Using a Traction Table for Fracture Reduction during Minimally Invasive Plate Osteosynthesis (MIPO) of Distal Femoral Fractures Provides Anatomical Alignment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Surgical Intervention
2.3. Image Evaluation
2.4. Statistical Methods
3. Results
Reduction Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elsoe, R.; Ceccotti, A.A.; Larsen, P. Population-based epidemiology and incidence of distal femur fractures. Int. Orthop. 2018, 42, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Pietu, G.; Lebaron, M.; Flecher, X.; Hulet, C.; Vandenbussche, E. Epidemiology of distal femur fractures in France in 2011–12. Orthop. Traumatol. Surg. Res. 2014, 100, 545–548. [Google Scholar] [CrossRef]
- Farouk, O.; Krettek, C.; Miclau, T.; Schandelmaier, P.; Guy, P.; Tscherne, H. Minimally invasive plate osteosynthesis and vascularity: Preliminary results of a cadaver injection study. Injury 1997, 28 (Suppl. 1), A7–A12. [Google Scholar] [CrossRef]
- Hoffmann, M.F.; Jones, C.B.; Sietsema, D.L.; Tornetta, P.; Koenig, S.J. Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort. J. Orthop. Surg. Res. 2013, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Hake, M.E.; Davis, M.E.; Perdue, A.M.; Goulet, J.A. Modern Implant Options for the Treatment of Distal Femur Fractures. J. Am. Acad. Orthop. Surg. 2019, 27, e867–e875. [Google Scholar] [CrossRef]
- Kregor, P.J.; Stannard, J.A.; Zlowodzki, M.; Cole, P.A. Treatment of distal femur fractures using the less invasive stabilization system: Surgical experience and early clinical results in 103 fractures. J. Orthop. Trauma 2004, 18, 509–520. [Google Scholar] [CrossRef]
- Schutz, M.; Muller, M.; Regazzoni, P.; Hontzsch, D.; Krettek, C.; Van der Werken, C.; Haas, N. Use of the less invasive stabilization system (LISS) in patients with distal femoral (AO33) fractures: A prospective multicenter study. Arch. Orthop. Trauma Surg. 2005, 125, 102–108. [Google Scholar] [CrossRef]
- Buckley, R.; Mohanty, K.; Malish, D. Lower limb malrotation following MIPO technique of distal femoral and proximal tibial fractures. Injury 2011, 42, 194–199. [Google Scholar] [CrossRef]
- Kim, J.W.; Oh, C.W.; Oh, J.K.; Park, I.H.; Kyung, H.S.; Park, K.H.; Yoon, S.D.; Kim, S.M. Malalignment after minimally invasive plate osteosynthesis in distal femoral fractures. Injury 2017, 48, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Lill, M.; Attal, R.; Rudisch, A.; Wick, M.C.; Blauth, M.; Lutz, M. Does MIPO of fractures of the distal femur result in more rotational malalignment than ORIF? A retrospective study. Eur. J. Trauma Emerg. Surg. 2016, 42, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Laubach, L.K.; Krumme, J.W.; Satpathy, J. Comminuted periprosthetic distal femoral fractures have greater postoperative extension malalignment. Knee 2022, 36, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, R.P.; Egol, K.A.; Jones, C.B.; Ertl, J.P.; Mullis, B.; Perez, E.; Collinge, C.A.; Ostrum, R.; Humphrey, C.; Gardner, M.J.; et al. Locked Lateral Plating Versus Retrograde Nailing for Distal Femur Fractures: A Multicenter Randomized Trial. J. Orthop. Trauma 2023, 37, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, Y.; Takegami, Y.; Tokutake, K.; Yamada, Y.; Komaki, K.; Ichikawa, T.; Imagama, S. How does intraoperative fracture malalignment affect postoperative function and bone healing following distal femoral fracture?: A retrospective multicentre study. Bone Jt. Open. 2022, 3, 165–172. [Google Scholar] [CrossRef]
