Postsurgical Adhesions: Is There Any Prophylactic Strategy Really Working?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- 1.
- The structure of the peritoneum
- 2.
- Pathophysiology of adhesion formation
- 1.
- The lysis of fibrin and extracellular matrix is inhibited.
- 2.
- An inflammatory process arises, which leads to cytokines and TGFβ production; TGFβ is also involved in fibrosis regulation.
- 3.
- Mesothelial cells and submesothelial fibroblasts are affected by the lack of oxygen caused by blood flow interruption; consequently, hypoxia inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression is stimulated; the result of this is collagen synthesis and angiogenesis [5].
- ➢
- The peritoneum is injured during surgery.
- ➢
- Blood vessels become more permeable and this gives rise to inflammatory exudate.
- ➢
- During the inflammatory response different types of cells are activated, such as mast cells, neutrophils, plasma cells and monocytes, while fibrin is deposited at the injury site.
- ➢
- Normally, fibrin should become degraded by plasmin, but tissue hypoxia interferes with this process.
- ➢
- Fibroblasts infiltrate the fibrinous mass and an adhesion will develop at the site [2].
- 3.
- Prevention of postsurgical adhesions
3.1. Surgical Technique
3.2. Drugs That Exert Pharmacological Effects
- ➢
- Drugs that interfere with the renin-angiotensin-aldosterone system (RAAS):
- ➢
- Hypoxia-Inducible Factor (HIF) and N-acetylcysteine (NAC)
- ➢
- 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors
- ➢
- Neurokinin-1 receptor (NK-1R) antagonists
- ➢
- Lubricin
- ➢
- Chymase inhibitors and sodium cromoglycate
- ➢
- Anti-inflammatory drugs
- ➢
- Ethanol
- ➢
- Small molecule inhibitors
- ➢
- Hormones
Drug | Anti-Adhesive Mechanism | Environment of Drug Testing/Use |
---|---|---|
AT1 receptor blockers AT2 agonists (C21) ACE inhibitors (Lisinopril) | Interference with the renin-angiotensin-aldosterone system reducing inflammation, fibrosis and extracellular matrix deposition [13,14,15,16] | Lisinopril–proved efficient in animal testing [16] |
HIF inhibitors (YC-1) Antioxidants (NAC) | Fibrinolysis and angiogenesis inhibition Anti-inflammatory and fibrinolytic properties [17,18,19,20] | used on laboratory animals [18,19,20] |
Statins an hypolipidemic drugs | Reducing fibrosis [21] | Proved in human patients [21] |
NK-1R antagonists (CJ-12,255) | Fibrinolysis and oxidative stress reduction [22,23] | Used in laboratory rats [22] |
Lubricin | Anti-adhesive glycoprotein [24] | Animal testing [24] |
Chymase inhibitors (Suc-Val-Pro-Pheᴾ-(OPh)₂; TY-51184; NK3201) | Reducing fibrosis [25,26,27,28] | Used in hamsters [26] |
Cromoglycate | Inhibiting mast cells [29] | Used in rabbits [29] |
Anti-inflammatory drugs (Rofecoxib, Tenoxicam, Diclofenac, Naproxen, Pentoxifyline etc.) | Reducing inflammation by inhibiting COX enzymes [30,31,32,33,34,35] | Proved in animal testing [33,34] |
Ethanol | Reduces fibrosis and collagen deposition, stimulates matrix-metalloproteinases [38] | Animal testing [38] |
QLT-0267 | Decreases proinflammatory cytokine synthesis [39] | Used in mice [39] |
Rhosin, CK-666, Golgicide A | Actin modulators [40] | Animal tested [40,41,42] |
Bepridil | Calcium channel blocker [40] | Animal tested [40,41,42] |
