Identification of Factors Related to the Quality of Lymphadenectomy for Lung Cancer: Secondary Analysis of Prospective Randomized Trial Data
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- For right upper and middle lobes: subcarinal, superior and inferior paratracheal lymph nodes.
- For right lower lobe: subcarinal, right inferior paratracheal and the paraesophageal or pulmonary ligament lymph nodes.
- For left upper lobe: subcarinal, subaortic and para-aortic lymph nodes.
- For left lower lobe: subcarinal, paraesophageal and pulmonary ligament lymph nodes.
- For all lobes: dissection and histological examination of hilar and intrapulmonary (lobar, interlobar, segmental) lymph nodes.
- The resection margins (bronchial, vascular, peribronchial, around the tumor or the margins of any resected tissue) must be free of tumor proved microscopically.
- The lung resection has to be accompanied by a systematic nodal dissection or by a lobe-specific systematic nodal dissection. The minimum number of removed lymph nodes was considered to be at least six: three from the intrapulmonary and/or hilar nodal stations and three from the mediastinal nodal stations, always including the subcarinal.
- The capsule of those nodes removed separately and those located at the margin of the main lung specimen must be intact without extracapsular tumor invasion.
- The highest mediastinal lymph node removed must be free of tumor.
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2022. [Google Scholar]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–5544. [Google Scholar] [CrossRef] [PubMed]
- Rami-Porta, R. Staging Manual in Thoracic Oncology; International Association for the Study of Lung Cancer, Editorial Rx Press: North Fort Myers, FL, USA, 2016. [Google Scholar]
- Osarogiagbon, R.U.; Decker, P.A.; Ballman, K.; Wigle, D.; Allen, M.S.; Darling, G.E. Survival Implications of Variation in the Thoroughness of Pathologic Lymph Node Examination in American College of Surgeons Oncology Group Z0030 (Alliance). Ann. Thorac. Surg. 2016, 102, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Rami-Porta, R. The Evolving Concept of Complete Resection in Lung Cancer Surgery. Cancers 2021, 13, 2583. [Google Scholar] [CrossRef] [PubMed]
- Network NCC. NCCN Clinical Practice Guidelines in Oncology. Non-Small Cell Lung Cancer. Version 3.2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 31 May 2022).
- Lardinois, D.; De Leyn, P.; Van Schil, P.; Porta, R.R.; Waller, A.D.; Passlick, B.; Zielinski, M.; Junker, K.; Rendina, E.A.; Ris, H.-B. ESTS guidelines for intraoperative lymph node staging in non-small cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2006, 30, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Samayoa, A.; Pezzi, T.A.; Pezzi, C.M.; Gay, E.G.; Asai, M.; Kulkarni, N.; Carp, N.; Chun, S.; Putnam, J.B. Rationale for a Minimum Number of Lymph Nodes Removed with Non-Small Cell Lung Cancer Resection: Correlating the Number of Nodes Removed with Survival in 98,970 Patients. Ann. Surg. Oncol. 2016, 23 (Suppl. S5), 1005–1011. [Google Scholar] [CrossRef]
- Osarogiagbon, R.U.; Ogbata, O.; Yu, X. Number of Lymph Nodes Associated with Maximal Reduction of Long-Term Mortality Risk in Pathologic Node-Negative Non–Small Cell Lung Cancer. Ann. Thorac. Surg. 2014, 97, 385–393. [Google Scholar] [CrossRef]
