aliment. Pharmacol, Ther. 2015, 41, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O.; Niemelä, M.; Bloigu, R.; Aalto, M.; Laatikainen, T. Where should the safe limits of alcohol consumption stand in light of liver enzyme abnormalities in alcohol consumers? PLoS ONE 2017, 12, e0188574. [Google Scholar] [CrossRef]
- Tapper, E.B.; Parikh, N.D. Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: Observational study. BMJ 2018, 362, k2817. [Google Scholar] [CrossRef]
- Wu, D.; Wang, X.; Zhou, R.; Yang, L.; Cederbaum, A.I. Alcohol steatosis and cytotoxicity: The role of cytochrome P4502E1 and autophagy. Free Radic. Biol. Med. 2012, 53, 1346–1357. [Google Scholar] [CrossRef]
- Emdin, M.; Pompella, A.; Paolicchi, A. Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: Triggering oxidative stress within the plaque. Circulation 2005, 112, 2078–2080. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Forman, H.J. Redox regulation of gamma-glutamyl transpeptidase. Am. J. Respir. Cell Mol. Biol. 2009, 41, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, H.; O’Keefe, H.; Craig, D.; Stow, D.; Hanratty, B.; Anstee, Q.M. Does moderate alcohol consumption accelerate the progression of liver disease in NAFLD? A systematic review and narrative synthesis. BMJ Open 2022, 12, e049767. [Google Scholar] [CrossRef]
- Åberg, F.; Färkkilä, M. Drinking and obesity: Alcoholic liver disease/nonalcoholic fatty liver disease interactions. Semin. Liver Dis. 2020, 40, 154–162. [Google Scholar] [CrossRef]
- Breitling, L.P.; Raum, E.; Muller, H.; Rothenbacher, D.; Brenner, H. Synergism between smoking and alcohol consumption with respect to serum gamma-glutamyltransferase. Hepatology 2009, 49, 802–808. [Google Scholar] [CrossRef]
- Park, E.Y.; Lim, M.K.; Oh, J.K.; Cho, H.; Bae, M.J.; Yun, E.H.; Kim, D.I.; Shin, H.R. Independent and supra-additive effects of alcohol consumption, cigarette smoking, and metabolic syndrome on the elevation of serum liver enzyme levels. PLoS ONE 2013, 8, e63439. [Google Scholar] [CrossRef]
- Niemelä, O.; Niemelä, S.; Ritvanen, A.; Gissler, M.; Bloigu, A.; Vääräsmäki, M.; Kajantie, E.; Werler, M.M.; Surcel, H.M. Assays of gamma-glutamyl transferase and carbohydrate-deficient transferrin combination from maternal serum improve the detection of prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2016, 40, 2385–2393. [Google Scholar] [CrossRef]
- Harrison, E.L.; Desai, R.A.; McKee, S.A. Nondaily smoking and alcohol use, hazardous drinking, and alcohol diagnoses among young adults: Findings from the NESARC. Alcohol. Clin. Exp. Res. 2008, 32, 2081–2087. [Google Scholar] [CrossRef]
