Endovis Nail versus Dynamic Hip Screw for Unstable Pertrochanteric Fractures: A Feasibility Randomised Control Trial including Patients with Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Population
2.3. Feasibility Assessment
2.4. Secondary Outcomes
2.5. Sample Size
2.6. Statistical Analysis
3. Results
3.1. Feasibility Assessment
3.2. Secondary Outcomes
3.2.1. Peri-Operative Outcomes
3.2.2. TUG Test
3.2.3. Radiographic Results
3.2.4. Patient Reported Outcome Scores
3.2.5. Complications and Mortality (Table 5)
Nail n = 29 | DHS n = 28 | p-Value | |
Total complications, n | 11 | 11 | |
Patients affected, n (%) | 9 (31.0%) | 8 (28.6%) | 1.000 |
Medical complications, n | 10 | 11 | |
Patients affected, n (%) | 8 (27.6%) | 8 (28.6%) | 1.000 |
Orthopaedic complications, n | 1 | - | |
Patients affected, n (%) | 1 (3.4%) | - | 1.000 |
Periprosthetic fracture | 1 | - | |
Mortality rates, n (%) | |||
2 weeks | 2 (7.9%) | 1 (3.6%) | 1.000 |
4 weeks | 3 (10.3%) | 1 (3.6%) | 0.612 |
12 weeks | 4 (13.8%) | 2 (7.1%) | 0.670 |
1 year | 8 (28.6%) | 6 (21.4%) | 0.758 |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, F.; Jiang, C.; Shen, J.; Tang, P.; Wang, Y. Preoperative predictors for mortality following hip fracture surgery: A systematic review and meta-analysis. Injury 2012, 43, 676–685. [Google Scholar] [PubMed]
- Royal College of Physicians, National Hip Fracture Database Annual Report 2019. Available online: https://www.nhfd.co.uk/files/2019ReportFiles/NHFD_2019_Annual_Report_v101.pdf (accessed on 2 February 2023).
- Alzheimer’s Society. Dementia UK: Update. 2014. Available online: https://www.alzheimers.org.uk/sites/default/files/migrate/downloads/dementia_uk_update.pdf (accessed on 23 February 2023).
- Melton, L.J.; Beard, C.M.; Kokmen, E.; Atkinson, E.J.; Fallon, W.M.O. Fracture Risk in Patients with Alzheimer’ s Disease. J. Am. 1994, 42, 614–619. [Google Scholar]
- Attum, B.; Pilson, H. Intertrochanteric Femur Fracture. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493161/ (accessed on 2 February 2023).
- Socci, A.R.; Casemyr, N.E.; Leslie, M.P.; Baumgaertner, M.R. Implant options for the treatment of intertrochanteric fractures of the hip rationale, evidence, and recommendations. Bone Jt. J. 2017, 99, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wu, X.; Shi, H.; Liu, R.; Shu, H.; Gong, J.; Yang, Y.; Sun, Q.; Wu, J.; Nie, X.; et al. Intramedullary versus extramedullary fixation in the management of subtrochanteric femur fractures: A meta-analysis. Clin. Interv. Aging 2015, 10, 803–811. [Google Scholar] [PubMed] [Green Version]
- Barton, T.; Gleeson, R.; Topliss, C.; Greenwood, R.; Harries, W.; Chesser, T. A comparison of the Long Gamma Nail with the Sliding Hip Screw for the Treatment of AO/OTA 31-A2 Fractures of the Proximal Part of the Femur. J. Bone Jt. Surg.-Am. 2010, 92, 792–798. [Google Scholar]
- Mundi, S.; Chaudhry, H.; Bhandari, M. Systematic review on the inclusion of patients with cognitive impairment in hip fracture trials: A missed opportunity? Can. J. Surg. 2014, 57, 141–146. [Google Scholar]
- Fracture dislocation compendium Orthopaedic Trauma Association Committee for Coding Classification. J. Orthop. Trauma 1996, 10, 31–35.
