Wrap It! Preventive Antimicrobial Treatment Shows No Negative Effects on Tenocytes and Tendons—A Comprehensive Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Tissue Samples
2.2. Tenocyte Isolation
2.3. Vancomycin Dilution
2.4. Vanco-Wrap with Tendon Samples
2.5. Tenocyte Culture and Treatment with Vancomycin
2.6. Cell Viability
2.7. Live/Dead Assay for Tendon Tissue
2.8. Hematoxylin Eosin (HE) Staining and Image Analysis
2.9. qRT-PCR
2.10. Biomechanical Testing
2.11. Statistics
3. Results
3.1. Effect of Vanco-Wrap on Tendon Tissue
3.2. Effect of Vancomycin on Tenocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiapour, A.M.; Murray, M.M. Basic science of anterior cruciate ligament injury and repair. Bone Jt. Res. 2014, 3, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Ponkilainen, V.; Kuitunen, I.; Liukkonen, R.; Vaajala, M.; Reito, A.; Uimonen, M. The incidence of musculoskeletal injuries: A systematic review and meta-analysis. Bone Jt. Res. 2022, 11, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Matar, H.E.; Platt, S.R.; Bloch, B.V.; Board, T.N.; Porter, M.L.; Cameron, H.U.; James, P.J. Three orthopaedic operations, over 1,000 randomized controlled trials, in over 100,000 patients. Bone Jt. Res. 2022, 11, 23–25. [Google Scholar] [CrossRef]
- Bosco, F.; Giustra, F.; Crivellaro, M.; Giai Via, R.; Lavia, A.D.; Capella, M.; Sabatini, L.; Risitano, S.; Rovere, G.; Masse, A.; et al. Is augmentation the best solution in partial anterior cruciate ligament tears? A literature systematic review and meta-analysis. J. Orthop. 2023, 36, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Pavan, D.; Morello, F.; Monachino, F.; Rovere, G.; Camarda, L.; Pitarresi, G. Similar biomechanical properties of four tripled tendon graft models for ACL reconstruction. Arch. Orthop. Trauma Surg. 2022, 142, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ma, L.; Li, R. Anatomic Double-Bundle and Single-Bundle Reconstructions Yield Similar Outcomes Following Anterior Cruciate Ligament Rupture: A Systematic Review and Meta-Analysis. Arthroscopy, 2023; in press. [Google Scholar] [CrossRef]
- Schalk, T.; von der Linden, P.; Schnetzke, M.; von Recum, J. Vordere Kreuzbandruptur. Trauma Berufskrankh. 2019, 21, 111–120. [Google Scholar] [CrossRef]
- Singh, N. International Epidemiology of Anterior Cruciate Ligament Injuries. Orthop. Res. Online J. 2018, 3, 4. [Google Scholar] [CrossRef]
- Mahapatra, P.; Horriat, S.; Anand, B.S. Anterior cruciate ligament repair—Past, present and future. J. Exp. Orthop. 2018, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Hantes, M.E.; Basdekis, G.K.; Varitimidis, S.E.; Giotikas, D.; Petinaki, E.; Malizos, K.N. Autograft contamination during preparation for anterior cruciate ligament reconstruction. J. Bone Jt. Surg. 2008, 90, 760–764. [Google Scholar] [CrossRef]
- Calvo, R.; Figueroa, D.; Anastasiadis, Z.; Vaisman, A.; Olid, A.; Gili, F.; Valderrama, J.J.; De La Fuente, P. Septic arthritis in ACL reconstruction surgery with hamstring autografts. Eleven years of experience. Knee 2014, 21, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Ziebuhr, W. Mikrobiologische Aspekte und Resistenzentwicklung. In Septische Knochen-und Gelenkchirurgie; Hendrich, C., Frommelt, L., Eulert, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 20–25. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Qiao, Y.; Chen, J.; Su, W.; Xu, J.; Ye, Z.; Jiang, J.; Xu, C.; Xie, G.; et al. Allograft contamination during suture preparation for anterior cruciate ligament reconstruction: An ex vivo study. Knee Surg. Sport. Traumatol. Arthrosc. 2022, 30, 2400–2407. [Google Scholar] [CrossRef] [PubMed]
