Visual and Anatomical Outcomes of a Single Intravitreal Dexamethasone in Diabetic Macular Edema: An 8 Year Real-World Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Cohort
2.3. Study Outcomes
2.4. Statistical Analysis
3. Results
3.1. Cohort Demographics and Clinical Features
3.2. Visual and Anatomical Outcomes Resulting from Initial Intravitreal Dexamethasone
3.3. Interrogating Clinically Relevant Events following a Single Intravitreal Dexamethasone Injection with Time–Event Analysis
3.4. Intraocular Pressure Changes following Treatment
4. Discussion
4.1. Time to Retreatment
4.2. Survival Analysis as an Approach to Represent Real-World Data
4.3. Intravitreal Dexamethasone in Phakic Patients
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, S.E.; Klein, R.; Klein, B.E. The 14-year incidence of visual loss in a diabetic population. Ophthalmology 1998, 105, 998–1003. [Google Scholar] [CrossRef]
- Leasher, J.L.; Bourne, R.R.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Naidoo, K.; Pesudovs, K.; Price, H.; White, R.A.; Wong, T.Y.; et al. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes Care 2016, 39, 1643–1649. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Sabanayagam, C.; Yip, W.; Ting, D.S.; Tan, G.; Wong, T.Y. Ten Emerging Trends in the Epidemiology of Diabetic Retinopathy. Ophthalmic Epidemiol. 2016, 23, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.A.; Glassman, A.R.; Ayala, A.R.; Jampol, L.M.; Aiello, L.P.; Antoszyk, A.N.; Arnold-Bush, B.; Baker, C.W.; Bressler, N.M.; Browning, D.J.; et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 2015, 372, 1193–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, D.S.; Yoon, Y.H.; Belfort, R., Jr.; Bandello, F.; Maturi, R.K.; Augustin, A.J.; Li, X.Y.; Cui, H.; Hashad, Y.; Whitcup, S.M. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 2014, 121, 1904–1914. [Google Scholar] [CrossRef]
- Gillies, M.C.; Lim, L.L.; Campain, A.; Quin, G.J.; Salem, W.; Li, J.; Goodwin, S.; Aroney, C.; McAllister, I.L.; Fraser-Bell, S. A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: The BEVORDEX study. Ophthalmology 2014, 121, 2473–2481. [Google Scholar] [CrossRef]
- Fraser-Bell, S.; Lim, L.L.; Campain, A.; Mehta, H.; Aroney, C.; Bryant, J.; Li, J.; Quin, G.J.; McAllister, I.L.; Gillies, M.C. Bevacizumab or Dexamethasone Implants for DME: 2-year Results (The BEVORDEX Study). Ophthalmology 2016, 123, 1399–1401. [Google Scholar] [CrossRef] [Green Version]
- Chang-Lin, J.E.; Burke, J.A.; Peng, Q.; Lin, T.; Orilla, W.C.; Ghosn, C.R.; Zhang, K.M.; Kuppermann, B.D.; Robinson, M.R.; Whitcup, S.M.; et al. Pharmacokinetics of a sustained-release dexamethasone intravitreal implant in vitrectomized and nonvitrectomized eyes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4605–4609. [Google Scholar] [CrossRef] [Green Version]