Pirfenidone | Antifibrotic, inhibition of oxidative stress [41,42] | Animal tested [40,41,42] |
Trametinib | Inhibits myofibroblasts [43] | Seen in human patients [43] |
Ghrelin | Reducing fibrosis and collagen deposition, inhibits myofibroblasts [46] | Seen in human patients [46] |
3.3. Inert Polymers
- ➢
- Natural polymers
- Based on hyaluronan
- Based on cellulose
- Based on chitosan
- Natural membranes
- ➢
- Membranes composed of synthetic polymers
- ➢
- Membranes containing collagen
- ➢
- Membranes made of mixed polymers
- ➢
- Sprayable barriers
- ➢
- Liquid barriers
- ➢
- Membranes based on heterograft
3.4. Incorporation of Medical Substances in Barriers
3.5. Nanoparticles and Gene Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Wilde, R.L.; Devassy, R.; Broek, R.P.G.T.; Miller, C.E.; Adlan, A.; Aquino, P.; Becker, S.; Darmawan, F.; Gergolet, M.; Habana, M.A.E.; et al. The Future of Adhesion Prophylaxis Trials in Abdominal Surgery: An Expert Global Consensus. J. Clin. Med. 2022, 11, 1476. [Google Scholar] [CrossRef] [PubMed]
- Dewilde, R.L.; Trew, G. Postoperative abdominal adhesions and their prevention in gynaecological surgery. Expert consensus position. Part 2-steps to reduce adhesions. Gynecol. Surg. 2007, 4, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Hassanabad, A.F.; Zarzycki, A.N.; Jeon, K.; Dundas, J.A.; Vasanthan, V.; Deniset, J.F.; Fedak, P.W.M. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021, 11, 1027. [Google Scholar] [CrossRef] [PubMed]
- Binda, M.M. Humidification during laparoscopic surgery: Overview of the clinical benefits of using humidified gas during laparoscopic surgery. Arch. Gynecol. Obstet. 2015, 292, 955–971. [Google Scholar] [CrossRef] [Green Version]
- Coccolini, F.; Ansaloni, L.; Manfredi, R.; Campanati, L.; Poiasina, E.; Bertoli, P.; Capponi, M.G.; Sartelli, M.; Di Saverio, S.; Cucchi, M.; et al. Peritoneal adhesion index (PAI): Proposal of a score for the ‘ignored iceberg’ of medicine and surgery. World J. Emerg. Surg. 2013, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Diamond, M.P.; Burns, E.L.; Accomando, B.; Mian, S.; Holmdahl, L. Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 2012, 9, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Garrard, C.L.; Clements, R.H.; Nanney, L.; Davidson, J.M.; Richards, W.O. Adhesion formation is reduced after laparoscopic surgery. Surg. Endosc. 1999, 13, 10–13. [Google Scholar] [CrossRef]
- Schippers, E.; Tittel, A.; Öttinger, A.; Schumpelick, V. Laparoscopy versus Laparotomy:Compari son of Adhesion-Formation after Bowel Resection in a Canine Model. Dig. Surg. 1998, 15, 145–147. [Google Scholar] [CrossRef]
- Schäfer, M.; Krähenbühl, L.; Büchler, M.W. Comparison of Adhesion Formation in Open and Laparoscopic Surgery. Dig. Surg. 1998, 15, 148–152. [Google Scholar] [CrossRef]
- Stephen, K.M.; Suzanne, K.M. Adhesions and Adhesiolysis: The Role of Laparoscopy. JSLS J. Soc. Laparoendosc. Surg. 2002, 6, 99. [Google Scholar]
- Molinas, C.R.; Binda, M.M.; Manavella, G.D.; Koninckx, P.R. Adhesion formation after laparoscopic surgery: What do we know about the role of the peritoneal environment? Facts Views Vis. ObGyn 2010, 2, 149–160. [Google Scholar]