- Osarogiagbon, R.U.; Yu, X. Nonexamination of Lymph Nodes and Survival After Resection of Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2013, 96, 1178–1189. [Google Scholar] [CrossRef]
- Butnor, K.J.; Asamura, H.; Travis, W.D. Node Doubt: Rigorous Surgical Nodal Procurement Combined with Thorough Pathologic Evaluation Improves Non-Small Cell Lung Carcinoma Staging Accuracy. Ann. Thorac. Surg. 2016, 102, 353–356. [Google Scholar] [CrossRef]
- Osarogiagbon, R.U.; Smeltzer, M.P.; Faris, N.R.; Ray, M.A.; Fehnel, C.; Ojeabulu, P.; Akinbobola, O.; Meadows-Taylor, M.; McHugh, L.M.; Halal, A.M.; et al. Outcomes After Use of a Lymph Node Collection Kit for Lung Cancer Surgery: A Pragmatic, Population-Based, Multi-Institutional, Staggered Implementation Study. J. Thorac. Oncol. 2021, 16, 630–642. [Google Scholar] [CrossRef]
- Gabryel, P.; Kasprzyk, M.; Roszak, M.; Campisi, A.; Smoliński, S.; Zieliński, P.; Piwkowski, C. Comparison of the LigaSure™ bipolar vessel sealer to monopolar electrocoagulation for thoracoscopic lobectomy and lymphadenectomy: A prospective randomized controlled trial. Surg. Endosc. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Varlotto, J.M.; Recht, A.; Nikolov, M.; Flickinger, J.C.; DeCamp, M.M. Extent of lymphadenectomy and outcome for patients with stage I nonsmall cell lung cancer. Cancer 2009, 115, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, F.G.; Falcoz, P.E.; Kozower, B.D.; Salati, M.; Wright, C.D.; Brunelli, A. The Society of Thoracic Surgeons and The European Society of Thoracic Surgeons General Thoracic Surgery Databases: Joint Standardization of Variable Definitions and Terminology. Ann. Thorac. Surg. 2015, 99, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 Classification. J. Thorac. Oncol. 2015, 9, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Mao, Y.; Wen, J.; Shu, J.; Ye, F.; She, Y.; Ding, Q.; Shi, L.; Xue, T.; Fan, M.; et al. Impact of the Extent of Lymph Node Dissection on Precise Staging and Survival in Clinical I–II Pure-Solid Lung Cancer Undergoing Lobectomy. J. Natl. Compr. Cancer Netw. 2021, 19, 393–402. [Google Scholar] [CrossRef]
- Homma, T. Advances and safe use of energy devices in lung cancer surgery. Gen. Thorac. Cardiovasc. Surg. 2022, 70, 207–218. [Google Scholar] [CrossRef]
- Nakazawa, S.; Yajima, T.; Ohtaki, Y.; Ito, T.; Kosaka, T.; Shirabe, K. Tips on lymph node dissection using energy devices: A narrative review. AME Surg. J. 2022, 2, 4. [Google Scholar] [CrossRef]
- Sutton, P.A.; Awad, S.; Perkins, A.C.; Lobo, D.N. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel™ and the Ligasure™. Br. J. Surg. 2010, 97, 428–433. [Google Scholar] [CrossRef]
- Družijanić, N.; Pogorelić, Z.; Perko, Z.; Mrklić, I.; Tomić, S. Comparison of lateral thermal damage of the human peritoneum using monopolar diathermy, Harmonic scalpel and LigaSure. Can. J. Surg. 2012, 55, 317–321. [Google Scholar] [CrossRef]
- Homma, T.; Shimada, Y.; Tanabe, K. Lymphadenectomy in the subcarinal zone using a uniportal thoracoscopic approach: A narrative review. AME Surg. J. 2022, 5, 6. [Google Scholar] [CrossRef]
- Donington, J.S.; Colson, Y.L. Sex and Gender Differences in Non-Small Cell Lung Cancer. Semin. Thorac. Cardiovasc. Surg. 2011, 23, 137–145. [Google Scholar] [CrossRef]
- Ragavan, M.; Patel, M.I. The evolving landscape of sex-based differences in lung cancer: A distinct disease in women. Eur. Respir. Rev. 2022, 31, 210100. [Google Scholar] [CrossRef] [PubMed]