- Agarwalla, A.; Gowd, A.K.; Liu, J.N.; Garcia, G.H.; Bohl, D.D.; Verma, N.N.; Forsythe, B. Effect of Operative Time on Short-Term Adverse Events After Isolated Anterior Cruciate Ligament Reconstruction. Orthop. J. Sport. Med. 2019, 7, 2325967118825453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddapati, V.; Fu, M.C.; Nwachukwu, B.U.; Camp, C.L.; Spiker, A.M.; Williams, R.J.; Ranawat, A.S. Procedure length is independently associated with overnight hospital stay and 30-day readmission following anterior cruciate ligament reconstruction. Knee Surg. Sport. Traumatol. Arthrosc. 2020, 28, 432–438. [Google Scholar] [CrossRef]
- Davis, N.; Curry, A.; Gambhir, A.K.; Panigrahi, H.; Walker, C.R.; Wilkins, E.G.; Worsley, M.A.; Kay, P.R. Intraoperative bacterial contamination in operations for joint replacement. J. Bone Jt. Surg. 1999, 81, 886–889. [Google Scholar] [CrossRef]
- Vertullo, C.J.; Quick, M.; Jones, A.; Grayson, J.E. A surgical technique using presoaked vancomycin hamstring grafts to decrease the risk of infection after anterior cruciate ligament reconstruction. Arthroscopy 2012, 28, 337–342. [Google Scholar] [CrossRef]
- Kuršumović, K.; Charalambous, C.P. Relationship of Graft Type and Vancomycin Presoaking to Rate of Infection in Anterior Cruciate Ligament Reconstruction: A Meta-Analysis of 198 Studies with 68,453 Grafts. JBJS Rev. 2020, 8, e1900156. [Google Scholar] [CrossRef]
- Naendrup, J.H.; Marche, B.; de Sa, D.; Koenen, P.; Otchwemah, R.; Wafaisade, A.; Pfeiffer, T.R. Vancomycin-soaking of the graft reduces the incidence of septic arthritis following ACL reconstruction: Results of a systematic review and meta-analysis. Knee Surg. Sport. Traumatol. Arthrosc. 2020, 28, 1005–1013. [Google Scholar] [CrossRef]
- Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin: A review of population pharmacokinetic analyses. Clin. Pharm. 2012, 51, 1–13. [Google Scholar] [CrossRef]
- Levine, D.P. Vancomycin: A history. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S5–S12. [Google Scholar] [CrossRef]
- Philp, A.M.; Raja, S.; Philp, A.; Newton Ede, M.P.; Jones, S.W. The Effect of Vancomycin and Gentamicin Antibiotics on Human Osteoblast Proliferation, Metabolic Function, and Bone Mineralization. Spine 2017, 42, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Röhner, E.; Zippelius, T.; Böhle, S.; Rohe, S.; Matziolis, G.; Jacob, B. Vancomycin is toxic to human chondrocytes in vitro. Arch. Orthop. Trauma Surg. 2021, 141, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Antoci, V., Jr.; Adams, C.S.; Hickok, N.J.; Shapiro, I.M.; Parvizi, J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin. Orthop. Relat. Res. 2007, 462, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.; Klingele, S.; Haberkorn, U.; Schmidmaier, G.; Grossner, T. Impact of High-Dose Anti-Infective Agents on the Osteogenic Response of Mesenchymal Stem Cells. Antibiotics 2021, 10, 1257. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yang, J.; Xie, J.; Huang, Z.; Huang, Q.; Cao, G.; Pei, F. Efficacy and safety of intrawound vancomycin in primary hip and knee arthroplasty. Bone Jt. Res. 2020, 9, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Grayson, J.E.; Grant, G.D.; Dukie, S.; Vertullo, C.J. The In Vitro Elution Characteristics of Vancomycin from Tendons. Clin. Orthop. Relat. Res. 2011, 469, 2948–2952. [Google Scholar] [CrossRef] [Green Version]