- Woolard, R.; Liu, J.; Parsa, M.; Merriman, G.; Tarwater, P.; Alba, I.; Villalobos, S.; Ramos, R.; Bernstein, J.; Bernstein, E.; et al. Smoking is associated with increased risk of binge drinking in a young adult Hispanic population at the US-Mexico border. Subst. Abus. 2015, 36, 318–324. [Google Scholar] [CrossRef]
- Kunutsor, S.K. Gamma-glutamyltransferase-friend or foe within? Liver Int. 2016, 36, 1723–1734. [Google Scholar] [CrossRef]
- Speisky, H.; Shackel, N.; Varghese, G.; Wade, D.; Israel, Y. Role of hepatic gamma-glutamyltransferase in the degradation of circulating glutathione: Studies in the intact guinea pig perfused liver. Hepatology 1990, 11, 843–849. [Google Scholar] [CrossRef]
- Saab, S.; Mallam, D.; Cox, G.A.; Tong, M.J. Impact of coffee on liver diseases: A systematic review. Liver Int. 2014, 34, 495–504. [Google Scholar] [CrossRef]
- Mehlig, K.; Schult, A.; Björkelund, C.; Thelle, D.; Lissner, L. Associations between alcohol and liver enzymes are modified by coffee, cigarettes, and overweight in a Swedish female population. Scand. J. Gastroenterol. 2022, 57, 319–324. [Google Scholar] [CrossRef]
- Freedman, N.D.; Park, Y.; Abnet, C.C.; Hollenbeck, A.R.; Sinha, R. Association of coffee drinking with total and cause-specific mortality. N. Engl. J. Med. 2012, 366, 1891–1904. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2005, 128, 24–32. [Google Scholar] [CrossRef]
- Niemelä, O.; Bloigu, A.; Bloigu, R.; Halkola, A.S.; Niemelä, M.; Aalto, M.; Laatikainen, T. Impact of physical activity on the characteristics and metabolic consequences of alcohol consumption: A cross-sectional population-based study. Int. J. Environ. Res. Public Health 2022, 19, 15048. [Google Scholar] [CrossRef] [PubMed]
- Borodulin, K.; Tuomilehto, J.; Peltonen, M.; Lakka, T.A.; Sundvall, J.; Jousilahti, P. Association of leisure time physical activity and abdominal obesity with fasting serum insulin and 2-h postchallenge plasma glucose levels. Diabet. Med. 2006, 23, 1025–1028. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Sattar, N.; Smith, G.D.; Ebrahim, S. The associations of physical activity and adiposity with alanine aminotransferase and gamma-glutamyltransferase. Am. J. Epidemiol. 2005, 161, 1081–1088. [Google Scholar] [CrossRef]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [PubMed]
- Perreault, K.; Bauman, A.; Johnson, N.; Britton, A.; Rangul, V.; Stamatakis, E. Does physical activity moderate the association between alcohol drinking and all-cause, cancer and cardiovascular diseases mortality? A pooled analysis of eight British population cohorts. Br. J. Sport. Med. 2017, 51, 651–657. [Google Scholar] [CrossRef]
- Zaccardi, F.; Davies, M.J.; Khunti, K.; Yates, T. Comparative relevance of physical fitness and adiposity on life expectancy: A UK Biobank observational study. Mayo Clin. Proc. 2019, 94, 985–994. [Google Scholar] [CrossRef]