- Koninckx, P.R.; Corona, R.; Timmerman, D.; Verguts, J.; Adamyan, L. Peritoneal full-conditioning reduces postoperative adhesions and pain: A randomised controlled trial in deep endometriosis surgery. J. Ovarian Res. 2013, 6, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamoto, H.; Imai, H.; Fukushima, R.; Ishida, Y.; Yamanouchi, Y.; Suzuki, H. Role of the Renin–angiotensin System in the Pathogenesis of Peritoneal Fibrosis. Perit. Dial. Int. 2008, 28, 83–87. [Google Scholar] [CrossRef]
- Boudreau, C.; LeVatte, T.; Jones, C.; Gareau, A.; Legere, S.; Bezuhly, M. The Selective Angiotensin II Type 2 Receptor Agonist Compound 21 Reduces Abdominal Adhesions in Mice. J. Surg. Res. 2020, 256, 231–242. [Google Scholar] [CrossRef]
- Bulbuller, N.; Ilhan, Y.S.; Kirkil, C.; Cetiner, M.; Gogebakan, Ö.; Ilhan, N. Can Angiotensin Converting Enzyme Inhibitors Prevent Postoperative Adhesions? J. Surg. Res. 2005, 125, 94–97. [Google Scholar] [CrossRef]
- Strowitzki, M.J.; Ritter, A.S.; Radhakrishnan, P.; Harnoss, J.M.; Opitz, V.M.; Biller, M.; Wehrmann, J.; Keppler, U.; Scheer, J.; Wallwiener, M.; et al. Pharmacological HIF-inhibition attenuates postoperative adhesion formation OPEN. Sci. Rep. 2017, 7, 13151. [Google Scholar] [CrossRef] [Green Version]
- Shahzamani, S.; Jahandideh, A.R.; Abedi, G.; Akbarzadeh, A.; Hesaraki, S. Effect of N-acetyl-cysteine nanoparticles on intra-abdominal adhesion after laparotomy in rats. Pol. J. Vet. Sci. 2019, 22, 581–588. [Google Scholar] [CrossRef]
- Pourreza, B.; Ghamsari, S.M.; Sasani, F.; Hashemi, F.A.; Lakooraj, H.M. Effects of N-acetyl-L-Cysteine on Postoperative Intraabdominal Adhesion in a Large Animal Model. Iran. J. Vet. Surg. 2015, 10, 1–10. [Google Scholar]
- Parpoudi, S.; Mantzoros, I.; Gkiouliava, A.; Kyziridis, D.; Makrantonakis, A.; Chatzakis, C.; Gekas, C.; Konstantaras, D.; Ioannidis, O.; Bitsianis, S.; et al. The effect of N-acetyl-L-cysteine on inflammation after intraperitoneal mesh placement in a potentially contaminated environment: Experimental study in the rat. Asian J. Surg. 2021, 45, 2191–2196. [Google Scholar] [CrossRef]
- Scott, F.I.; Vajravelu, R.K.; Mamtani, R.; Bianchina, N.; Mahmoud, N.; Hou, J.K.; Wu, Q.; Wang, X.; Haynes, K.; Lewis, J.D. Association between Statin Use at the Time of Intra-abdominal Surgery and Postoperative Adhesion-Related Complications and Small-Bowel Obstruction. JAMA Netw. Open 2021, 4, e2036315. [Google Scholar] [CrossRef]
- Cohen, P.A.; Gower, A.C.; Stucchi, A.F.; Leeman, S.E.; Becker, J.M.; Reed, K.L. A neurokinin-1 receptor antagonist that reduces intraabdominal adhesion formation increases peritoneal matrix metalloproteinase activity. Wound Repair Regen. 2007, 15, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.L.; Stucchi, A.F.; Leeman, S.E.; Becker, J.M. Inhibitory Effects of a Neurokinin-1 Receptor Antagonist on Postoperative Peritoneal Adhesion Formation. Ann. N. Y. Acad. Sci. 2008, 1144, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Kuan, K.G.; Tiong, L.U.; Trochsler, M.I.; Jay, G.; Schmidt, T.A.; Barnett, H.; Maddern, G.J. Recombinant human lubricin for prevention of postoperative intra-abdominal adhesions in a rat model. J. Surg. Res. 2017, 208, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Soga, Y.; Takai, S.; Koyama, T.; Okamoto, Y.; Ikeda, T.; Nishimura, K.; Miyazaki, M.; Komeda, M. Attenuation of adhesion formation after cardiac surgery with a chymase inhibitor in a hamster model. J. Thorac. Cardiovasc. Surg. 2004, 127, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, Y.; Takai, S.; Miyazaki, M. Chymase inhibitor suppresses adhesion formation in a hamster experimental model. Eur. J. Pharmacol. 2002, 435, 265–267. [Google Scholar] [CrossRef]