- Maturi, R.K.; Glassman, A.R.; Liu, D.; Beck, R.W.; Bhavsar, A.R.; Bressler, N.M.; Jampol, L.M.; Melia, M.; Punjabi, O.S.; Salehi-Had, H.; et al. Effect of Adding Dexamethasone to Continued Ranibizumab Treatment in Patients With Persistent Diabetic Macular Edema: A DRCR Network Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Castro-Navarro, V.; Cervera-Taulet, E.; Navarro-Palop, C.; Monferrer-Adsuara, C.; Hernández-Bel, L.; Montero-Hernández, J. Intravitreal dexamethasone implant Ozurdex® in naïve and refractory patients with different subtypes of diabetic macular edema. BMC Ophthalmol. 2019, 19, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scaramuzzi, M.; Querques, G.; Spina, C.L.; Lattanzio, R.; Bandello, F. Repeated intravitreal dexamethasone implant (Ozurdex) for diabetic macular edema. Retina 2015, 35, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Menezo, M.; Roca, M.; Menezo, V.; Pascual, I. Intravitreal dexamethasone implant Ozurdex in the treatment of diabetic macular edema in patients not previously treated with any intravitreal drug: A prospective 12-month follow-up study. Curr. Med. Res. Opin. 2019, 35, 2111–2116. [Google Scholar] [CrossRef]
- Bell, M.L.; Fiero, M.; Horton, N.J.; Hsu, C.H. Handling missing data in RCTs; a review of the top medical journals. BMC Med Res. Methodol. 2014, 14, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, A.J.; Grieve, R.D.; Richards-Belle, A.; Mouncey, P.R.; Harrison, D.A.; Carpenter, J.R. A framework for extending trial design to facilitate missing data sensitivity analyses. BMC Med. Res. Methodol. 2020, 20, 66. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.J.; Keenan, T.D.; Faes, L.; Lim, E.; Wagner, S.K.; Moraes, G.; Huemer, J.; Kern, C.; Patel, P.J.; Balaskas, K.; et al. Insights From Survival Analyses During 12 Years of Anti-Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. JAMA Ophthalmol. 2021, 139, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Galsworthy, P. 111C12The principles of a national diabetic eye screening programme. In Diabetic Retinopathy: Screening to Treatment 2E (ODL); Sivaraj, R.R., Dodson, P.M., Eds.; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Fasler, K.; Moraes, G.; Wagner, S.; Kortuem, K.U.; Chopra, R.; Faes, L.; Preston, G.; Pontikos, N.; Fu, D.J.; Patel, P.; et al. One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: A retrospective cohort study and an open science resource. BMJ Open 2019, 9, e027441. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Ghanchi, F.; Kelly, S.P.; Kotagiri, A.; Talks, J.; Scanlon, P.; McGoey, H.; Nolan, A.; Saddiq, M.; Napier, J. Evaluation of standard of care intravitreal aflibercept treatment of diabetic macular oedema treatment-naive patients in the UK: DRAKO study 12-month outcomes. Eye 2022, 36, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Zarranz-Ventura, J.; Romero-Núñez, B.; Bernal-Morales, C.; Velazquez-Villoria, D.; Sala-Puigdollers, A.; Figueras-Roca, M.; Copete, S.; Distefano, L.; Boixadera, A.; García-Arumi, J. Differential response to intravitreal dexamethasone implant in naïve and previously treated diabetic macular edema eyes. BMC Ophthalmol. 2020, 20, 443. [Google Scholar] [CrossRef] [PubMed]