- Lam, S.C.; Wong, Y.; Woo, J. Reliability and validity of the Abbreviated Mental Test (Hong Kong version) in residential care homes. J. Am. Geriatr. Soc. 2010, 58, 2255–2257. [Google Scholar]
- Mental Capacity Act 2005. Code of Practice the Stationary Office. Available online: https://www.gov.uk/government/publications/mental-capacity-act-code-of-practice (accessed on 2 February 2023).
- Jensen, M.P.; Turner, J.A.; Romano, J.M.; Fisher, L.D. Comparative reliability and validity of chronic pain intensity measures. Pain 1999, 83, 157–162. [Google Scholar]
- Jaglal, S.; Lakhani, Z.; Schatzker, J. Reliability, validity, and responsiveness of the lower extremity measure for patients with a hip fracture. J. Bone Jt. Surg. Am. 2000, 82, 955–962. [Google Scholar]
- Harwood, R.H.; Rogers, A.; Dickinson, E.; Ebrahim, S. Measuring handicap: The London Handicap Scale, a new outcome measure for chronic disease. Qual. Health Care 1994, 3, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.C.; Lamping, D.L.; Banerjee, S.; Harwood, R.H.; Foley, B.; Smith, P.; Cook, J.C.; Murray, J.; Prince, M.; Levin, E.; et al. Development of a new measure of health-related quality of life for people with dementia: DEMQOL. Psychol. Med. 2007, 37, 737–746. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The Timed ‘Up & Go’: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Baumgaertner, M.; Curtin, S.; Lindskog, D.; Keggi, J. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Jt. Surg. 1995, 77, 1058–1064. [Google Scholar]
- Berger-groch, J.; Rupprecht, P.D.M.; Schoepper, S.; Rueger, J.; Hoffman, M. Five-Year Outcome Analysis of Intertrochanteric Femur Fractures: A Prospective Randomized Trial Comparing a 2-Screw and a Single-Screw Cephalomedullary Nail. J. Orthop. Trauma 2016, 30, 483–488. [Google Scholar]
- Heaver, C.; Mart, J.S.; Nightingale, P.; Sinha, A.; Davis, E.T. Measuring limb length discrepancy using pelvic radiographs: The most reproducible method. HIP Int. 2013, 23, 391–394. [Google Scholar]
- Parker, M.J. Trochanteric hip fractures. Fixation failure commoner with femoral medialization, a comparison of 101 cases. Acta Orthop. Scand. 1996, 67, 329–332. [Google Scholar] [CrossRef]
- Chiavaras, M.M.; Bains, S.; Choudur, H. The Radiographic Union Score for Hip (RUSH): The use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skeletal Radiol. 2013, 42, 1079–1088. [Google Scholar]
- Teare, M.; Dimairo, M.; Shephard, N.; Hayman, A.; Whitehead, A.; Walters, S. Sample size requirements to estimate key design parameters from external pilot randomised controlled trials: A simulation study. Trials 2014, 15, 264. [Google Scholar]