- Hallgren, M.; Vancampfort, D.; Schuch, F.; Lundin, A.; Stubbs, B. More reasons to move: Exercise in the treatment of alcohol use disorders. Front. Psychiatry 2017, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Shirazi, L.; Endler, G.; Winkler, S.; Schickbauer, T.; Wagner, O.; Marsik, C. Gamma glutamyltransferase and long-term survival: Is it just the liver? Clin. Chem. 2007, 53, 940–946. [Google Scholar] [CrossRef]
- Mascaró, C.M.; Bouzas, C.; Montemayor, S.; García, S.; Mateos, D.; Casares, M.; Gómez, C.; Ugarriza, L.; Borràs, P.A.; Martinez, J.A.; et al. Impact of physical activity differences due to COVID-19 pandemic lockdown on non-alcoholic fatty liver parameters in adults with metabolic syndrome. Nutrients 2022, 14, 2370. [Google Scholar] [CrossRef]
- St George, A.; Bauman, A.; Johnston, A.; Farrell, G.; Chey, T.; George, J. Independent effects of physical activity in patients with nonalcoholic fatty liver disease. Hepatology 2009, 50, 68–76. [Google Scholar] [CrossRef]
- Ioannou, G.N. Implications of elevated serum alanine aminotransferase levels: Think outside the liver. Gastroenterology 2008, 135, 1851–1854. [Google Scholar] [CrossRef]
All, n = 8613–8743 | Men, n = 3989–4048 | Women, n = 4624–4695 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ALT Elevated | p | GGT Elevated | p | n | ALT Elevated | p | GGT Elevated | p | n | ALT Elevated | p | GGT Elevated | p | ||
Sex, % | men | 4048 | 490 (12.1) | <0.0005 | 691 (17.1) | <0.0005 | ||||||||||
women | 4695 | 417 (8.9) | 547 (11.7) | |||||||||||||
Age | ≤40 years | 2797 | 289 (10.3) | 0.930 | 239 (8.5) | <0.0005 | 1202 | 178 (14.8) | 0.001 | 154 (12.8) | <0.0005 | 1595 | 111 (7.0) | 0.001 | 85 (5.3) | 0.001 |
>40 years | 5946 | 618 (10.4) | 999 (16.8) | 2846 | 312 (11.0) | 537 (18.9) | 3100 | 306 (9.9) | 462 (14.9) | |||||||
Alcohol, drinks/week | abstainers | 2994 | 258 (8.6) | <0.0005 | 326 (10.9) | <0.0005 | 1070 | 100 (9.3) | <0.0005 | 124 (11.6) | <0.0005 | 1924 | 158 (8.2) | 0.056 | 202 (10.5) | <0.0005 |
≤14/≤7 | 4408 | 438 (9.9) | 563 (12.8) | 2225 | 245 (11.0) | 335 (15.1) | 2183 | 193 (8.8) | 228 (10.4) | |||||||
>14/>7 | 1256 | 203 (16.2) | 337 (26.8) | 709 | 140 (19.7) | 222 (31.3) | 547 | 63 (11.5) | 115 (21.0) | |||||||
BMI, kg/m2 | <18.5 | 62 | 1 (1.6) | <0.0005 | 5 (8.1) | <0.0005 | 13 | 1 (7.7) | <0.0005 | 2 (15.4) | <0.0005 | 49 | 0 (0.0) | <0.0005 | 3 (6.1) | <0.0005 |
18.5−24.99 | 3275 | 158 (4.8) | 230 (7.0) | 1215 | 45 (3.7) | 96 (7.9) | 2060 | 113 (5.5) | 134 (6.5) | |||||||
25−29.99 | 3510 | 359 (10.2) | 507 (14.4) | 1929 | 220 (11.4) | 322 (16.7) | 1581 | 139 (8.8) | 185 (11.7) | |||||||
30−34.99 | 1379 | 267 (19.4) | 340 (24.7) | 700 | 159 (22.7) | 202 (28.9) | 679 | 108 (15.9) | 138 (20.3) | |||||||
