Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
- consecutive pre-treatment PET/CT scans performed at our institution between 1 January 2020 and 31 December 2021 for staging in adult patients
- pathologically confirmed NSCLC were considered, following patient consent.
- patients under the age of 18 years
- no consent for the use of their data for research
2.2. Lesion Segmentation
2.3. Response Assessment
2.4. Statistical Analysis
3. Results
3.1. Lesion Segmentation
3.2. Predictive Value of Total Metabolic Tumor Burden for Treatment Response
3.2.1. Predictive Biomarkers for Overall Survival and Progression-Free Survival
3.2.2. Predictive Biomarkers for Clinical Benefit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
NSCLC | Non-small cell lung cancer |
ICI | Immune checkpoint inhibitors |
PD-1 | Programmed cell death receptor-1 |
PD-L1 | Programmed cell death ligand-1 |
FDG-PET/CT | 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography |
SUVmax | Maximum standardized uptake value |
SUVmean | Mean standardized uptake value |
MTV | Metabolic tumor volume |
TLG | Total lesion glycolysis |
DMI | Discovery Molecular Insights |
GE | General Electrics |
OSEM | Ordered subset expectation maximization |
BMI | Body mass index |
AJCC | American Joint Committee on Cancer |
AW | Advanced workstation |
VOI | Volume of interest |
OS | Overall survival |
PFS | Progression-free survival |
CB | Clinical benefit |
SD | Standard deviation |
IQR | Interquantile range |
ROC | Receiver operating characteristic |
HR | Hazard ratio |
PT | Primary tumor |
LR | Likelihood-ratio |
PE | Parameter estimation |
AUC | Area under the curve |
References
- World Health Organization. Cancer. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 February 2022).
- Salehi-Rad, R.; Li, R.; Paul, M.K.; Dubinett, S.M.; Liu, B. The Biology of Lung Cancer: Development of More Effective Methods for Prevention, Diagnosis, and Treatment. Clin. Chest Med. 2020, 41, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-Y.; Huang, J.-Y.; Chen, H.-C.; Lin, C.-H.; Lin, S.-H.; Hung, W.-H.; Cheng, Y.-F. The Comparison between Adenocarcinoma and Squamous Cell Carcinoma in Lung Cancer Patients. J. Cancer Res. Clin. Oncol. 2020, 146, 43–52. [Google Scholar] [CrossRef] [PubMed]
- CCarter, B.W.; Halpenny, D.F.; Ginsberg, M.S.; Papadimitrakopoulou, V.A.; de Groot, P.M. Immunotherapy in Non-Small Cell Lung Cancer Treatment: Current Status and the Role of Imaging. J. Thorac. Imaging 2017, 32, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al. 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Cancers 2020, 12, 1163. [Google Scholar] [CrossRef] [PubMed]
- Osmani, L.; Askin, F.; Gabrielson, E.; Li, Q.K. Current WHO Guidelines and the Critical Role of Immunohistochemical Markers in the Subclassification of Non-Small Cell Lung Carcinoma (NSCLC): Moving from Targeted Therapy to Immunotherapy. Semin. Cancer Biol. 2018, 52, 103–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.S.; Kim, B.J. Prognostic Value of KRAS Mutation in Advanced Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors: A Meta-Analysis and Review. Oncotarget 2017, 8, 48248–48252. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Tang, S.; Qin, C.; Hu, H.; Liu, T.; He, Y.; Guo, H.; Yan, H.; Zhang, J.; Tang, S.; Zhou, H. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Progress, Challenges, and Prospects. Cells 2022, 11, 320. [Google Scholar] [CrossRef]