- Schuttler, K.F.; Scharm, A.; Stein, T.; Heyse, T.J.; Lohoff, M.; Sommer, F.; Spiess-Naumann, A.; Efe, T. Biomechanical and microbiological effects of local vancomycin in anterior cruciate ligament (ACL) reconstruction: A porcine tendon model. Arch. Orthop. Trauma Surg. 2019, 139, 73–78. [Google Scholar] [CrossRef]
- Papalia, R.; Cicione, C.; Russo, F.; Ambrosio, L.; Di Giacomo, G.; Vadalà, G.; Denaro, V. Does Vancomycin Wrapping in Anterior Cruciate Ligament Reconstruction Affect Tenocyte Activity In Vitro? Antibiotics 2021, 10, 1087. [Google Scholar] [CrossRef]
- Atherton, C.M.; Spencer, S.J.; McCall, K.; Garcia-Melchor, E.; Leach, W.J.; Mullen, M.; Rooney, B.P.; Walker, C.; McInnes, I.B.; Millar, N.L.; et al. Vancomycin Wrap for Anterior Cruciate Ligament Surgery: Molecular Insights. Am. J. Sport. Med. 2021, 49, 426–434. [Google Scholar] [CrossRef]
- Xiao, M.; Leonardi, E.A.; Sharpe, O.; Sherman, S.L.; Safran, M.R.; Robinson, W.H.; Abrams, G.D. Soaking of Autologous Tendon Grafts in Vancomycin Before Implantation Does Not Lead to Tenocyte Cytotoxicity. Am. J. Sport. Med. 2020, 48, 3081–3086. [Google Scholar] [CrossRef]
- Klatte-Schulz, F.; Pauly, S.; Scheibel, M.; Greiner, S.; Gerhardt, C.; Schmidmaier, G.; Wildemann, B. Influence of age on the cell biological characteristics and the stimulation potential of male human tenocyte-like cells. Eur. Cells Mater. 2012, 24, 74–89. [Google Scholar] [CrossRef]
- Klatte-Schulz, F.; Pauly, S.; Scheibel, M.; Greiner, S.; Gerhardt, C.; Hartwig, J.; Schmidmaier, G.; Wildemann, B. Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors. PLoS ONE 2013, 8, e67209. [Google Scholar] [CrossRef]
- Thierbach, M.; Heyne, E.; Schwarzer, M.; Koch, L.G.; Britton, S.L.; Wildemann, B. Age and Intrinsic Fitness Affect the Female Rotator Cuff Tendon Tissue. Biomedicines 2022, 10, 509. [Google Scholar] [CrossRef] [PubMed]
- Simon, P. Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics 2003, 19, 1439–1440. [Google Scholar] [CrossRef] [Green Version]
- Hochstrat, E.; Müller, M.; Frank, A.; Michel, P.; Hansen, U.; Raschke, M.J.; Kronenberg, D.; Stange, R. Cryopreservation of tendon tissue using dimethyl sulfoxide combines conserved cell vitality with maintained biomechanical features. PLoS ONE 2019, 14, e0215595. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Zhang, Y.; Shang, G.; Guo, J.; Xu, H.; Ma, X.; Yang, X.; Xiang, S. Vancomycin presoak reduces infection in anterior cruciate ligament reconstruction: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2023, 24, 267. [Google Scholar] [CrossRef] [PubMed]
- Truong, A.P.; Pérez-Prieto, D.; Byrnes, J.; Monllau, J.C.; Vertullo, C.J. Vancomycin Soaking Is Highly Cost-Effective in Primary ACLR Infection Prevention: A Cost-Effectiveness Study. Am. J. Sport. Med. 2022, 50, 922–931. [Google Scholar] [CrossRef]