35−39.99 | 406 | 86 (21.2) | 115 (28.3) | 155 | 46 (29.7) | 52 (33.5) | 251 | 40 (15.9) | 63 (25.1) | |||||||
≥40.0 | 111 | 36 (32.4) | 41 (36.9) | 36 | 19 (52.8) | 17 (47.2) | 75 | 17 (22.7) | 24 (32.0) | |||||||
Waist, cm | <94/<80 | 3870 | 204 (5.3) | <0.0005 | 274 (7.1) | <0.0005 | 1882 | 106 (5.6) | <0.0005 | 169 (9.0) | <0.0005 | 1988 | 98 (4.9) | <0.0005 | 105 (5.3) | <0.0005 |
94−102/80−88 | 2294 | 237 (10.3) | 343 (15.0) | 1129 | 151 (13.4) | 218 (19.3) | 1165 | 86 (7.4) | 125 (10.7) | |||||||
>102/>88 | 2529 | 463 (18.3) | 620 (24.5) | 1033 | 232 (22.5) | 303 (29.3) | 1496 | 231 (15.4) | 317 (21.2) | |||||||
Smoking | none | 6338 | 650 (10.3) | 0.094 | 806 (12.7) | <0.0005 | 2696 | 320 (11.9) | 0.398 | 410 (15.2) | <0.0005 | 3642 | 330 (9.1) | 0.479 | 396 (10.9) | 0.002 |
1−19 cigarettes/day | 1575 | 152 (9.7) | 237 (15.0) | 737 | 87 (11.8) | 123 (16.7) | 838 | 65 (7.8) | 114 (13.6) | |||||||
≥20 cigarettes/day | 759 | 95 (12.5) | 186 (24.5) | 570 | 79 (13.9) | 152 (26.7) | 189 | 16 (8.5) | 34 (18.0) | |||||||
Physical activity | >4 h/week | 1984 | 149 (7.5) | <0.0005 | 159 (8.0) | <0.0005 | 1016 | 83 (8.2) | <0.0005 | 97 (9.5) | <0.0005 | 968 | 66 (6.8) | 0.029 | 62 (6.4) | <0.0005 |
0.5−4 h/week | 4661 | 474 (10.2) | 693 (14.9) | 2068 | 238 (11.5) | 373 (18.0) | 2593 | 236 (9.1) | 320 (12.3) | |||||||
<0.5 h/week | 1968 | 268 (13.6) | 368 (18.7) | 905 | 161 (17.8) | 213 (23.5) | 1063 | 107 (10.1) | 155 (14.6) | |||||||
Coffee, cups/day | none | 951 | 97 (10.2) | 0.002 | 106 (11.1) | <0.0005 | 373 | 46 (12.3) | 0.001 | 56 (15.0) | <0.0005 | 578 | 51 (8.8) | 0.054 | 50 (8.7) | <0.0005 |
1−3 cups/day | 2817 | 339 (12.0) | 484 (17.2) | 1065 | 161 (15.1) | 227 (21.3) | 1752 | 178 (10.2) | 257 (14.7) | |||||||
≥4 cups/day | 4957 | 470 (9.5) | 643 (13.0) | 2603 | 282 (10.8) | 405 (15.6) | 2354 | 188 (8.0) | 238 (10.1) |
All, n = 8591–8743 | Men, n = 3974–4048 | Women, n = 4617–4695 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ALT Elevated | p | GGT Elevated | p | n | ALT Elevated | p | GGT Elevated | p | n | ALT Elevated | p | GGT Elevated | p | ||
Morbidities | no | 3784 | 181 (4.8) | <0.0005 | 177 (4.7) | <0.0005 | 1459 | 60 (4.1) | <0.0005 | 61 (4.2) | <0.0005 | 2325 | 121 (5.2) | <0.0005 | 116 (5.0) | <0.0005 |
yes | 4959 | 726 (14.6) | 1061 (21.4) | 2589 | 430 (16.6) | 630 (24.3) | 2370 | 296 (12.5) | 431 (18.2) | |||||||
Fatty liver (FLI ≥ 60) | no | 6012 | 300 (5.0) | <0.0005 | 358 (6.0) | <0.0005 | 2282 | 87 (3.8) | <0.0005 | 118 (5.2) | <0.0005 | 3730 | 213 (5.7) | <0.0005 | 240 (6.4) | <0.0005 |
yes | 2681 | 604 (22.5) | 879 (32.8) | 1762 | 402 (22.8) | 572 (32.5) | 919 | 202 (22.0) | 307 (33.4) | |||||||
Diabetes/abnormal | no | 8169 | 811 (9.9) | <0.0005 | 1094 (13.4) | <0.0005 | 3763 | 446 (11.9) | 0.014 | 614 (16.3) | <0.0005 | 4406 | 365 (8.3) | <0.0005 | 480 (10.9) | <0.0005 |