- Yu, D.-P.; Cheng, X.; Liu, Z.-D.; Xu, S.-F. Comparative Beneficiary Effects of Immunotherapy against Chemotherapy in Patients with Advanced NSCLC: Meta-Analysis and Systematic Review. Oncol. Lett. 2017, 14, 1568–1580. [Google Scholar] [CrossRef]
- Zhu, K.; Su, D.; Wang, J.; Cheng, Z.; Chin, Y.; Chen, L.; Chan, C.; Zhang, R.; Gao, T.; Ben, X.; et al. Predictive Value of Baseline Metabolic Tumor Volume for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: A Meta-Analysis. Front. Oncol. 2022, 12, 951557. [Google Scholar] [CrossRef] [PubMed]
- Chardin, D.; Paquet, M.; Schiappa, R.; Darcourt, J.; Bailleux, C.; Poudenx, M.; Sciazza, A.; Ilie, M.; Benzaquen, J.; Martin, N.; et al. Baseline Metabolic Tumor Volume as a Strong Predictive and Prognostic Biomarker in Patients with Non-Small Cell Lung Cancer Treated with PD1 Inhibitors: A Prospective Study. J. Immunother. Cancer 2020, 8, e000645. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Liu, M.; Wang, R.; Zhang, J. Potentials of Non-Invasive 18F-FDG PET/CT in Immunotherapy Prediction for Non-Small Cell Lung Cancer. Front. Genet. 2021, 12, 810011. [Google Scholar] [CrossRef]
- Shah, S.N.; Huang, S.S. Hybrid PET/MR Imaging: Physics and Technical Considerations. Abdom. Imaging 2015, 40, 1358–1365. [Google Scholar] [CrossRef]
- Kandathil, A.; Kay, F.U.; Butt, Y.M.; Wachsmann, J.W.; Subramaniam, R.M. Role of FDG PET/CT in the Eighth Edition of TNM Staging of Non-Small Cell Lung Cancer. RadioGraphics 2018, 7, 2134–2149. [Google Scholar] [CrossRef] [PubMed]
- Kudura, K.; Ritz, N.; Templeton, A.J.; Kissling, M.; Kutzker, T.; Foerster, R.; Hoffmann, M.H.K.; Antwi, K.; Kreissl, M.C. Additional Primary Tumors Detected Incidentally on FDG PET/CT at Staging in Patients with First Diagnosis of NSCLC: Frequency, Impact on Patient Management and Survival. Cancers 2023, 15, 1521. [Google Scholar] [CrossRef]
- Andraos, T.Y.; Halmos, B.; Cheng, H.; Huntzinger, C.; Shirvani, S.M.; Ohri, N. Disease Burden on PET Predicts Outcomes for Advanced NSCLC Patients Treated with First-Line Immunotherapy. Clin. Lung Cancer 2022, 23, 291–299. [Google Scholar] [CrossRef]
- Berghmans, T.; Dusart, M.; Paesmans, M.; Hossein-Foucher, C.; Buvat, I.; Castaigne, C.; Scherpereel, A.; Mascaux, C.; Moreau, M.; Roelandts, M.; et al. Primary Tumor Standardized Uptake Value (SUVmax) Measured on Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) Is of Prognostic Value for Survival in Non-Small Cell Lung Cancer (NSCLC): A Systematic Review and Meta-Analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. Thorac. Oncol. 2008, 3, 6–12. [Google Scholar] [CrossRef]
- Dall’olio, F.G.; Calabrò, D.; Conci, N.; Argalia, G.; Marchese, P.V.; Fabbri, F.; Fragomeno, B.; Ricci, D.; Fanti, S.; Ambrosini, V.; et al. Baseline Total Metabolic Tumour Volume on 2-Deoxy-2-[18F]Fluoro-d-Glucose Positron Emission Tomography-Computed Tomography as a Promising Biomarker in Patients with Advanced Non-Small Cell Lung Cancer Treated with First-Line Pembrolizumab. Eur. J. Cancer 2021, 150, 99–107. [Google Scholar] [CrossRef]
- Eude, F.; Guisier, F.; Salaün, M.; Thiberville, L.; Pressat-Laffouilhere, T.; Vera, P.; Decazes, P. Prognostic Value of Total Tumour Volume, Adding Necrosis to Metabolic Tumour Volume, in Advanced or Metastatic Non-Small Cell Lung Cancer Treated with First-Line Pembrolizumab. Ann. Nucl. Med. 2022, 36, 224–234. [Google Scholar] [CrossRef]