- Matre, K.; Havelin, L.I.; Gjertsen, J.E.; Espehaug, B.; Fevang, J.M. Intramedullary nails result in more reoperations than sliding hip screws in two-part intertrochanteric fractures trauma. Clin. Orthop. Relat. Res. 2013, 471, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.; Bryant, D.; Tieszer, C.; Lawendy, A.R.; MacLeod, M.; Papp, S.; Liew, A.; Viskontas, D.; Coles, C.; Gurr, K.; et al. A Multicenter Randomized Control Trial Comparing a Novel Intramedullary Device (InterTAN) Versus Conventional Treatment (Sliding Hip Screw) of Geriatric Hip Fractures. J. Orthop. Trauma 2017, 31, 1–8. [Google Scholar] [PubMed]
- Reindl, R.; Harvey, E.J.; Berry, G.K.; Rahme, E. Intramedullary Versus Extramedullary Fixation for Unstable Intertrochanteric Fractures: A Prospective Randomized Controlled Trial. J. Bone Jt. Surg. Am. 2015, 97, 1905–1912. [Google Scholar]
- Saudan, M.; Lübbeke, A.; Sadowski, C.; Riand, N.; Stern, R.; Hoffmeyer, P. Pertrochanteric fractures: Is there an advantage to an intramedullary nail?: A randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J. Orthop. Trauma 2002, 16, 386–393. [Google Scholar] [PubMed]
- Verettas, D.A.; Ifantidis, P.; Chatzipapas, C.N.; Drosos, G.I.; Xarchas, K.C.; Chloropoulou, P.; Kazakos, K.I.; Trypsianis, G.; Ververidis, A. Systematic effects of surgical treatment of hip fractures: Gliding screw-plating vs intramedullary nailing. Injury 2010, 41, 279–284. [Google Scholar]
- Matre, K.; Vinje, T.; Havelin, L.I.; Gjertsen, J.E.; Furnes, O.; Espehaug, B.; Kjellevold, S.H.; Fevang, J.M. TRIGEN INTERTAN Intramedullary Nail Versus Sliding Hip Screw A Prospective, Randomized Multicenter Study on Pain, Function, and Complications in 684 Patients with an Intertrochanteric or Subtrochanteric Fracture and One Year of Follow-up. J. Bone Jt. Surg.-Am. 2013, 95, 200–208. [Google Scholar]
- Zhu, Q.; Xu, X.; Yang, X.; Chen, X.; Wang, L.; Liu, C.; Lin, P. Intramedullary nails versus sliding hip screws for AO/OTA 31-A2 trochanteric fractures in adults: A meta-analysis. Int. J. Surg. 2017, 43, 67–74. [Google Scholar]
- Aktselis, I.; Kokoroghiannis, C.; Fragkomichalos, E.; Vlamis, J.; Papaioannou, N. Prospective randomised controlled trial of an intramedullary nail versus a sliding hip screw for intertrochanteric fractures of the femur. Int. Orthop. 2014, 38, 155–161. [Google Scholar]
- Xu, Y.; Geng, D.; Mao, H.; Zhu, X.; Yang, H. A comparison of the Proximal Femoral Nail Antirotation Device and Dynamic Hip Screw in the Treatment of Unstable Pertrochanteric Fracture. J. Intern. Med. Res. 2010, 38, 1266–1275. [Google Scholar]
- Zehir, S.; Zejir, R.; Zehir, S.; Azboy, I.; Haykir, N. Proximal femoral nail antirotation against dynamic hip screw for unstable trochanteric fractures; a prospective randomized comparison. Eur. J. Trauma Emerg. Surg. 2015, 41, 393–400. [Google Scholar]
- Lewis, S.R.; Macey, R.; Lewis, J.; Stokes, J.; Gill, J.R.; Cook, J.A.; Eardley, W.G.; Parker, M.J.; Griffin, X.L. Surgical interventions for treating extracapsular hip fractures in older adults: A network meta-analysis. Cochrane Database Syst. Rev. 2022, 2, CD013405. [Google Scholar]