OGT | yes | 422 | 80 (19.0) | 112 (26.5) | 211 | 37 (17.5) | 63 (29.9) | 211 | 43 (20.4) | 49 (23.2) | ||||||
Coronary heart disease | no | 8478 | 876 (10.3) | 0.460 | 1172 (13.8) | <0.0005 | 3849 | 469 (12.2) | 0.324 | 642 (16.7) | 0.022 | 4629 | 407 (8.8) | 0.014 | 530 (11.4) | <0.0005 |
yes | 210 | 80 (19.0) | 52 (24.8) | 166 | 16 (9.6) | 39 (23.5) | 44 | 9 (20.5) | 13 (29.5) | |||||||
Cerebrovascular disease | no | 8518 | 887 (10.4) | 0.486 | 1190 (14.0) | 0.004 | 3918 | 477 (12.2) | 0.469 | 663 (16.9) | 0.331 | 4600 | 410 (8.9) | 0.629 | 527 (11.5) | 0.003 |
yes | 171 | 15 (8.8) | 37 (21.6) | 102 | 10 (9.8) | 21 (20.6) | 69 | 5 (7.2) | 16 (23.2) | |||||||
Hypertension | no | 6992 | 651 (9.3) | <0.0005 | 834 (11.9) | <0.0005 | 3193 | 355 (11.1) | <0.0005 | 471 (14.8) | <0.0005 | 3799 | 296 (7.8) | <0.0005 | 363 (9.6) | <0.0005 |
yes | 1681 | 248 (14.8) | 388 (23.1) | 821 | 130 (15.8) | 211 (25.7) | 860 | 118 (13.7) | 177 (20.6) | |||||||
Cardiac insufficiency | no | 8456 | 883 (10.4) | 0.186 | 1170 (13.8) | <0.0005 | 3874 | 475 (12.3) | 0.044 | 643 (16.6) | 0.001 | 4582 | 408 (8.9) | 0.844 | 527 (11.5) | 0.033 |
yes | 221 | 17 (7.7) | 54 (24.4) | 137 | 9 (6.6) | 38 (27.7) | 84 | 8 (9.5) | 16 (19.0) | |||||||
Angina pectoris | no | 8356 | 872 (10.4) | 0.327 | 1153 (13.8) | <0.0005 | 3811 | 470 (12.3) | 0.032 | 634 (16.6) | 0.007 | 4545 | 402 (8.8) | 0.378 | 519 (11.4) | 0.004 |
yes | 331 | 29 (8.8) | 74 (22.4) | 205 | 15 (7.3) | 49 (23.9) | 126 | 14 (11.1) | 25 (19.8) | |||||||
Malignancy | no | 8589 | 893 (10.4) | 0.307 | 1209 (14.1) | 0.696 | 3969 | 483 (12.2) | 0.036 | 674 (17.0) | 0.705 | 4620 | 410 (8.9) | 0.448 | 535 (11.6) | 0.332 |
yes | 97 | 7 (7.2) | 15 (15.5) | 47 | 1 (2.1) | 7 (14.9) | 50 | 6 (12.0) | 8 (16.0) | |||||||
Asthma | no | 8247 | 844 (10.2) | 0.123 | 1132 (13.7) | <0.0005 | 3860 | 457 (11.8) | 0.087 | 643 (16.7) | 0.007 | 4387 | 387 (8.8) | 0.361 | 489 (11.1) | <0.0005 |
yes | 430 | 54 (12.6) | 91 (21.2) | 152 | 25 (16.4) | 38 (25.0) | 278 | 29 (10.4) | 53 (19.1) | |||||||
Chronic bronchitis | no | 8469 | 875 (10.3) | 0.522 | 1176 (13.9) | 0.001 | 3904 | 473 (12.1) | 0.522 | 656 (16.8) | 0.152 | 4565 | 402 (8.8) | 0.107 | 520 (11.4) | 0.001 |
yes | 214 | 25 (11.7) | 47 (22.0) | 109 | 11 (10.1) | 24 (22.0) | 105 | 14 (13.3) | 23 (21.9) | |||||||
Gallbladder disease | no | 8573 | 889 (10.4) | 0.558 | 1197 (14.0) | 0.008 | 3978 | 477 (12.0) | 0.393 | 671 (16.9) | 0.075 | 4595 | 412 (9.0) | 0.134 | 526 (11.4) | 0.022 |
yes | 115 | 10 (8.7) | 26 (22.6) | 40 | 7 (17.5) | 11 (27.5) | 75 | 3 (4.0) | 15 (20.0) | |||||||
Rheumatic arthritis | no | 8568 | 890 (10.4) | 0.774 | 1203 (14.0) | 0.119 | 3985 | 484 (12.1) | 0.173 | 675 (16.9) | 0.515 | 4583 | 406 (8.9) | 0.293 | 528 (11.5) | 0.058 |