- Okamoto, Y.; Takai, S.; Miyazaki, M. Significance of chymase inhibition for prevention of adhesion formation. Eur. J. Pharmacol. 2004, 484, 357–359. [Google Scholar] [CrossRef]
- Okamoto, Y.; Takai, S.; Miyazaki, M. Oral Administration of a Novel Chymase Inhibitor, NK3201, Prevents Peritoneal Adhesion Formation in Hamsters. Jpn. J. Pharmacol. 2002, 90, 94–96. [Google Scholar] [CrossRef] [Green Version]
- Kucukozkan, T.; Ersoy, B.; Uygur, D.; Gundogdu, C. Prevention of adhesions by sodium chromoglycate, dexamethasone, saline and aprotinin after pelvic surgery. ANZ J. Surg. 2004, 74, 1111–1115. [Google Scholar] [CrossRef]
- Aldemir, M.; Öztürk, H.; Büyükbayram, H.; Erten, G. The Preventive Effect of Rofecoxib in Postoperative Intraperitoneal Adhesions. Acta Chir. Belg. 2004, 104, 97–100. [Google Scholar] [CrossRef]
- Alizzi, A.M.; Summers, P.; Boon, V.H.; Tantiongco, J.-P.; Thompson, T.; Leslie, B.J.; Williams, D.; Steele, M.; Bidstrup, B.P.; Diqer, A.-M.A. Reduction of Post-surgical Pericardial Adhesions Using a Pig Model. Heart Lung Circ. 2012, 21, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Ezberci, F.; Bulbuloglu, E.; Ciragil, P.; Gül, M.; Kurutas, E.B.; Bozkurt, S.; Kale, I.T. Intraperitoneal Tenoxicam to Prevent Abdominal Adhesion Formation in a Rat Peritonitis Model. Surg. Today 2006, 36, 361–366. [Google Scholar] [CrossRef]
- Gómez, G.G.-V.; Linares-Rivera, E.; Tena-Betancourt, E.; Castillo, G.A.-D.; Reipen, L. Prevention of postoperative abdominal adhesions using systemic enoxaparin and local diclofenac. An experimental study. Surg. Pract. 2020, 24, 4–10. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Askary, B. The Effect of Piroxicam on the Formation of Postoperative, Intraabdominal Adhesion in Rats. Saudi J. Gastroenterol. 2008, 14, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Greene, A.K.; Alwayn, I.P.J.; Nose, V.; Flynn, E.; Sampson, D.; Zurakowski, D.; Folkman, J.; Puder, M. Prevention of Intra-abdominal Adhesions Using the Antiangiogenic COX-2 Inhibitor Celecoxib. Ann. Surg. 2005, 242, 140–146. [Google Scholar] [CrossRef]
- Tarhan, O.R.; Barut, I.; Sutcu, R.; Akdeniz, Y.; Akturk, O. Pentoxifylline, a Methyl Xanthine Derivative, Reduces Peritoneal Adhesions and Increases Peritoneal Fibrinolysis in Rats. Tohoku J. Exp. Med. 2006, 209, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Elmadhun, N.Y.; Sabe, A.A.; Lassaletta, A.D.; Dalal, R.S.; Sellke, F.W. Effects of Alcohol on Postoperative Adhesion Formation in Ischemic Myocardium and Pericardium. Ann. Thorac. Surg. 2017, 104, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.-C.; Chou, T.-H.; Huang, J.-W.; Lee, C.-C.; Chen, S.-C. The Small Molecule Inhibitor QLT-0267 Decreases the Production of Fibrin-Induced Inflammatory Cytokines and Prevents Post-Surgical Peritoneal Adhesions OPEN. Sci. Rep. 2018, 8, 9481. [Google Scholar] [CrossRef]