- Visbal, A.L.; Williams, A.B.; Nichols, F.C.; Marks, R.S.; Jett, J.R.; Aubry, M.-C.; Edell, E.S.; A Wampfler, J.; Molina, J.R.; Yang, P. Gender differences in non–small-cell lung cancer survival: An analysis of 4,618 patients diagnosed between 1997 and 2002. Ann. Thorac. Surg. 2004, 78, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.C.; Kosinski, A.S.; Burfeind, W.R.; Onaitis, M.W.; Berry, M.F.; Harpole, D.H.; D’Amico, T.A. Sex differences in early outcomes after lung cancer resection: Analysis of the Society of Thoracic Surgeons General Thoracic Database. J. Thorac. Cardiovasc. Surg. 2014, 148, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Lembicz, M.; Gabryel, P.; Brajer-Luftmann, B.; Dyszkiewicz, W.; Batura-Gabryel, H. Comorbidities with non-small cell lung cancer: Is there an interdisciplinary consensus needed to qualify patients for surgical treatment? Ann. Thorac. Med. 2018, 13, 101–107. [Google Scholar] [CrossRef]
- Lüchtenborg, M.; Riaz, S.P.; Jack, R.H.; Peake, M.D.; Lind, M.J.; Møller, H. Effect of Comorbidity on Surgery and Survival among Lung Cancer Patients in England. Ann. Oncol. 2015, 26, i18. [Google Scholar] [CrossRef]
- Sigel, K.; Kong, C.Y.; Rehmani, S.; Bates, S.; Gould, M.; Stone, K.; Kale, M.; Park, Y.-H.; Crothers, K.; Bhora, F.; et al. Optimal treatment strategies for stage I non-small cell lung cancer in veterans with pulmonary and cardiac comorbidities. PLoS ONE 2021, 16, e0248067. [Google Scholar] [CrossRef]
- Pawelczyk, K.; Blasiak, P.; Szromek, M.; Nowinska, K.; Marciniak, M. Assessment of adequacy of intraoperative nodal staging and factors influencing the lack of its compliance with recommendations in the surgical treatment of non-small cell lung cancer (NSCLC). J. Thorac. Dis. 2018, 10, 4902–4911. [Google Scholar] [CrossRef]
- Edwards, T.; Balata, H.; Elshafi, M.; Foden, P.; Bishop, P.; Fontaine, E.; Jones, M.; Krysiak, P.; Rammohan, K.; Shah, R.; et al. Adequacy of Intraoperative Nodal Staging during Surgical Resection of NSCLC: Influencing Factors and Its Relationship to Survival. J. Thorac. Oncol. 2017, 12, 1845–1850. [Google Scholar] [CrossRef]
- Mazza, F.; Ferrari, E.; Maineri, P.; Venturino, M.; Dozin, B.; Ratto, G.B. Pulmonary middle lobectomy for non-small-cell lung cancer: Effectiveness and prognostic implications. Eur. J. Cardio-Thoracic Surg. 2015, 28, 117–123. [Google Scholar] [CrossRef]
Variables | LigaSure n = 96 | Monopolar n = 94 | p Value |
---|---|---|---|
Age, years, mean (SD) | 66.3 (SD: 7.3) | 66.6 (SD: 7.1) | 0.712 |
Sex, n (%) | 0.864 | ||
Male | 55 (57.3) | 55 (58.5) | |
Female | 41 (42.7) | 39 (41.5) | |
Body Mass Index, kg/m2, mean (SD) | 26.5 (SD: 4.2) | 26.9 (SD: 5.3) | 0.761 |
ppFEV1%, mean (SD) | 63 (SD: 16) | 64 (SD: 17) | 0.912 |
ppDLCO%, mean (SD) | 70 (SD: 25) | 73 (SD: 21) | 0.402 |
Comorbidities, n (%) | 77 (80.2) | 83 (88.3) | 0.126 |
Chronic obstructive pulmonary disease | 32 (33.3) | 32 (34.0) | 0.917 |
Coronary arterial disease | 14 (14.6) | 18 (19.1) | 0.400 |
Cerebrovascular disease | 6 (6.2) | 4 (4.3) | 0.771 |
Peripheral arterial disease | 12 (12.5) | 12 (12.8) | 0.956 |
Hypertension | 49 (51.0) | 53 (56.4) | 0.460 |
Diabetes mellitus | 12 (12.5) | 28 (29.8) | 0.003 * |
Chronic kidney disease | 2 (2.1) | 2 (2.1) | 0.628 |
Other | 29 (30.2) | 28 (29.8) | 0.949 |