- Rodriguez-Merchan, E.C.; Ribbans, W.J. The role of vancomycin-soaking of the graft in anterior cruciate ligament reconstruction. J. ISAKOS 2022, 7, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Offerhaus, C.; Balke, M.; Hente, J.; Gehling, M.; Blendl, S.; Höher, J. Vancomycin pre-soaking of the graft reduces postoperative infection rate without increasing risk of graft failure and arthrofibrosis in ACL reconstruction. Knee Surg. Sport. Traumatol. Arthrosc. 2019, 27, 3014–3021. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Prieto, D.; Perelli, S.; Corcoll, F.; Rojas, G.; Montiel, V.; Monllau, J.C. The vancomycin soaking technique: No differences in autograft re-rupture rate. A comparative study. Int. Orthop. 2021, 45, 1407–1411. [Google Scholar] [CrossRef]
- Hees, T.; Abdelatif, Y.; Karpinski, K.; Bierke, S.; Häner, M.; Park, H.U.; Petersen, W. Soaking ACL grafts in vancomycin solution (1 mg/ml) reduces the infection rate without increasing the risk for re-rupture and arthrofibrosis. Arch. Orthop. Trauma Surg. 2022, 142, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Eckes, S.; Rommens, P.M.; Schmitz, K.; Nickel, D.; Ritz, U. Toxic Effect of Vancomycin on Viability and Functionality of Different Cells Involved in Tissue Regeneration. Antibiotics 2020, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Chen, N.; Dang, A.B.C.; Kuo, A.C.; Dang, A.B.C. The Effects of Topical Vancomycin on Mesenchymal Stem Cells: More May Not Be Better. Int. J. Spine Surg. 2017, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, K.; Wei, J.; Li, Z.; Wang, H.; Wen, Y.; Chen, L. Evaluation of the Efficacy of Vancomycin-Soaked Autograft to Eliminate Staphylococcus aureus Contamination After Anterior Cruciate Ligament Reconstruction: Based on an Infected Rat Model. Am. J. Sport. Med. 2022, 50, 932–942. [Google Scholar] [CrossRef]
- Lamplot, J.D.; Liu, J.N.; Hutchinson, I.D.; Chen, T.; Wang, H.; Wach, A.; Rodeo, S.A.; Warren, R.F. Effect of Vancomycin Soaking on Anterior Cruciate Ligament Graft Biomechanics. Arthroscopy 2021, 37, 953–960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thierbach, M.; Müller, M.; Stange, R.; Kronenberg, D.; Aurich, M.; Wildemann, B. Wrap It! Preventive Antimicrobial Treatment Shows No Negative Effects on Tenocytes and Tendons—A Comprehensive Approach. J. Clin. Med. 2023, 12, 4104. https://doi.org/10.3390/jcm12124104
Thierbach M, Müller M, Stange R, Kronenberg D, Aurich M, Wildemann B. Wrap It! Preventive Antimicrobial Treatment Shows No Negative Effects on Tenocytes and Tendons—A Comprehensive Approach. Journal of Clinical Medicine. 2023; 12(12):4104. https://doi.org/10.3390/jcm12124104
Chicago/Turabian StyleThierbach, Manuela, Michelle Müller, Richard Stange, Daniel Kronenberg, Matthias Aurich, and Britt Wildemann. 2023. "Wrap It! Preventive Antimicrobial Treatment Shows No Negative Effects on Tenocytes and Tendons—A Comprehensive Approach" Journal of Clinical Medicine 12, no. 12: 4104. https://doi.org/10.3390/jcm12124104
APA StyleThierbach, M., Müller, M., Stange, R., Kronenberg, D., Aurich, M., & Wildemann, B. (2023). Wrap It! Preventive Antimicrobial Treatment Shows No Negative Effects on Tenocytes and Tendons—A Comprehensive Approach. Journal of Clinical Medicine, 12(12), 4104. https://doi.org/10.3390/jcm12124104