- Fischer, A.; Koopmans, T.; Ramesh, P.; Christ, S.; Strunz, M.; Wannemacher, J.; Aichler, M.; Feuchtinger, A.; Walch, A.; Ansari, M.; et al. Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces. Nat. Commun. 2020, 11, 3068. [Google Scholar] [CrossRef]
- Hasdemir, P.S.; Ozkut, M.; Guvenal, T.; Uner, M.A.; Calik, E.; Koltan, S.O.; Koyuncu, F.M.; Ozbilgin, K. Effect of Pirfenidone on Vascular Proliferation, Inflammation and Fibrosis in an Abdominal Adhesion Rat Model. J. Investig. Surg. 2017, 30, 26–32. [Google Scholar] [CrossRef] [PubMed]
- El Halwagy, A.S.; Al Gergawy, A.A.; Dawood, A.S.; Shehata, A. Reduction of Postoperative Adhesions after Laparoscopic Surgery for Endometriosis by Using a Novel Anti-Fibrotic Drug Pirfenidone: A Randomized Double Blind Study. Gynecol. Obstet. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Macarak, E.J.; Lotto, C.E.; Koganti, D.; Jin, X.; Wermuth, P.J.; Olsson, A.-K.; Montgomery, M.; Rosenbloom, J. Trametinib prevents mesothelial-mesenchymal transition and ameliorates abdominal adhesion formation. J. Surg. Res. 2018, 227, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.K.; Negi, N.; Subbaiah, M.; Kumar, S.; Sharma, J.B.; Singh, N. Effectiveness of estrogen in the prevention of intrauterine adhesions after hysteroscopic septal resection: A prospective, randomized study. J. Obstet. Gynaecol. Res. 2014, 40, 1085–1088. [Google Scholar] [CrossRef] [PubMed]
- Johary, J.; Xue, M.; Zhu, X.; Xu, D.; Velu, P.P. Efficacy of Estrogen Therapy in Patients with Intrauterine Adhesions: Systematic Review. J. Minim. Invasive Gynecol. 2014, 21, 44–54. [Google Scholar] [CrossRef]
- Bianchi, E.; Boekelheide, K.; Sigman, M.; Lamb, D.J.; Hall, S.J.; Hwang, K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE 2016, 11, e0153968. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.H.; Abaid, A.; Butt, U.I.; Warraich, M.U.; Ayyaz, M.; Shafiq, A. Efficacy of Cross-Linked Hyaluronic Acid Gel for the Reduction of Post-operative Obstructive Symptoms Due to Adhesions. Cureus 2022, 14, e22469. [Google Scholar] [CrossRef]
- Mais, V.; Cirronis, M.G.; Peiretti, M.; Ferrucci, G.; Cossu, E.; Melis, G.B. Efficacy of auto-crosslinked hyaluronan gel for adhesion prevention in laparoscopy and hysteroscopy: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 1–5. [Google Scholar] [CrossRef]
- Torres-de la Roche, L.A.; Bérard, V.; de Wilde, M.S.; Devassy, R.; Wallwiener, M.; De Wilde, R.L. Chemically Modified Hyaluronic Acid for Prevention of Post-Surgical Adhesions: New Aspects of Gel Barriers Physical Profiles. J. Clin. Med. 2022, 11, 931. [Google Scholar] [CrossRef]
- Hirschelmann, A.; Tchartchian, G.; Wallwiener, M.; Hackethal, A.; Leon, R.; Wilde, D. A review of the problematic adhesion prophylaxis in gynaecological surgery. Arch. Gynecol. Obstet. 2011, 285, 1089–1097. [Google Scholar] [CrossRef] [Green Version]
- Gago, L.A.; Saed, G.; Elhammady, E.; Diamond, M.P. Effect of oxidized regenerated cellulose (Interceed®) on the expression of tissue plasminogen activator and plasminogen activator inhibitor-1 in human peritoneal fibroblasts and mesothelial cells. Fertil. Steril. 2006, 86, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-L.; Xu, S.-W.; Zhou, X.-L. Preventive Effects of Chitosan on Peritoneal Adhesion in Rats. 2006. Available online: http://www.wjgnet.com/1007-9327/12/4572.asp (accessed on 14 March 2023).