- Peschiera, V.; Staletti, L.; Cavanna, M.; Saporito, M.; Berlusconi, M. Predicting the failure in distal femur fractures. Injury 2018, 49, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.O.; Aksahin, E.; Sakman, B.; Kati, Y.A.; Akti, S.; Dogan, O.; Ucaner, A.; Bicimoglu, A. The effect of rotational deformity on patellofemoral parameters following the treatment of femoral shaft fracture. Arch. Orthop. Trauma Surg. 2013, 133, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Karaman, O.; Ayhan, E.; Kesmezacar, H.; Seker, A.; Unlu, M.C.; Aydingoz, O. Rotational malalignment after closed intramedullary nailing of femoral shaft fractures and its influence on daily life. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 1243–1247. [Google Scholar] [CrossRef]
- Gugenheim, J.J.; Probe, R.A.; Brinker, M.R. The effects of femoral shaft malrotation on lower extremity anatomy. J. Orthop. Trauma 2004, 18, 658–664. [Google Scholar] [CrossRef]
- Wong, J.R.Y.; Tsamados, S.; Patel, A.; Jaiswal, P. Use of Traction Table for Reducing Complex Distal Femur Fractures: A Technical Trick. Cureus 2022, 14, e23889. [Google Scholar] [CrossRef]
- Ehlinger, M.; Ducrot, G.; Adam, P.; Bonnomet, F. Distal femur fractures. Surgical techniques and a review of the literature. Orthop. Traumatol. Surg. Res. 2013, 99, 353–360. [Google Scholar] [CrossRef]
- Ehlinger, M.; Adam, P.; Abane, L.; Arlettaz, Y.; Bonnomet, F. Minimally-invasive internal fixation of extra-articular distal femur fractures using a locking plate: Tricks of the trade. Orthop. Traumatol. Surg. Res. 2011, 97, 201–205. [Google Scholar] [CrossRef]
- Paulsson, M.; Ekholm, C.; Jonsson, E.; Geijer, M.; Rolfson, O. Immediate full weight-bearing versus partial weight-bearing after plate fixation of distal femur fractures in elderly patients. A randomized controlled trial. Geriatr. Orthop. Surg. Rehabil. 2021, 12, 21514593211055889. [Google Scholar] [CrossRef] [PubMed]
- Meinberg, E.G.; Agel, J.; Roberts, C.S.; Karam, M.D.; Kellam, J.F. Fracture and dislocation classification compendium-2018. J. Orthop. Trauma 2018, 32 (Suppl. 1), S1–S170. [Google Scholar] [CrossRef] [PubMed]
- Flierl, M.A.; Stahel, P.F.; Hak, D.J.; Morgan, S.J.; Smith, W.R. Traction table-related complications in orthopaedic surgery. J. Am. Acad. Orthop. Surg. 2010, 18, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Peyser, A.; Weil, Y.; Liebergall, M.; Mosheiff, R. Percutaneous compression plating for intertrochanteric fractures. Surgical technique, tips for surgery, and results. Oper. Orthop. Traumatol. 2005, 17, 158–177. [Google Scholar] [CrossRef]
- Pietu, G.; Ehlinger, M. Minimally invasive internal fixation of distal femur fractures. Orthop. Traumatol. Surg. Res. 2017, 103, S161–S169. [Google Scholar] [CrossRef]
- Collinge, C.A.; Gardner, M.J.; Crist, B.D. Pitfalls in the application of distal femur plates for fractures. J. Orthop. Trauma 2011, 25, 695–706. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Handolin, L.; Pajarinen, J.; Lindahl, J.; Hirvensalo, E. Retrograde intramedullary nailing in distal femoral fractures—Results in a series of 46 consecutive operations. Injury 2004, 35, 517–522. [Google Scholar] [CrossRef]
- Dimitriou, D.; Tsai, T.Y.; Yue, B.; Rubash, H.E.; Kwon, Y.M.; Li, G. Side-to-side variation in normal femoral morphology: 3D CT analysis of 122 femurs. Orthop. Traumatol. Surg. Res. 2016, 102, 91–97. [Google Scholar] [CrossRef]