Thoracic Revised Cardiac Risk Index, n (%) | 0.101 | ||
Class A | 79 (82.3) | 73 (77.7) | |
Class B | 14 (14.6) | 21 (22.3) | |
Class C | 3 (3.1) | 0 (0) | |
Charlson Comorbidity Index, median (IQR) | 3 (IQR, 2 to 4) | 3 (IQR, 2 to 5) | 0.209 |
Variables | LigaSure n = 96 | Monopolar n = 94 | p Value |
---|---|---|---|
Type of thoracoscopic approach, n (%) | 0.408 | ||
Multiportal | 90 (93.8) | 86 (91.5) | |
Uniportal | 6 (6.2) | 8 (8.5) | |
Side, n (%) | 0.315 | ||
Left | 38 (39.6) | 44 (46.8) | |
Right | 58 (60.4) | 50 (53.2) | |
Type of lobectomy, n (%) | 0.507 | ||
Right upper | 39 (40.6) | 31 (33.0) | |
Right middle | 8 (8.3) | 4 (4.3) | |
Right lower | 11 (11.5) | 15 (16.0) | |
Left upper | 24 (25.0) | 27 (28.7) | |
Left lower | 14 (14.6) | 17 (18.1) | |
Duration of surgery, min, mean (SD) | 117 (SD: 35) | 120 (SD: 40) | 0.607 |
Estimated blood loss, mL, median (IQR) | 100 (IQR, 50 to 125) | 100 (IQR, 50 to 120) | 0.774 |
Complications, n (%) | 24 (25.0) | 25 (26.6) | 0.801 |
Prolonged air leak | 9 (9.4) | 10 (10.6) | 0.771 |
Residual air space | 8 (8.3) | 7 (7.5) | 0.820 |
Atrial fibrillation | 6 (6.3) | 3 (3.2) | 0.515 |
Chylothorax | 1 (1.0) | 2 (2.1) | 0.985 |
Pulmonary complications | 4 (4.2) | 1 (1.1) | 0.286 |
Other | 2 (2.1) | 5 (5.3) | 0.424 |
Chest tube duration, days, median (IQR) | 2 (IQR, 2 to 4) | 3 (IQR, 2 to 4) | 0.417 |
Hospital stay, days, median (IQR) | 5 (IQR, 4 to 7) | 5 (IQR, 4 to 7) | 0.325 |
Readmission, n (%) | 1 (1.0) | 0 | 0.991 |
Variables | LigaSure n = 96 | Monopolar n = 94 | p Value |
---|---|---|---|
Histology, n (%) | 0.618 | ||
Adenocarcinoma | 53 (55.2) | 51 (54.3) | |
Squamous cell carcinoma | 33 (35.4) | 28 (29.8) | |
Other carcinoma | 10 (9.4) | 15 (15.9) | |
Completeness of resection, n (%) | 0.030 * | ||
Complete resection (R0) | 88 (91.7) | 76 (80.9) | |
Incomplete or uncertain resection (R1/Run) | 8 (8.3) | 18 (19.1) | |
Tumor invasion of resection margins | 2 (2.1) | 3 (3.2) | |
Extracapsular involvement of lymph nodes | 2 (2.1) | 3 (3.2) | |
Involved highest mediastinal lymph node | 4 (4.2) | 12 (12.8) | |
Pathological stage, n (%) | 0.215 | ||
Stage I | 53 (55.2) | 50 (53.2) | |
Stage II | 31 (32.3) | 25 (26.6) | |
Stage III | 12 (12.5) | 19 (20.2) |
Variables | LigaSure n = 96 | Monopolar n = 94 | p Value |
---|---|---|---|
Number of lymph nodes removed, median (IQR) | 18 (IQR, 13 to 24) | 17 (IQR, 12 to 22) | 0.454 |
N1 lymph nodes removed | 6.5 (IQR, 4.5 to 9) | 7 (IQR, 5 to 11) | 0.323 |
N2 lymph nodes removed | 11 (IQR, 7 to 15) | 9 (IQR 6 to 13) | 0.080 |
Patients with a minimal number of lymph nodes removed, n (%) | |||
Patients with ≥6 nodes removed | 96 (100) | 94 (100) | 1.000 |
Patients with ≥18 nodes removed | 49 (51.0) | 44 (46.8) | 0.559 |
Number of lymph nodes stations removed, median (IQR) | 6 (IQR, 5 to 7) | 6 (IQR, 5 to 7) | 0.017 * |
N1 stations | 3 (IQR, 2 to 3) | 3 (IQR, 2 to 3) | 0.600 |
N2 stations | 4 (IQR, 3 to 4) | 3 (IQR, 3 to 4) | 0.017 * |
Adherence to the lymphadenectomy guidelines, n (%) | |||
National Comprehensive Cancer Network | 87 (90.6) | 98 (83.0) | 0.119 |
IASLC L-SMLND for all stations | 39 (40.6) | 16 (17.0) | <0.001 * |
IASLC L-SMLND for N2 stations | 58 (60.4) | 36 (38.3) | 0.002 * |
Clinical N stage, n (%) | 0.276 | ||
cN0 | 87 (90.6) | 82 (87.2) | |
cN1 | 9 (9.4) | 12 (12.8) | |
Pathological N stage, n (%) | 0.316 | ||
pN0 | 76 (79.2) | 70 (74.5) | |