- Ren, C.; Zhao, D.; Zhu, L. Use of N,O-carboxymethyl chitosan to prevent postsurgical adhesions in a rabbit double uterine horn model: A randomized controlled design. Sci. China Life Sci. 2016, 59, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahram, E.; Sadraie, S.H.; Kaka, G.; Khoshmohabat, H.; Hosseinalipour, M.; Panahi, F.; Naimi-Jamal, M.R. Evaluation of chitosan-gelatin films for use as postoperative adhesion barrier in rat cecum model. Int. J. Surg. 2013, 11, 1097–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haensig, M.; Wilhelm, F.; Ardawan, M.; Rastan, J.; Rastan, A.J. Bioresorbable adhesion barrier for reducing the severity of postoperative cardiac adhesions: Focus on REPEL-Cv®. Med. Devices Evid. Res. 2011, 4, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Lodge, A.J.; Wells, W.J.; Backer, C.L.; O’Brien, J.E.; Austin, E.H.; Bacha, E.A.; Yeh, T.; DeCampli, W.M.; Lavin, P.T.; Weinstein, S. A Novel Bioresorbable Film Reduces Postoperative Adhesions After Infant Cardiac Surgery. Ann. Thorac. Surg. 2008, 86, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-W.; Chang, M.-C.; Wang, J.-H.; Wu, C.-C.; Chen, Y.-H. Placement of SurgiWrap® adhesion barrier film around the protective loop stoma after laparoscopic colorectal cancer surgery may reduce the peristomal adhesion severity and facilitate the closure. Int. J. Colorectal. Dis. 2019, 34, 513–518. [Google Scholar] [CrossRef]
- Farquhar, C.; Vandekerckhove, P.; Watson, A.; Vail, A.; Wiseman, D. Barrier agents for preventing adhesions after surgery for subfertility. In Cochrane Database of Systematic Reviews; Farquhar, C., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 1999. [Google Scholar] [CrossRef]
- Haney, A.F. Removal of surgical barriers of expanded polytetrafluoroethylene at second-look laparoscopy was not associated with adhesion formation. Fertil. Steril. 1997, 68, 721–723. [Google Scholar] [CrossRef]
- Bel, A.; Ricci, M.; Piquet, J.; Bruneval, P.; Perier, M.-C.; Gagnieu, C.; Fabiani, J.-N.; Menasché, P. Prevention of postcardiopulmonary bypass pericardial adhesions by a new resorbable collagen membrane. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, A.; Lepère, M.; Zaranis, C.; Coelio, C.; Hauters, P. Efficacy and safety of a resorbable collagen membrane COVA+TM for the prevention of postoperative adhesions in abdominal surgery. Surg. Endosc. 2016, 30, 2358–2366. [Google Scholar] [CrossRef]
- Kuschel, T.J.; Gruszka, A.; Hermanns-Sachweh, B.; Elyakoubi, J.; Sachweh, J.S.; Vázquez-Jiménez, J.F.; Schnoering, H. Prevention of Postoperative Pericardial Adhesions with TachoSil. Ann. Thorac. Surg. 2013, 95, 183–188. [Google Scholar] [CrossRef]