- Guisier, F.; Cousse, S.; Jeanvoine, M.; Thiberville, L.; Salaun, M. A Rationale for Surgical Debulking to Improve Anti-PD1 Therapy Outcome in Non Small Cell Lung Cancer. Sci. Rep. 2019, 9, 16902. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kaira, K.; Yamaguchi, O.; Mouri, A.; Shiono, A.; Miura, Y.; Murayama, Y.; Kobayashi, K.; Kagamu, H.; Kuji, I. Potential of FDG-PET as Prognostic Significance after Anti-PD-1 Antibody against Patients with Previously Treated Non-Small Cell Lung Cancer. J. Clin. Med. 2020, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Icht, O.; Domachevsky, L.; Groshar, D.; Dudnik, E.; Rotem, O.; Allen, A.M.; Peled, N.; Reinhorn, D.; Jacobi, O.; Shochat, T.; et al. Lower Tumor Volume Is Associated with Increased Benefit from Immune Checkpoint Inhibitors in Patients with Advanced Non-Small-Cell Lung Cancer. Asia-Pac. J. Clin. Oncol. 2021, 17, e125–e131. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Cassella, C.R.; Byrne, K.T. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front. Immunol. 2020, 11, 629722. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Kawanaka, Y.; Komoto, H.; Minami, T.; Yokoi, T.; Kuribayashi, K.; Kijima, T.; Nakamura, A.; Hashimoto, M.; Kondo, N.; et al. The Utility of 68F-FDG PET/CT for Evaluation of Tumor Response to Immune Checkpoint Inhibitor Therapy and Prognosis Prediction in Patients with Non-Small-Cell Lung Cancer. Hell. J. Nucl. Med. 2021, 24, 186–198. [Google Scholar] [CrossRef]
- Kudura, K.; Ritz, N.; Kutzker, T.; Hoffmann, M.H.K.; Templeton, A.J.; Foerster, R.; Kreissl, M.C.; Antwi, K. Predictive Value of Baseline FDG-PET/CT for the Durable Response to Immune Checkpoint Inhibition in NSCLC Patients Using the Morphological and Metabolic Features of Primary Tumors. Cancers 2022, 14, 6095. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Ritzberger, L.; Rambousek, V.; Horner, A.; Wass, R.; Akbari, K.; Kaiser, B.; Kronbichler, J.; Lamprecht, B.; Gabriel, M. First-Line Pembrolizumab Mono- or Combination Therapy of Non-Small Cell Lung Cancer: Baseline Metabolic Biomarkers Predict Outcomes. Cancers 2021, 13, 6096. [Google Scholar] [CrossRef]
- Ling, T.; Zhang, L.; Peng, R.; Yue, C.; Huang, L. Prognostic Value of 18F-FDG PET/CT in Patients with Advanced or Metastatic Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 1014063. [Google Scholar] [CrossRef]
- Monaco, L.; Gemelli, M.; Gotuzzo, I.; Bauckneht, M.; Crivellaro, C.; Genova, C.; Cortinovis, D.; Zullo, L.; Ammoni, L.C.; Bernasconi, D.P.; et al. Metabolic Parameters as Biomarkers of Response to Immunotherapy and Prognosis in Non-Small Cell Lung Cancer (NSCLC): A Real World Experience. Cancers 2021, 13, 1634. [Google Scholar] [CrossRef]
- Qiu, X.; Liang, H.; Zhong, W.; Zhao, J.; Chen, M.; Zhu, Z.; Xu, Y.; Wang, M. Prognostic Impact of Maximum Standardized Uptake Value on 18 F-FDG PET/CT Imaging of the Primary Lung Lesion on Survival in Advanced Non-Small Cell Lung Cancer: A Retrospective Study. Thorac. Cancer 2021, 12, 845–853. [Google Scholar] [CrossRef]