yes | 115 | 11 (9.6) | 22 (19.1) | 33 | 1 (3.0) | 7 (21.2) | 82 | 10 (12.2) | 15 (18.3) | |||||||
Joint disorders | no | 7883 | 814 (10.3) | 0.593 | 1070 (13.6) | <0.0005 | 3686 | 457 (12.4) | 0.036 | 613 (16.6) | 0.052 | 4197 | 357 (8.5) | 0.003 | 457 (10.9) | <0.0005 |
yes | 777 | 85 (10.9) | 152 (19.6) | 321 | 27 (8.4) | 67 (20.9) | 456 | 58 (12.7) | 85 (18.6) | |||||||
Degenerative back pain | yes | 7250 | 735 (10.1) | 0.130 | 977 (13.5) | <0.0005 | 3309 | 405 (12.2) | 0.447 | 539 (16.3) | 0.009 | 3941 | 330 (8.4) | 0.004 | 438 (11.1) | 0.027 |
no | 1411 | 162 (11.5) | 242 (17.2) | 696 | 78 (11.2) | 142 (20.4) | 715 | 84 (11.7) | 100 (14.0) | |||||||
Kidney or urinary | yes | 8507 | 883 (10.4) | 0.930 | 1196 (14.1) | 0.371 | 3954 | 478 (12.1) | 0.965 | 669 (16.9) | 0.240 | 4553 | 405 (8.9) | 0.757 | 527 (11.6) | 0.578 |
tract diseases | no | 170 | 18 (10.6) | 28 (16.5) | 57 | 7 (12.3) | 13 (22.8) | 113 | 11 (9.7) | 15 (13.3) | ||||||
Depression | yes | 8054 | 823 (10.2) | 0.094 | 1089 (13.5) | <0.0005 | 3763 | 449 (11.9) | 0.331 | 613 (16.3) | <0.0005 | 4291 | 374 (8.7) | 0.102 | 476 (11.1) | <0.0005 |
no | 624 | 77 (12.3) | 136 (21.8) | 250 | 35 (14.0) | 68 (27.2) | 374 | 42 (11.2) | 68 (18.2) | |||||||
Other psychiatric | yes | 8509 | 871 (10.2) | 0.005 | 1177 (13.8) | <0.0005 | 3934 | 469 (11.9) | 0.024 | 654 (16.6) | <0.0005 | 4575 | 402 (8.8) | 0.095 | 523 (11.4) | 0.006 |
disorders | no | 165 | 28 (17.0) | 46 (27.9) | 79 | 16 (20.3) | 28 (35.4) | 86 | 12 (14.0) | 18 (20.9) |
Pre-Existing Condition | LRFS | ||
---|---|---|---|
n | Mean (sd) | p | |
No morbidities | 3690 | 2.5 (1.4) | |
FLI ≥ 60 (fatty liver) | 2586 | 4.0 (1.3) | <0.0005 |
Coronary heart disease | 191 | 3.4 (1.3) | <0.0005 |
Cerebrovascular disease | 159 | 3.3 (1.3) | <0.0005 |
Hypertension | 1627 | 3.4 (1.4) | <0.0005 |
Cardiac insufficiency | 203 | 3.4 (1.3) | <0.0005 |
Angina pectoris | 309 | 3.3 (1.4) | <0.0005 |
Malignancy | 92 | 3.0 (1.3) | <0.0005 |
Asthma | 419 | 3.2 (1.4) | <0.0005 |
Chronic bronchitis | 204 | 3.6 (1.5) | <0.0005 |
Gallbladder disease | 112 | 3.3 (1.4) | <0.0005 |
Rheumatic arthritis | 111 | 3.2 (1.4) | <0.0005 |
Joint disorders | 758 | 3.3 (1.5) | <0.0005 |
Degenerative back pain | 1361 | 3.2 (1.4) | <0.0005 |
Kidney or urinary tract disease | 157 | 3.1 (1.5) | <0.0005 |
Depression | 608 | 3.4 (1.6) | <0.0005 |
Other psychiatric disorders | 154 | 3.8 (1.5) | <0.0005 |
LRFS 0–1 | LRFS 2–3 | LRFS 4–5 | LRFS 6–8 | p | ||
---|---|---|---|---|---|---|
No morbidities | n = 908 | n = 1982 | n = 710 | n = 90 | ||
ALT elevated | 42 (4.6%) | 87 (4.4%) | 30 (4.2%) | 7 (7.8%) | 0.761 | |
GGT elevated | 35 (3.9%) | 83 (4.2%) | 38 (5.4%) | 12 (13.3%) | 0.003 | |
Fatty liver (FLI ≥ 60) | n = 36 | n = 942 | n = 1297 | n = 311 | ||