- Karacam, V.; Onen, A.; Sanli, A.; Gurel, D.; Kargi, A.; Karapolat, S.; Ozdemir, N. Prevention of Pleural Adhesions Using a Membrane Containing Polyethylene Glycol in Rats. Int. J. Med. Sci. 2011, 8, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canis, M.J.; Triopon, G.; Daraï, E.; Madelenat, P.; LeVêque, J.; Panel, P.; Fernandez, H.; Audebert, A.; Descamps, P.; Castaing, N.; et al. Adhesion prevention after myomectomy by laparotomy: A prospective multicenter comparative randomized single-blind study with second-look laparoscopy to assess the effectiveness of PREVADHTM. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 178, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, B.; Horbacka, K.; Karoń, J.; Malinger, S.; Antos, F.; Rudzki, S.; Kala, Z.; Stojcev, Z.; Kössi, J.; Krokowicz, P. Preliminary study with SprayShieldTM Adhesion Barrier System in the prevention of abdominal adhesions. Videosurg. Other Miniinvasive Tech. 2013, 8, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Tchartchian, G.; Hackethal, A.; Herrmann, A.; Bojahr, B.; Wallwiener, C.; Ohlinger, R.; Ebert, A.D.; De Wilde, R.L. Evaluation of SprayShieldTM Adhesion Barrier in a single center: Randomized controlled study in 15 women undergoing reconstructive surgery after laparoscopic myomectomy. Arch. Gynecol. Obstet. 2014, 290, 697–704. [Google Scholar] [CrossRef]
- Mettler, L.; Hucke, J.; Bojahr, B.; Tinneberg, H.-R.; Leyland, N.; Avelar, R. A safety and efficacy study of a resorbable hydrogel for reduction of post-operative adhesions following myomectomy. Hum. Reprod. 2008, 23, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Napoleone, C.P.; Valori, A.; Crupi, G.; Ocello, S.; Santoro, F.; Vouhé, P.; Weerasena, N.; Gargiulo, G. An observational study of CoSeal for the prevention of adhesions in pediatric cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 978–982. [Google Scholar] [CrossRef]
- Konertz, W.F.; Kostelka, M.; Mohr, F.W.; Hetzer, R.; Hübler, M.; Ritter, J.; Liu, J.; Koch, C.; E Block, J. Reducing the incidence and severity of pericardial adhesions with a sprayable polymeric matrix. Ann. Thorac. Surg. 2003, 76, 1270–1274. [Google Scholar] [CrossRef]
- Brown, C.B.; Luciano, A.A.; Martin, D.; Peers, E.; Scrimgeour, A.; Dizerega, G.S.; Adept Adhesion Reduction Study Group. Adept (icodextrin 4% solution) reduces adhesions after laparoscopic surgery for adhesiolysis: A double-blind, randomized, controlled study. Fertil. Steril. 2007, 88, 1413–1426. [Google Scholar] [CrossRef]
- Shen, J.; Xu, Z.W. Combined Application of Acellular Bovine Pericardium and Hyaluronic Acid in Prevention of Postoperative Pericardial Adhesion. Artif. Organs 2014, 38, 224–230. [Google Scholar] [CrossRef]
- He, T.; Zou, C.; Song, L.; Wang, N.; Yang, S.; Zeng, Y.; Wu, Q.; Zhang, W.; Chen, Y.; Gong, C. Improving Antiadhesion Effect of Thermosensitive Hydrogel with Sustained Release of Tissue-type Plasminogen Activator in a Rat Repeated-Injury Model. ACS Appl. Mater. Interfaces 2016, 8, 33514–33520. [Google Scholar] [CrossRef]
- Baek, S.; Park, H.; Park, Y.; Kang, H.; Lee, D. Development of a Lidocaine-LoadedAlginate/CMC/PEO Electrospun Nanofiber Film and Application as an Anti-Adhesion Barrier. Polymers 2020, 12, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, H.; Shu, X.Z.; Gray, S.D.; Prestwich, G.D. Crosslinked hyaluronan hydrogels containing mitomycin C reduce postoperative abdominal adhesions. Fertil. Steril. 2005, 83, 1275–1283. [Google Scholar] [CrossRef]