- Marchand, L.S.; Jacobson, L.G.; Stuart, A.R.; Haller, J.M.; Higgins, T.F.; Rothberg, D.L. Assessing femoral rotation: A survey comparison of techniques. J. Orthop. Trauma 2020, 34, e96–e101. [Google Scholar] [CrossRef]
- Laumonerie, P.; Ollivier, M.; LiArno, S.; Faizan, A.; Cavaignac, E.; Argenson, J.N. Which factors influence proximal femoral asymmetry?: A 3D CT analysis of 345 femoral pairs. Bone Jt. J. 2018, 100, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Reikeras, O.; Hoiseth, A.; Reigstad, A.; Fonstelien, E. Femoral neck angles: A specimen study with special regard to bilateral differences. Acta Orthop. Scand. 1982, 53, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Sutter, R.; Dietrich, T.J.; Zingg, P.O.; Pfirrmann, C.W. Femoral antetorsion: Comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology 2012, 263, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Croom, W.P.; Lorenzana, D.J.; Auran, R.L.; Cavallero, M.J.; Heckmann, N.; Lee, J.; White, E.A. Is contralateral templating reliable for establishing rotational alignment during intramedullary stabilization of femoral shaft fractures? A study of individual bilateral differences in femoral version. J. Orthop. Trauma 2018, 32, 61–66. [Google Scholar] [CrossRef]
- Shezar, A.; Rosenberg, N.; Soudry, M. Technique for closed reduction of femoral shaft fracture using an external support device. Injury 2005, 36, 450–453. [Google Scholar] [CrossRef]
- Neer, C.S.I.; Grantham, S.A.; Shelton, M.L. Supracondylar Fracture of the Adult Femur: A STUDY OF ONE HUNDRED AND TEN CASES. JBJS 1967, 49, 591–613. [Google Scholar] [CrossRef]
- Herrera, A.; Rosell, J.; Ibarz, E.; Albareda, J.; Gabarre, S.; Mateo, J.; Gracia, L. Biomechanical analysis of the stability of anterograde reamed intramedullary nails in femoral spiral fractures. Injury 2020, 51 (Suppl. 1), S74–S79. [Google Scholar] [CrossRef]
- Doshi, H.K.; Wenxian, P.; Burgula, M.V.; Murphy, D.P. Clinical Outcomes of Distal Femoral Fractures in the Geriatric Population Using Locking Plates With a Minimally Invasive Approach. Geriatr. Orthop. Surg. Rehabil. 2013, 4, 16–20. [Google Scholar] [CrossRef]
- Grant, K.D.; Busse, E.C.; Park, D.K.; Baker, K.C. Internal Fixation of Osteoporotic Bone. J. Am. Acad. Orthop. Surg. 2018, 26, 166–174. [Google Scholar] [CrossRef]
- Khursheed, O.; Wani, M.M.; Rashid, S.; Lone, A.H.; Manaan, Q.; Sultan, A.; Bhat, R.A.; Mir, B.A.; Halwai, M.A.; Akhter, N. Results of treatment of distal extra: Articular femur fractures with locking plates using minimally invasive approach—Experience with 25 consecutive geriatric patients. Musculoskelet. Surg. 2015, 99, 139–147. [Google Scholar] [CrossRef]
- Kolb, W.; Guhlmann, H.; Windisch, C.; Marx, F.; Kolb, K.; Koller, H. Fixation of distal femoral fractures with the Less Invasive Stabilization System: A minimally invasive treatment with locked fixed-angle screws. J. Trauma 2008, 65, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Tao, R.; Cao, Y.; Wang, Y.; Zhou, Z.; Wang, H.; Gu, Y. The role of LISS (less invasive stabilisation system) in the treatment of peri-knee fractures. Injury 2009, 40, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Abdelmonem, A.H.; Saber, A.Y.; El Sagheir, M.; El-Malky, A. Evaluation of the Results of Minimally Invasive Plate Osteosynthesis Using a Locking Plate in the Treatment of Distal Femur Fractures. Cureus 2022, 14, e23617. [Google Scholar] [CrossRef] [PubMed]