pN1 | 13 (13.5) | 11 (11.7) | |
pN2 | 7 (7.3) | 13 (13.8) | |
Nodal upstaging cN0 to pN1 or pN2, n (%) | 16 (18.4) | 13 (15.8) | 0.688 |
Variables | Did Surgery Met the Lobe-Specific MLND IASCL Guidelines for N2 Lymph Nodes? | p Value | |
---|---|---|---|
YES | NO | ||
Age, years, mean (SD) | 65.8 (SD: 7.7) | 67.0 (SD: 6.6) | 0.240 |
Sex, n (%) | 0.045 * | ||
Male | 46 (41.8) | 64 (58.2) | |
Female | 48 (60.0) | 32 (40.0) | |
Body Mass Index, kg/m2, mean (SD) | 26.3 (SD: 4.3) | 27.1 (SD: 5.2) | 0.277 |
ppFEV1%, mean (SD) | 64.5 (SD: 17.0) | 62.8 (SD: 16.1) | 0.395 |
Thoracic Revised Cardiac Risk Index, n (%) | 0.041 * | ||
Class A | 81 (53.3) | 71 (46.7) | |
Class B | 13 (37.1) | 22 (62.9) | |
Class C | 0 (0) | 3 (100.0) | |
Charlson Comorbidity Index, median (IQR) | 5 (IQR, 2 to 8) | 6 (IQR, 3 to 9) | 0.009 * |
Histology, n (%) | 0.249 | ||
Adenocarcinoma | 51 (49.0) | 53 (51.0) | |
Squamous cell carcinoma | 34 (55.7) | 27 (44.3) | |
Other | 9 (36.0) | 16 (64.0) | |
Clinical T stage, n (%) | 0.052 | ||
cT1 | 55 (56.7) | 42 (43.3) | |
cT2 | 32 (42.1) | 44 (57.9) | |
cT3 | 4 (28.6) | 10 (71.4) | |
cT4 | 3 (100) | 0 (0) | |
Clinical N stage, n (%) | 0.456 | ||
cN0 | 82 (48.5) | 87 (51.5) | |
cN1 | 12 (57.1) | 9 (42.9) | |
Side of operation, n (%) | 0.868 | ||
Right | 54 (50.0) | 54 (50.0) | |
Left | 40 (48.8) | 42 (51.2) | |
Extent of surgery, n (%) | 0.018 * | ||
Right upper lobectomy | 39 (55.7) | 31 (44.3) | |
Right middle lobectomy | 3 (25.0) | 9 (75.0) | |
Right lower lobectomy | 12 (46.2) | 14 (53.8) | |
Left upper lobectomy | 31 (60.8) | 20 (39.2) | |
Left lower lobectomy | 9 (29.0) | 22 (71.0) | |
Type of electrosurgical device, n (%) | 0.002 * | ||
LigaSure device | 58 (60.4) | 38 (39.6) | |
Monopolar device | 36 (38.3) | 58 (61.7) | |
Type of thoracoscopic approach, n (%) | 0.551 | ||
Multiportal | 86 (48.9) | 90 (51.1) | |
Uniportal | 8 (57.1) | 6 (42.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabryel, P.; Roszak, M.; Skrzypczak, P.; Gabryel, A.; Zielińska, D.; Sielewicz, M.; Campisi, A.; Kasprzyk, M.; Piwkowski, C. Identification of Factors Related to the Quality of Lymphadenectomy for Lung Cancer: Secondary Analysis of Prospective Randomized Trial Data. J. Clin. Med. 2023, 12, 3780. https://doi.org/10.3390/jcm12113780
Gabryel P, Roszak M, Skrzypczak P, Gabryel A, Zielińska D, Sielewicz M, Campisi A, Kasprzyk M, Piwkowski C. Identification of Factors Related to the Quality of Lymphadenectomy for Lung Cancer: Secondary Analysis of Prospective Randomized Trial Data. Journal of Clinical Medicine. 2023; 12(11):3780. https://doi.org/10.3390/jcm12113780
Chicago/Turabian StyleGabryel, Piotr, Magdalena Roszak, Piotr Skrzypczak, Anna Gabryel, Dominika Zielińska, Magdalena Sielewicz, Alessio Campisi, Mariusz Kasprzyk, and Cezary Piwkowski. 2023. "Identification of Factors Related to the Quality of Lymphadenectomy for Lung Cancer: Secondary Analysis of Prospective Randomized Trial Data" Journal of Clinical Medicine 12, no. 11: 3780. https://doi.org/10.3390/jcm12113780
APA StyleGabryel, P., Roszak, M., Skrzypczak, P., Gabryel, A., Zielińska, D., Sielewicz, M., Campisi, A., Kasprzyk, M., & Piwkowski, C. (2023). Identification of Factors Related to the Quality of Lymphadenectomy for Lung Cancer: Secondary Analysis of Prospective Randomized Trial Data. Journal of Clinical Medicine, 12(11), 3780. https://doi.org/10.3390/jcm12113780