ALT elevated | 3 (8.3%) | 183 (19.4%) | 311 (24.0%) | 93 (29.9%) | <0.0005 | |
GGT elevated | 10 (27.8%) | 257 (27.3%) | 429 (33.1%) | 161 (51.8%) | <0.0005 | |
Diabetes/abnormal OGT | n = 23 | n = 181 | n = 165 | n = 34 | ||
ALT elevated | 0 (0.0%) | 26 (14.4%) | 39 (23.6%) | 11 (32.4%) | <0.0005 | |
GGT elevated | 1 (4.3%) | 40 (22.1%) | 48 (29.1%) | 20 (58.8%) | <0.0005 | |
Coronary heart disease | n = 15 | n = 88 | n = 78 | n = 10 | ||
ALT elevated | 1 (6.7%) | 5 (5.7%) | 15 (19.2%) | 1 (10.0%) | 0.056 | |
GGT elevated | 2 (13.3%) | 20 (22.7%) | 23 (29.5%) | 4 (40.0%) | 0.082 | |
Cerebrovascular disease | n = 15 | n = 77 | n = 56 | n = 11 | ||
ALT elevated | 1 (6.7%) | 4 (5.2%) | 5 (8.9%) | 4 (36.4%) | 0.025 | |
GGT elevated | 2 (13.3%) | 11 (14.3%) | 17 (30.4%) | 5 (45.5%) | 0.005 | |
Hypertension | n = 120 | n = 771 | n = 631 | n = 105 | ||
ALT elevated | 2 (1.7%) | 82 (10.6%) | 130 (20.6%) | 27 (25.7%) | <0.0005 | |
GGT elevated | 7 (5.8%) | 134 (17.4%) | 186 (29.5%) | 54 (51.4%) | <0.0005 | |
Cardiac insufficiency | n = 20 | n = 83 | n = 92 | n = 8 | ||
ALT elevated | 0 (0.0%) | 4 (4.8%) | 13 (14.1%) | 0 (0.0%) | 0.054 | |
GGT elevated | 2 (10.0%) | 17 (20.5%) | 29 (31.5%) | 3 (37.5%) | 0.015 | |
Angina pectoris | n = 22 | n = 164 | n = 101 | n = 22 | ||
ALT elevated | 2 (9.1%) | 9 (5.5%) | 11 (10.9%) | 3 (13.6%) | 0.152 | |
GGT elevated | 1 (4.5%) | 27 (16.5%) | 31 (30.7%) | 10 (45.5%) | <0.0005 | |
Malignancy | n = 10 | n = 51 | n = 28 | n = 3 | ||
ALT elevated | 1 (10.0%) | 3 (5.9%) | 3 (10.7%) | 0 (0.0%) | 1.000 | |
GGT elevated | 1 (10.0%) | 2 (3.9%) | 8 (28.6%) | 3 (100.0%) | <0.0005 | |
Asthma | n = 40 | n = 211 | n = 143 | n = 25 | ||
ALT elevated | 2 (5.0%) | 24 (11.4%) | 23 (16.1%) | 5 (20.0%) | 0.026 | |
GGT elevated | 2 (5.0%) | 31 (14.7%) | 47 (32.9%) | 11 (44.0%) | <0.0005 | |
Chronic bronchitis | n = 13 | n = 84 | n = 86 | n = 21 | ||
ALT elevated | 0 (0.0%) | 8 (9.5%) | 12 (14.0%) | 5 (23.8%) | 0.035 | |
GGT elevated | 2 (15.4%) | 15 (17.9%) | 23 (26.7%) | 6 (28.6%) | 0.125 | |
Gallbladder disease | n = 10 | n = 55 | n = 40 | n = 7 | ||
ALT elevated | 0 (0.0%) | 5 (9.1%) | 4 (10.0%) | 1 (14.3%) | 0.376 | |
GGT elevated | 2 (20.0%) | 9 (16.4%) | 10 (25.0%) | 5 (71.4%) | 0.022 | |
Rheumatic arthritis | n = 8 | n = 55 | n = 42 | n = 6 | ||
ALT elevated | 0 (0.0%) | 2 (3.6%) | 9 (21.4%) | 0 (0.0%) | 0.070 | |
GGT elevated | 0 (0.0%) | 9 (16.4%) | 11 (26.2%) | 1 (16.7%) | 0.170 | |
Joint disorders | n = 82 | n = 361 | n = 262 | n = 53 | ||
ALT elevated | 2 (2.4%) | 34 (9.4%) | 39 (14.9%) | 9 (17.0%) | <0.0005 | |
GGT elevated | 5 (6.1%) | 59 (16.3%) | 64 (24.4%) | 23 (43.4%) | <0.0005 | |
Degenerative back pain | n = 152 | n = 672 | n = 457 | n = 80 | ||
ALT elevated | 4 (2.6%) | 68 (10.1%) | 67 (14.7%) | 20 (25.0%) | <0.0005 | |