- Seban, R.-D.; Assie, J.-B.; Giroux-Leprieur, E.; Massiani, M.-A.; Soussan, M.; Bonardel, G.; Chouaid, C.; Playe, M.; Goldfarb, L.; Duchemann, B.; et al. FDG-PET Biomarkers Associated with Long-Term Benefit from First-Line Immunotherapy in Patients with Advanced Non-Small Cell Lung Cancer. Ann. Nucl. Med. 2020, 34, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.-D.; Mezquita, L.; Berenbaum, A.; Dercle, L.; Botticella, A.; Le Pechoux, C.; Caramella, C.; Deutsch, E.; Grimaldi, S.; Adam, J.; et al. Baseline Metabolic Tumor Burden on FDG PET/CT Scans Predicts Outcome in Advanced NSCLC Patients Treated with Immune Checkpoint Inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Vekens, K.; Everaert, H.; Neyns, B.; Ilsen, B.; Decoster, L. The Value of 18F-FDG PET/CT in Predicting the Response to PD-1 Blocking Immunotherapy in Advanced NSCLC Patients with High-Level PD-L1 Expression. Clin. Lung Cancer 2021, 22, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, N.; Wu, Z.; Pan, N.; Shen, X.; Liu, T.; Wei, F.; You, J.; Xu, W.; Ren, X. New Insight on the Correlation of Metabolic Status on 18F-FDG PET/CT with Immune Marker Expression in Patients with Non-Small Cell Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, O.; Kaira, K.; Hashimoto, K.; Mouri, A.; Shiono, A.; Miura, Y.; Murayama, Y.; Kobayashi, K.; Kagamu, H.; Kuji, I. Tumor Metabolic Volume by 18F-FDG-PET as a Prognostic Predictor of First-Line Pembrolizumab for NSCLC Patients with PD-L1 ≥ 50. Sci. Rep. 2020, 10, 14990. [Google Scholar] [CrossRef]
- Young, H.; Baum, R.; Cremerius, U.; Herholz, K.; Hoekstra, O.; Lammertsma, A.; Pruim, J.; Price, P. Measurement of Clinical and Subclinical Tumour Response Using [18F]-Fluorodeoxyglucose and Positron Emission Tomography: Review and 1999 EORTC Recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer 1999, 35, 1773–1782. [Google Scholar] [CrossRef]
- Lopci, E.; Hicks, R.J.; Dimitrakopoulou-Strauss, A.; Dercle, L.; Iravani, A.; Seban, R.D.; Sachpekidis, C.; Humbert, O.; Gheysens, O.; Glaudemans, A.W.J.M.; et al. Joint EANM/SNMMI/ANZSNM Practice Guidelines/Procedure Standards on Recommended Use of [18F]FDG PET/CT Imaging during Immunomodulatory Treatments in Patients with Solid Tumors Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2323–2341. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Mazziotti, E.; Toschi, L.; Lopci, E. Hyperprogressive Disease in Patients with Non-Small Cell Lung Cancer Treated with Checkpoint Inhibitors: The Role of 18F-FDG PET/CT. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 821–826. [Google Scholar] [CrossRef]
- Castello, A.; Toschi, L.; Rossi, S.; Mazziotti, E.; Lopci, E. The Immune-Metabolic-Prognostic Index and Clinical Outcomes in Patients with Non-Small Cell Lung Carcinoma under Checkpoint Inhibitors. J. Cancer Res. Clin. Oncol. 2020, 146, 1235–1243. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Toschi, L.; Lopci, E. Impact of Antibiotic Therapy and Metabolic Parameters in Non-Small Cell Lung Cancer Patients Receiving Checkpoint Inhibitors. J. Clin. Med. 2021, 10, 1251. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, X.; Zhang, A.; Ma, X.; Zhu, H.; Yang, Z.; Li, N. The role of PET molecular imaging in immune checkpoint inhibitor therapy in lung cancer: Precision medicine and visual monitoring. Eur. J. Radiol. 2022, 149, 110200. [Google Scholar] [CrossRef] [PubMed]
- Malet, J.; Ancel, J.; Moubtakir, A.; Papathanassiou, D.; Deslée, G.; Dewolf, M. Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC. Life 2023, 13, 1051. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.B.; Wanderley, C.W.S.; Marin, J.F.G.; de Macedo, M.P.; Nascimento, E.C.T.D.; Antonacio, F.F.; Figueiredo, C.S.; Cunha, M.T.; Cunha, F.Q.; Junior, G.D.C. Tumor glycolytic profiling through 18F-FDG PET/CT predicts immune checkpoint inhibitor efficacy in advanced NSCLC. Ther. Adv. Med. Oncol. 2022, 14, 17588359221138386, PMCID:PMC9730014. [Google Scholar] [CrossRef] [PubMed]