- Chang-Lin, J.E.; Attar, M.; Acheampong, A.A.; Robinson, M.R.; Whitcup, S.M.; Kuppermann, B.D.; Welty, D. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Investig. Ophthalmol. Vis. Sci. 2011, 52, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Callanan, D.G.; Loewenstein, A.; Patel, S.S.; Massin, P.; Corcostegui, B.; Li, X.Y.; Jiao, J.; Hashad, Y.; Whitcup, S.M. A multicenter, 12-month randomized study comparing dexamethasone intravitreal implant with ranibizumab in patients with diabetic macular edema. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Maturi, R.K.; Pollack, A.; Uy, H.S.; Varano, M.; Gomes, A.M.; Li, X.Y.; Cui, H.; Lou, J.; Hashad, Y.; Whitcup, S.M.; et al. Intraocular Pressure in Patients with Diabetic Macular Edema Treated with Dexamethasone Intravitreal Implant in the 3-Year Mead Study. Retina 2016, 36, 1143–1152. [Google Scholar] [CrossRef]
- Ayilara, O.F.; Zhang, L.; Sajobi, T.T.; Sawatzky, R.; Bohm, E.; Lix, L.M. Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry. Health Qual. Life Outcomes 2019, 17, 106. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yan, X.S.; Chaudhary, D.; Avula, V.; Mudiganti, S.; Husby, H.; Shahjouei, S.; Afshar, A.; Stewart, W.F.; Yeasin, M.; et al. Imputation of missing values for electronic health record laboratory data. NPJ Digit. Med. 2021, 4, 147. [Google Scholar] [CrossRef]
- Groenwold, R.H.H. Informative missingness in electronic health record systems: The curse of knowing. Diagn. Progn. Res. 2020, 4, 8. [Google Scholar] [CrossRef]
- Kern, C.; Fu, D.J.; Huemer, J.; Faes, L.; Wagner, S.K.; Kortuem, K.; Patel, P.J.; Rajendram, R.; Balaskas, K.; Hamilton, R.; et al. An open-source data set of anti-VEGF therapy in diabetic macular oedema patients over 4 years and their visual acuity outcomes. Eye 2021, 35, 1354–1364. [Google Scholar] [CrossRef]
- Bilgic, A.; Sudhalkar, A.; Kodjikian, L.; Vasavada, V.; Vasavada, S.; Bhojwani, D.; Vasavada, V.; Srivastava, S. Pro Re Nata Dexamethasone Implant for Treatment-Naive Phakic Eyes with Diabetic Macular Edema: A Prospective Study. Ophthalmol. Retina 2019, 3, 929–937. [Google Scholar] [CrossRef]
- Singer, M.A.; Dugel, P.U.; Fine, H.F.; Capone, A., Jr.; Maltman, J. Real-World Assessment of Dexamethasone Intravitreal Implant in DME: Findings of the Prospective, Multicenter REINFORCE Study. Ophthalmic Surg. Lasers Imaging Retina 2018, 49, 425–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malclès, A.; Dot, C.; Voirin, N.; Agard, É.; Vié, A.L.; Bellocq, D.; Denis, P.; Kodjikian, L. Real-life study in diabetic macular edema treated with dexamethasone implant: The reldex study. Retina 2017, 37, 753–760. [Google Scholar] [CrossRef]
- Zur, D.; Iglicki, M.; Busch, C.; Invernizzi, A.; Mariussi, M.; Loewenstein, A. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology 2018, 125, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Zur, D.; Iglicki, M.; Sala-Puigdollers, A.; Chhablani, J.; Lupidi, M.; Fraser-Bell, S.; Mendes, T.S.; Chaikitmongkol, V.; Cebeci, Z.; Dollberg, D.; et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol. 2020, 98, e217–e223. [Google Scholar] [CrossRef] [PubMed]