GGT elevated | 7 (4.6%) | 100 (14.9%) | 106 (23.2%) | 24 (30.0%) | <0.0005 | |
Kidney or | n = 23 | n = 69 | n = 57 | n = 8 | ||
urinary tract disease | ALT elevated | 2 (8.7%) | 5 (7.2%) | 11 (19.3%) | 0 (0.0%) | 0.340 |
GGT elevated | 2 (8.7%) | 7 (10.1%) | 14 (24.6%) | 5 (62.5%) | <0.0005 | |
Depression | n = 66 | n = 276 | n = 204 | n = 62 | ||
ALT elevated | 4 (6.1%) | 28 (10.1%) | 29 (14.2%) | 14 (22.6%) | 0.002 | |
GGT elevated | 2 (3.0%) | 47 (17.0%) | 56 (27.5%) | 29 (46.8%) | <0.0005 | |
Other psychiatric disorders | n = 7 | n = 61 | n = 63 | n = 23 | ||
ALT elevated | 1 (14.3%) | 9 (14.8%) | 8 (12.7%) | 8 (34.8%) | 0.132 | |
GGT elevated | 1 (14.3%) | 13 (21.3%) | 17 (27.0%) | 11 (47.8%) | 0.019 |
All | ALT− HT+ | ALT+ HT− | ALT+ HT+ | |||
---|---|---|---|---|---|---|
n = 1379–1383 | p | n = 628–630 | p | n = 240–241 | p | |
GGT normal | 1.0 | 1.0 | 1.0 | |||
GGT elevated | 1.7 (1.4–2.0) | <0.0005 | 7.5 (6.2–9.0) | <0.0005 | 12.2 (9.1–16.3) | <0.0005 |
Cholesterol normal | 1.0 | 1.0 | 1.0 | |||
Cholesterol elevated | 1.2 (1.0–1.3) | 0.031 | 1.3 (1.0–1.5) | 0.019 | 1.3 (0.9–1.7) | 0.142 |
HDL normal | 1.0 | 1.0 | 1.0 | |||
HDL decreased | 1.2 (1.0–1.5) | 0.013 | 1.9 (1.5–2.3) | <0.0005 | 1.5 (1.0–2.0) | 0.025 |
LDL normal | 1.0 | 1.0 | 1.0 | |||
LDL elevated | 1.0 (0.9–1.2) | 0.499 | 1.4 (1.1–1.7) | 0.001 | 1.2 (0.9–1.6) | 0.270 |
Triglycerides normal | 1.0 | 1.0 | 1.0 | |||
Triglycerides elevated | 1.7 (1.5–1.9) | <0.0005 | 2.1 (1.7–2.5) | <0.0005 | 2.9 (2.2–3.8) | <0.0005 |
hs-CRP normal | 1.0 | 1.0 | 1.0 | |||
hs-CRP elevated | 1.3 (1.2–1.6) | <0.0005 | 1.1 (0.9–1.3) | 0.429 | 1.4 (1.1–1.9) | 0.013 |
FLI <60 | 1.0 | 1.0 | 1.0 | |||
FLI ≥ 60 | 2.0 (1.7–2.3) | <0.0005 | 4.7 (3.7–5.9) | <0.0005 | 9.2 (5.9–14.3) | <0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemelä, O.; Bloigu, A.; Bloigu, R.; Aalto, M.; Laatikainen, T. Associations between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample. J. Clin. Med. 2023, 12, 4276. https://doi.org/10.3390/jcm12134276
Niemelä O, Bloigu A, Bloigu R, Aalto M, Laatikainen T. Associations between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample. Journal of Clinical Medicine. 2023; 12(13):4276. https://doi.org/10.3390/jcm12134276
Chicago/Turabian StyleNiemelä, Onni, Aini Bloigu, Risto Bloigu, Mauri Aalto, and Tiina Laatikainen. 2023. "Associations between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample" Journal of Clinical Medicine 12, no. 13: 4276. https://doi.org/10.3390/jcm12134276
APA StyleNiemelä, O., Bloigu, A., Bloigu, R., Aalto, M., & Laatikainen, T. (2023). Associations between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample. Journal of Clinical Medicine, 12(13), 4276. https://doi.org/10.3390/jcm12134276