- Oh, S.H.; Kim, J.K.; Song, K.S.; Noh, S.M.; Ghil, S.H.; Yuk, S.H.; Lee, J.H. Prevention of postsurgical tissue adhesion by anti-inflammatory drug-loaded pluronic mixtures with sol-gel transition behavior. J. Biomed. Mater. Res. A 2005, 72A, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, J.; Ruan, H.; Wang, W.; Wu, T.; Cui, W.; Fan, C. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(l-lactide) fibrous membrane. Mater. Sci. Eng. C 2013, 33, 1176–1182. [Google Scholar] [CrossRef]
- Atta, H.M.; Zenilman, M.E.; Dennis, M. Prevention of peritoneal adhesions: A promising role for gene therapy. World J. Gastroenterol. 2011, 17, 5049–5058. [Google Scholar] [CrossRef]
- Nair, S.; Saed, G.; Atta, H.; Rajaratnam, V.; Diamond, M.; Curiel, D.; Al-Hendy, A. Towards Gene Therapy of Postoperative Adhesions: Fiber and Transcriptional Modifications Enhance Adenovirus Targeting towards Human Adhesion Cells. Gynecol. Obstet. Investig. 2013, 76, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-J.; Wu, C.-T.; Duan, H.-F.; Wu, B.; Lu, Z.-Z.; Wang, L. Adenoviral-mediated gene expression of hepatocyte growth factor prevents postoperative peritoneal adhesion in a rat model. Surgery 2006, 140, 441–447. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Q.-F.; Liu, H.-J.; Li, R.; Wu, C.-T.; Wang, L.-S. Sphingosine kinase 1 gene transfer reduces postoperative peritoneal adhesion in an experimental model. Br. J. Surg. 2007, 95, 252–258. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Shao, Y.X.; Zhang, L.Z.; Zhou, Y.L. Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids Surf. B Biointerfaces 2018, 164, 165–176. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Wang, X.; Peng, S.; Ning, J.; Qian, Y.; Fan, C. MicroRNA-21-3p Engineered Umbilical Cord Stem Cell-Derived Exosomes Inhibit Tendon Adhesion. J. Inflamm. Res. 2020, 13, 303–316. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flutur, I.-M.; Păduraru, D.N.; Bolocan, A.; Palcău, A.C.; Ion, D.; Andronic, O. Postsurgical Adhesions: Is There Any Prophylactic Strategy Really Working? J. Clin. Med. 2023, 12, 3931. https://doi.org/10.3390/jcm12123931
Flutur I-M, Păduraru DN, Bolocan A, Palcău AC, Ion D, Andronic O. Postsurgical Adhesions: Is There Any Prophylactic Strategy Really Working? Journal of Clinical Medicine. 2023; 12(12):3931. https://doi.org/10.3390/jcm12123931
Chicago/Turabian StyleFlutur, Irina-Maria, Dan Nicolae Păduraru, Alexandra Bolocan, Alexandru Cosmin Palcău, Daniel Ion, and Octavian Andronic. 2023. "Postsurgical Adhesions: Is There Any Prophylactic Strategy Really Working?" Journal of Clinical Medicine 12, no. 12: 3931. https://doi.org/10.3390/jcm12123931
APA StyleFlutur, I.-M., Păduraru, D. N., Bolocan, A., Palcău, A. C., Ion, D., & Andronic, O. (2023). Postsurgical Adhesions: Is There Any Prophylactic Strategy Really Working? Journal of Clinical Medicine, 12(12), 3931. https://doi.org/10.3390/jcm12123931