- Rübsam, A.; Wernecke, L.; Rau, S.; Pohlmann, D.; Müller, B.; Zeitz, O.; Joussen, A.M. Behavior of SD-OCT Detectable Hyperreflective Foci in Diabetic Macular Edema Patients after Therapy with Anti-VEGF Agents and Dexamethasone Implants. J. Diabetes Res. 2021, 2021, 8820216. [Google Scholar] [CrossRef]
- Vujosevic, S.; Toma, C.; Villani, E.; Muraca, A.; Torti, E.; Florimbi, G.; Leporati, F.; Brambilla, M.; Nucci, P.; De Cilla, S. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids. Acta Diabetol. 2020, 57, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Torresin, T.; Bini, S.; Convento, E.; Pilotto, E.; Parrozzani, R.; Midena, E. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol. 2017, 95, 464–471. [Google Scholar] [CrossRef]
- Vural, E.; Hazar, L. Assessment of Inflammation Biomarkers in Diabetic Macular Edema Treated with Intravitreal Dexamethasone Implant. J. Ocul. Pharmacol. Ther. 2021, 37, 430–437. [Google Scholar] [CrossRef]
- Baker, C.W.; Josic, K.; Maguire, M.G.; Jampol, L.M.; Martin, D.F.; Rofagha, S.; Sun, J.K. Comparison of Snellen Visual Acuity Measurements in Retinal Clinical Practice to Electronic ETDRS Protocol Visual Acuity Assessment. Ophthalmology 2023, 130, 533–541. [Google Scholar] [CrossRef]
(a) Baseline Demography | |
---|---|
n = 240 | |
Gender | |
Male | 145 (60.4%) |
Female | 95 (39.6%) |
Age at recruitment | |
Mean (SD) | 68.5 (9.88) |
Median (IQR) | 67 (13) |
Min, Max | 29, 90 |
Ethnicity | |
Afro-Caribbean | 48 (20.0%) |
Caucasian | 51 (21.3%) |
Chinese | 1 (0.4%) |
Southeast Asian | 90 (37.5%) |
Mixed | 5 (2.1%) |
Unknown | 45 (18.8%) |
Multiple deprivation index (decile) | |
1 | 6 (2.5%) |
2 | 35 (14.6%) |
3 | 53 (22.1%) |
4 | 33 (13.8%) |
5 | 38 (15.8%) |
6 | 27 (11.3%) |
7 | 14 (5.8%) |
8 | 15 (6.3%) |
9 | 9 (3.8%) |
10 | 9 (3.8%) |
Missing | 1 (0.4%) |
IDAOPI | |
Mean (SD) | 3.39 (2.33) |
Median (IQR) | 3.0 (3.0) |
Min, Max | 1.0, 10 |
Missing | 1 (0.4%) |
IDACI | |
Mean (SD) | 4.50 (2.26) |
Median (IQR) | 4.0 (3.0) |
Min, Max | 1.0, 10 |
Missing | 1 (0.4%) |
(b) Baseline Clinical Features | |
n = 240 | |
Baseline visual acuity (ETDRS letters) | |
Mean (SD) | 56.0 (16.3) |
Median (IQR) | 58 (23) |
Min, Max | 0, 82 |
Number of patients by ETDRS-letter category (%) | |
<70 | 179 (74.6%) |
≥70 | 61 (25.4%) |
Baseline central foveal thickness (μm) | |
Mean (SD) | 420 (142) |
Median (IQR) | 400 (170) |
Min, Max | 160, 950 |
Appropriate follow-up of both CFT and VA | |
Complete follow-up | 214 (89.2%) |
Missing | 26 (10.8%) |
Lens status | |
Phakic | 70 (29.2%) |
Pseudophakic | 169 (70.4%) |
Missing | 1 (0.4%) |
Number of patients by baseline retinopathy grade (%) | |
R0 | 1 (0.4%) |
R1 | 87 (36.3%) |
R2 | 71 (29.6%) |
R3A | 5 (2.1%) |
R3S | 75 (31.3%) |
U | 1 (0.4%) |
Initial anti-VEGF agent (%) | |
Ranibizumab | 96 (40.0%) |
Aflibercept | 71 (29.6%) |
Bevacizumab | 2 (0.01%) |
Missing | 71 (29.6%) |
Number of previous anti-VEGF injections | |
Mean (SD) | 12.8 (9.07) |
Median (IQR) | 10 (13) |
Missing (%) | 69 (28.8%) |
Number of anti-VEGF injections by category (%) | |
<6 | 43 (17.9%) |
6–10 | 45 (18.8%) |
11–18 | 41 (17.1%) |
>18 | 42 (17.5%) |