- Borade, A.; Sanchez, D.; Kempegowda, H.; Maniar, H.; Pesantez, R.F.; Suk, M.; Horwitz, D.S. Minimally Invasive Plate Osteosynthesis for Periprosthetic and Interprosthetic Fractures Associated with Knee Arthroplasty: Surgical Technique and Review of Current Literature. J. Knee Surg. 2019, 32, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Cornell, C.N.; Ayalon, O. Evidence for success with locking plates for fragility fractures. HSS J. 2011, 7, 164–169. [Google Scholar] [CrossRef]
- von Rüden, C.; Augat, P. Failure of fracture fixation in osteoporotic bone. Injury 2016, 47, S3–S10. [Google Scholar] [CrossRef]
- Beltran, M.J.; Collinge, C.A.; Gardner, M.J. Stress Modulation of Fracture Fixation Implants. J. Am. Acad. Orthop. Surg. 2016, 24, 711–719. [Google Scholar] [CrossRef]
- Miranda, M.A. Locking plate technology and its role in osteoporotic fractures. Injury 2007, 38 (Suppl. 3), S35–S39. [Google Scholar] [CrossRef]
- Beltran, M.J.; Gary, J.L.; Collinge, C.A. Management of distal femur fractures with modern plates and nails: State of the art. J. Orthop. Trauma 2015, 29, 165–172. [Google Scholar] [CrossRef]
- Bottlang, M.; Fitzpatrick, D.C.; Sheerin, D.; Kubiak, E.; Gellman, R.; Zandschulp, C.V.; Doornink, J.; Earley, K.; Madey, S.M. Dynamic Fixation of Distal Femur Fractures Using Far Cortical Locking Screws: A Prospective Observational Study. J. Orthop. Trauma 2014, 28, 181–188. [Google Scholar] [CrossRef]
- Zlowodzki, M.; Williamson, S.; Cole, P.A.; Zardiackas, L.D.; Kregor, P.J. Biomechanical evaluation of the less invasive stabilization system, angled blade plate, and retrograde intramedullary nail for the internal fixation of distal femur fractures. J. Orthop. Trauma 2004, 18, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.; Trask, K.; Hennigar, A.; Barron, L.; Leighton, R.K.; Dunbar, M.J. Assessment of fragment micromotion in distal femur fracture fixation with RSA. Clin. Orthop. Relat. Res. 2006, 448, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Bogunovic, L.; Cherney, S.M.; Rothermich, M.A.; Gardner, M.J. Biomechanical considerations for surgical stabilization of osteoporotic fractures. Orthop. Clin. N. Am. 2013, 44, 183–200. [Google Scholar] [CrossRef]
- Yaacobi, E.; Sanchez, D.; Maniar, H.; Horwitz, D.S. Surgical treatment of osteoporotic fractures: An update on the principles of management. Injury 2017, 48 (Suppl. 7), S34–S40. [Google Scholar] [CrossRef]
- Perren, S.M.; Linke, B.; Schwieger, K.; Wahl, D.; Schneider, E. Aspects of internal fixation of fractures in porotic bone. Principles, technologies and procedures using locked plate screws. Acta Chir. Orthop. Traumatol. Cechoslov. 2005, 72, 89–97. [Google Scholar]
- Du, Y.R.; Ma, J.X.; Wang, S.; Sun, L.; Wang, Y.; Lu, B.; Bai, H.H.; Hu, Y.C.; Ma, X.L. Comparison of Less Invasive Stabilization System Plate and Retrograde Intramedullary Nail in the Fixation of Femoral Supracondylar Fractures in the Elderly: A Biomechanical Study. Orthop. Surg. 2019, 11, 311–317. [Google Scholar] [CrossRef]
- Adams, J.D., Jr.; Tanner, S.L.; Jeray, K.J. Far cortical locking screws in distal femur fractures. Orthopedics 2015, 38, e153–e156. [Google Scholar] [CrossRef]
- Rodriguez, E.K.; Zurakowski, D.; Herder, L.; Hall, A.; Walley, K.C.; Weaver, M.J.; Appleton, P.T.; Vrahas, M. Mechanical Construct Characteristics Predisposing to Non-union After Locked Lateral Plating of Distal Femur Fractures. J. Orthop. Trauma 2016, 30, 403–408. [Google Scholar] [CrossRef]