- Hou, M.; Zhang, Y.; Chen, A.C.; Liu, T.; Yang, H.; Zhu, X.; He, F. The effects of dementia on the prognosis and mortality of hip fracture surgery: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2021, 33, 3161–3172. [Google Scholar]
- Beaupre, L.A.; Jones, C.A.; Johnston DW, C.; Wilson, D.M.; Majumdar, S.R. Recovery of function following a hip fracture in geriatric ambulatory persons living in nursing homes: Prospective cohort study. J. Am. Geriatr. Soc. 2012, 60, 1268–1273. [Google Scholar]
Peri-Operative Results | Nail (n = 29) | DHS (n = 28) | Mean Difference (95% Confidence Interval) | p-Value |
---|---|---|---|---|
Duration of surgery (min), mean ± SD | 46.2 ± 12.5 | 48.9 ± 13.5 | −2.7 (−9.6, 4.2) | 0.440 |
Blood loss (mls), mean ± SD | 83.2 ± 66.5 | 126.7 ± 102.6 | −43.5 (−90.4, 3.4) | 0.068 |
Blood loss (grams), mean ± SD | 76.6 ± 65.8 | 79.1 ± 33.6 | −2.5 (−47.6, 42.7) | 0.911 |
Hb drop (g/L), mean ± SD | 27 ± 16.3 | 29.8 ± 13.4 | −2.8 (−10.8, 5.1) | 0.480 |
Blood transfusion requirements, n (%) | 13 (44.8%) | 15 (53.6%) | - | 0.600 |
Blood transfusion units, mean ± SD | 1.9 ± 0.3 | 2.0 ± 0.7 | −0. 1 (−0.5, 0.2) | 0.697 |
Days till ready for discharge (days), median (range) | ||||
All patients | 9 (2–27) | 12 (1–47) | 0.148 | |
AMTS < 8 | 11 (2–15) | 20 (10–47) | 0.029 | |
AMTS ≥ 8 | 7 (4–27) | 9 (1–25) | 0.656 | |
Length of stay (days), median(range) | 21 (9–72) | 22 (10–55) | 0.562 | |
Morphine equivalent dose (mg), median(range) | 72.25 (0–564) | 91 (3.75–1400) | 0.203 |
Able to Perform the TUG Test, n (%) | Nail | DHS | p-Value |
---|---|---|---|
2 weeks | 14/26 (53.8%) | 19/26 (73.1%) | 0.150 |
24 weeks | 21/23 (91.3%) | 21/27 (77.8%) | 0.193 |
12 weeks | 18/20 (90%) | 21/24 (87.5%) | 0.795 |
Able to Perform the TUG Test; n/N (%) | AMTS ≥ 8 | AMTS < 8 | |
2 weeks | 26/34 (76.5%) | 7/18 (38.9%) | 0.014 |
4 weeks | 29/34 (85.3%) | 13/16 (81.3%) | 0.699 |
12 weeks | 30/32 (93.8%) | 9/12 (75%) | 0.081 |
TUG Times (s), Median (Range) | Nail | DHS | |
2 weeks | 75 (20–177) | 120 (20–295) | 0.585 |
4 weeks | 59 (16–381) | 51 (13–329) | 0.669 |
12 weeks | 37.5 (16–229) | 31 (14–119) | 0.317 |
Radiographic Results | Nail (n = 29) | DHS (n = 28) | Mean Difference (95% Confidence Interval) | p-Value |
---|---|---|---|---|
TAD (mm), mean ± SD | 18.2 ± 6.8 | 14.9 ± 4.3 | 3.2 (0.1, 6.4) | 0.044 |
Neck collapse (mm), mean ± SD | ||||
Week 2 | 1.19 ± 2.2 | 9.5 ± 8.6 | −8.3 (−12.2, −4.4) | <0.001 |
Week 4 | 3.4 ± 4.0 | 10.6 ± 8.1 | −7.2 (−11.1, −3.3) | 0.001 |
Week 12 | 2.9 ± 3.5 | 12.2 ± 9.4 | −9.4 (−14.0, −4.8) | 0.001 |
Medial displacement >5 mm, n (%) | ||||
2 weeks | 4 (16%) | 15 (53.6%) | 0.009 | |
4 weeks | 3 (13%) | 16 (61.5%) | 0.001 | |
12 weeks | 2 (9.5%) | 15 (62.5%) | <0.001 | |
Shortening (mm), mean ± SD | ||||
Week 2 | 5.1 ± 5.7 | 9.8 ± 9 | −4.7 (−8.9, −0.4) | 0.032 |
Week 4 | 5.2 ± 6 | 12.1 ± 9.5 | −7 (−11.5, −2.4) | 0.004 |