Missing | 69 (28.8%) |
Follow-up visits following baseline | |
Mean (SD) | 15.5 (9.3) |
Median (IQR) | 13 (11) |
Min, Max | 4, 51 |
(a) | |||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
(N = 240) | (N = 144) | (N = 90) | (N = 71) | (N = 107) | (N = 94) | (N = 136) | |
Absolute visual acuity (ETDRS letters) | |||||||
Mean (SD) | 56.0 (16.3) | 58.8 (15.8) | 56.8 (18.9) | 57.8 (16.0) | 55.6 (16.4) | 56.2 (14.3) | 57.1 (16.2) |
Median (IQR) | 58 (23) | 61 (19) | 61 (24) | 60 (20) | 60 (23) | 60 (20) | 60 (24) |
Change in visual acuity (ETDRS letters) | |||||||
Mean (SD) | 0 (0) | 2.67 (11.5) | 4.06 (11.2) | 1.62 (12.1) | 1.22 (11.5) | 1.16 (13.8) | 1.18 (11.1) |
Median (IQR) | 0 (0) | 2.0 (9.3) | 4.0 (12) | 1.0 (9.0) | 2.0 (11) | 1.0 (9.8) | 0 (13) |
(b) | |||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
(N = 240) | (N = 90) | (N = 55) | (N = 39) | (N = 51) | (N = 54) | (N = 90) | |
Absolute central sub-foveal thickness (μm) | |||||||
Mean (SD) | 420 (142) | 324 (102) | 322 (97.6) | 385 (132) | 426 (152) | 432 (138) | 412 (146) |
Median (IQR) | 400 (170) | 310 (110) | 310 (150) | 390 (200) | 410 (150) | 420 (190) | 390 (180) |
Change in central sub-foveal thickness (μm) | |||||||
Mean (SD) | 0 (0) | −114 (147) | −142 (148) | −65.7 (129) | −50.5 (138) | −35.2 (156) | −24.2 (152) |
Median (IQR) | 0 (0) | −72 (120) | −110 (170) | −48 (100) | −32 (180) | −24 (180) | −12 (140) |
n (%) | |
---|---|
IOP 25 mmHg or more during the study | 19 (7.9%) |
IOP 35 mmHg or more during the study | 1 (0.4%) |
IOP increase of 10 mmHg or more from baseline | 0 (0%) |
Use of topical IOP-lowering medication | 19 (7.9%) |
Procedure for IOP control | 1 (0.004%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faes, L.; Mishra, A.V.; Lipkova, V.; Balaskas, K.; Quek, C.; Hamilton, R.; Held, U.; Sim, D.; Sivaprasad, S.; Fu, D.J. Visual and Anatomical Outcomes of a Single Intravitreal Dexamethasone in Diabetic Macular Edema: An 8 Year Real-World Study. J. Clin. Med. 2023, 12, 3878. https://doi.org/10.3390/jcm12123878
Faes L, Mishra AV, Lipkova V, Balaskas K, Quek C, Hamilton R, Held U, Sim D, Sivaprasad S, Fu DJ. Visual and Anatomical Outcomes of a Single Intravitreal Dexamethasone in Diabetic Macular Edema: An 8 Year Real-World Study. Journal of Clinical Medicine. 2023; 12(12):3878. https://doi.org/10.3390/jcm12123878
Chicago/Turabian StyleFaes, Livia, Amit V. Mishra, Veronika Lipkova, Konstantinos Balaskas, Chrystie Quek, Robin Hamilton, Ulrike Held, Dawn Sim, Sobha Sivaprasad, and Dun Jack Fu. 2023. "Visual and Anatomical Outcomes of a Single Intravitreal Dexamethasone in Diabetic Macular Edema: An 8 Year Real-World Study" Journal of Clinical Medicine 12, no. 12: 3878. https://doi.org/10.3390/jcm12123878
APA StyleFaes, L., Mishra, A. V., Lipkova, V., Balaskas, K., Quek, C., Hamilton, R., Held, U., Sim, D., Sivaprasad, S., & Fu, D. J. (2023). Visual and Anatomical Outcomes of a Single Intravitreal Dexamethasone in Diabetic Macular Edema: An 8 Year Real-World Study. Journal of Clinical Medicine, 12(12), 3878. https://doi.org/10.3390/jcm12123878