- Henderson, C.E.; Lujan, T.J.; Kuhl, L.L.; Bottlang, M.; Fitzpatrick, D.C.; Marsh, J.L. 2010 Mid-America Orthopaedic Association Physician in Training Award: Healing Complications Are Common After Locked Plating for Distal Femur Fractures. Clin. Orthop. Relat. Res. 2011, 469, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Yeom, J.-W.; Song, H.K.; Hwang, K.-T.; Hwang, J.-H.; Yoo, J.-H. Lateral locked plating for distal femur fractures by low-energy trauma: What makes a difference in healing? Int. Orthop. 2018, 42, 2907–2914. [Google Scholar] [CrossRef]
- Yazdi, H.; Akbari Aghdam, H.; Motaghi, P.; Mohammadpour, M.; Bahari, M.; Ghahfarokhi, S.G.; Ghaderi, M.T. Using Blumensaat’s line to determine the sagittal alignment of the distal femur. Eur. J. Orthop. Surg. Traumatol. 2022, 33, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
n | AO/OTA | UM | Q | UCPF |
---|---|---|---|---|
2 | 32A2.1 | (c) | ||
4 | 32A2.1 | (c) | [12] | |
1 | 32A2.1 | (c) | V.3C | |
1 | 32A2.1 | (c) | [12] | V.3C |
2 | 32B2 | (c) | [13] | |
2 | 32B2 | (c) | [13] | V.3D |
2 | 32B3 | (c) | [13] | |
1 | 32B3 | (c) | [13] | IV.3C |
1 | 32B3 | (c) | [13] | IV.3C |
1 | 33A2.2 | V.3B1 | ||
2 | 33A3.2 | V.3B1 | ||
1 | 33A3.2 | |||
1 | 33A3.2 | [7] | V.3B1 | |
1 | 33A3.2 | [7] | IV.3D | |
1 | 33B2.1 | |||
1 | 33C1.1 | IV.3C | ||
1 | 33C2.3 |
ROTATION | n | ICC | 95% CI |
---|---|---|---|
Distal Angle Fracture | 25 | 0.985 | (0.964−0.993) |
Distal Angle Non-fracture | 25 | 0.951 | (0.877−0.975) |
Proximal Angle Fracture | 25 | 0.919 | (0.823−0.963) |
Proximal Angle Non-fracture | 25 | 0.975 | (0.823−0.963) |
GENU VARUM/VALGUM | |||
Fracture | 25 | 0.959 | (0.909−0.982) |
Non-fracture | 25 | 0.968 | (0.928−0.986) |
LENGTH | |||
Fracture | 25 | 0.999 | (0.998−1.000) |
Non-fracture | 25 | 0.999 | (0.998−1.000) |
GENU ANTE-/RECURVATUM | |||
Fracture | 25 | 0.596 | (0.271−0.800) |
Non-fracture | 25 | 0.544 | (0.198−0.770) |
Modality | Surgical Intervention | n | Mean Age (Min–Max) | Proportion RM 10–15° | Proportion RM > 15° | |
---|---|---|---|---|---|---|
Buckley et al., 2011 [8] | CT | MIPO | 13 | 38.1 | 15% | 23% |
Lill et al., 2016 [10] | MRI | MIPO + ORIF | 10 + 10 | 44.8 (17–91) | 20% + 20% | 50% + 0% |
Current study | CT | MIPO | 25 | 81.4 (67–95) | 12% | 4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulsson, M.; Ekholm, C.; Tranberg, R.; Rolfson, O.; Geijer, M. Using a Traction Table for Fracture Reduction during Minimally Invasive Plate Osteosynthesis (MIPO) of Distal Femoral Fractures Provides Anatomical Alignment. J. Clin. Med. 2023, 12, 4044. https://doi.org/10.3390/jcm12124044
Paulsson M, Ekholm C, Tranberg R, Rolfson O, Geijer M. Using a Traction Table for Fracture Reduction during Minimally Invasive Plate Osteosynthesis (MIPO) of Distal Femoral Fractures Provides Anatomical Alignment. Journal of Clinical Medicine. 2023; 12(12):4044. https://doi.org/10.3390/jcm12124044
Chicago/Turabian StylePaulsson, Martin, Carl Ekholm, Roy Tranberg, Ola Rolfson, and Mats Geijer. 2023. "Using a Traction Table for Fracture Reduction during Minimally Invasive Plate Osteosynthesis (MIPO) of Distal Femoral Fractures Provides Anatomical Alignment" Journal of Clinical Medicine 12, no. 12: 4044. https://doi.org/10.3390/jcm12124044
APA StylePaulsson, M., Ekholm, C., Tranberg, R., Rolfson, O., & Geijer, M. (2023). Using a Traction Table for Fracture Reduction during Minimally Invasive Plate Osteosynthesis (MIPO) of Distal Femoral Fractures Provides Anatomical Alignment. Journal of Clinical Medicine, 12(12), 4044. https://doi.org/10.3390/jcm12124044