Week 12 | 6.8 ± 7 | 12.2 ± 8.6 | −5.4 (−10.2, −0.6) | 0.029 |
RUSH 12 weeks, mean ± SD | 22.9 (5.7) | 24.5 (4.4) | −1.7 (−4.8, 1.4), n = 45 | 0.277 |
Patient-Reported Outcome Scores | Nail (n = 29) | DHS (n = 28) | p-Value |
---|---|---|---|
LEM, median (range) | |||
Pre-injury | 59.5 (31.3–100) | 69.2 (48.3–100) | 0.208 |
2 weeks | 41.7 (9.8–73.3 | 31.3 (11.6–87.5) | 0.403 |
4 weeks | 48.2 (8.62–77.4) | 43.1 (14.3–78.6) | 0.595 |
12 weeks | 61.3 (11.2–84.8) | 54.2 (5–89.8) | 0.903 |
LHS, median (range) | |||
Pre-injury | 0.66 (0.53–1.00) | 0.74 (0.54–1.00) | 0.402 |
2 weeks | 0.58 (0.42–0.79) | 0.56 (0.36–0.83) | 0.403 |
4 weeks | 0.62 (0.42–0.83) | 0.65 (0.47–0.83) | 0.761 |
12 weeks | 0.69 (0.28–0.93) | 0.67 (0.45–1.0) | 0.804 |
DEMQOL, median (range) | |||
Pre-injury | 87.0 (69.0–95.0) | 73.6 (40.0–108.0) | 0.350 |
2 weeks | 89.0 (66.0–106.0) | 75.5 (48.0–112.0) | 0.714 |
4 weeks | 84.7 (61.0–103.0) | 88.5 (66.0–112.0) | 0.671 |
12 weeks | 95.0 (84.0–111.0) | 85 (60–107) | 0.305 |
DEMQOL-carer, median (range) | |||
Pre-injury | 99.2 (84.0–117.0) | 97.6 (64.0–115.0) | 0.642 |
2 weeks | 98.0 (90.0–106.0) | 92.0 (77.0–115.0) | 0.599 |
4 weeks | 103.0 (93.0–111.0) | 92.9 (79.0–113.0) | 0.464 |
12 weeks | 98.5 (65.0–114.0) | 86.0 (73.0–110.0) | 0.507 |
Pain NRS, median (range) | |||
Pre-op | 8.0 (0.0–10.0) | 8.0 (0.0–10.0) | 0.967 |
2 weeks | 5.0 (0.0–9.0) | 7.5 (2.0–10.0) | 0.003 |
4 weeks | 5.0 (0.0–8.0) | 7.0 (0.0–10.0) | 0.074 |
12 weeks | 3.5 (0.0–8.0) | 2.0 (0.0–9.0) | 0.795 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleftouris, G.; Tosounidis, T.H.; Panteli, M.; Gathen, M.; Giannoudis, P.V. Endovis Nail versus Dynamic Hip Screw for Unstable Pertrochanteric Fractures: A Feasibility Randomised Control Trial including Patients with Cognitive Impairment. J. Clin. Med. 2023, 12, 4237. https://doi.org/10.3390/jcm12134237
Kleftouris G, Tosounidis TH, Panteli M, Gathen M, Giannoudis PV. Endovis Nail versus Dynamic Hip Screw for Unstable Pertrochanteric Fractures: A Feasibility Randomised Control Trial including Patients with Cognitive Impairment. Journal of Clinical Medicine. 2023; 12(13):4237. https://doi.org/10.3390/jcm12134237
Chicago/Turabian StyleKleftouris, George, Theodoros H. Tosounidis, Michalis Panteli, Martin Gathen, and Peter V. Giannoudis. 2023. "Endovis Nail versus Dynamic Hip Screw for Unstable Pertrochanteric Fractures: A Feasibility Randomised Control Trial including Patients with Cognitive Impairment" Journal of Clinical Medicine 12, no. 13: 4237. https://doi.org/10.3390/jcm12134237
APA StyleKleftouris, G., Tosounidis, T. H., Panteli, M., Gathen, M., & Giannoudis, P. V. (2023). Endovis Nail versus Dynamic Hip Screw for Unstable Pertrochanteric Fractures: A Feasibility Randomised Control Trial including Patients with Cognitive Impairment. Journal of Clinical Medicine, 12(13), 4237. https://doi.org/10.3390/jcm12134237