Immunotherapy | No Immunotherapy | |
---|---|---|
Age mean in years (SD) | 72.0 (9.39) | 72.8 (9.70) |
Q1–Q3 | 65.25–79.75 | 65.5–81.0 |
Gender | ||
Male | 30 (60.0%) | 34 (45.3%) |
Female | 20 (40.0%) | 41 (54.7%) |
BMI mean in kg/m2 (SD) | 25.9 (5.06) | 26.3 (6.42) |
Q1–Q3 | 22.4–29.0 | 22.3–28.8 |
Histopathological subtype | ||
Adenocarcinoma | 22 (44.0%) | 37 (49.3%) |
Squamous cell carcinoma | 11 (22.0%) | 20 (26.7%) |
Large cell carcinoma | 10 (20.0%) | 7 (9.3%) |
Neuroendocrine tumor | 6 (12.0%) | 9 (12.0%) |
Not specific | 1 (2.0%) | 2 (2.7%) |
Clinical staging | ||
I | 0 (0.0%) | 29 (38.7%) |
II | 0 (0.0%) | 7 (9.3%) |
III | 21 (42.0%) | 27 (36.0%) |
IV | 29 (58.0%) | 12 (16.0) |
Immunotherapy | No Immunotherapy | p-Value | |
---|---|---|---|
Metabolic parameters of primary tumor SUVmax mean (SD, Q1–Q3) SUVmean mean (SD, Q1–Q3) MTV mean (SD, Q1–Q3) TLG mean (SD, Q1–Q3) | 50 12.5 (5.0, 8.9–16.0) 7.3 (2.9, 5.0–9.2) 31.0 (32.6, 5.3–45.4) 220.8 (226.4, 40.5–315.9) | 75 9.5 (6.4, 4.0–15.1) 5.6 (3.7, 2.3–8.4) 21.3 (28.9, 2.2–25.9) 154.1 (258.9, 6.2–168.9) | <0.01 <0.01 0.09 0.13 |
Total regional lymph node metastases MTV mean (SD, Q1–Q3) TLG mean (SD, Q1–Q3) | 44 20.6 (27.9, 5.0–23.2) 103.6 (151.1, 11.0–122.4) | 35 15.7 (22.6, 3.4–18.1) 81.0 (187.4, 7.2–76.6) | <0.01 |
Total distant metastases MTV mean (SD, Q1–Q3) TLG mean (SD, Q1–Q3) | 31 37.2 (66.7, 4.1–37.1) 242.2 (571.4, 11.3–221.6) | 15 147.5 (511.9, 2.4–20.1) 490.7 (1602.2, 4.8–85.5) | <0.01 |
Total metabolic tumor burden MTV mean (SD, Q1–Q3) TLG mean (SD, Q1–Q3) | 50 72.2 (78.7, 19.3–79.7) 462.2 (538.9, 145.7–581.6) | 75 58.1 (233.8, 2.3–46.3) 290.0 (784.2, 7.8–273.4) | <0.01 |
Immunotherapy | No Immunotherapy | |||||||
---|---|---|---|---|---|---|---|---|
OS | PFS | OS | PFS | |||||
HR | p-Value | HR | p-Value | HR | p-Value | HR | p-Value | |
Age | 0.94 | 0.02 | 0.94 | 0.03 | 1.02 | 0.46 | 1.03 | 0.27 |
SUVmaxPT | 1.43 | <0.01 | 1.33 | <0.01 | 1.10 | 0.17 | 1.13 | 0.06 |
VolumePT | 1.08 | <0.01 | 1.06 | <0.01 | 1.04 | 0.14 | 1.04 | 0.10 |
TLGPT | 0.99 | <0.01 | 1.00 | 0.03 | 0.99 | 0.28 | 0.99 | 0.15 |
Solid morphology PT | 28.04 | <0.01 | 30.89 | <0.01 | 2.05 | 0.44 | 1.42 | 0.68 |
totalTLG | 1.00 | 0.04 | 1.00 | 0.01 | 1.00 | <0.01 | 1.00 | <0.01 |
soft tissueTLG | 0.98 | 0.73 | 0.98 | 0.68 | 2.05 | 0.02 | 1.91 | 0.02 |
lymph nodesTLG | 1.00 | 0.97 | 1.00 | 0.82 | 1.08 | 0.28 | 1.13 | 0.13 |
Immunotherapy | No Immunotherapy | |||||
---|---|---|---|---|---|---|
p-Value | PE | p-Value | PE | |||
Age | 0.02 | 0.06 | 0.17 | 0.04 | ||
SUVmaxPT | 0.01 | 0.28 | 0.03 | 0.14 | ||
VolumePT | 0.01 | 0.06 | 0.02 | 0.06 | ||
TLGPT | 0.02 | 0.01 | 0.05 | 0.01 | ||
Solid morpho-logy PT | <0.01 | 3.46 | 0.23 | 0.87 | ||
totalTLG | 0.01 | <0.01 | 0.01 | <0.01 | ||
lymph nodesTLG | 0.76 | <0.01 | 0.11 | 0.12 | ||
Concordance Test | 0.80 | 0.74 | ||||
LR Test | <0.01 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudura, K.; Ritz, N.; Templeton, A.J.; Kutzker, T.; Foerster, R.; Antwi, K.; Kreissl, M.C.; Hoffmann, M.H.K. Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition. J. Clin. Med. 2023, 12, 3725. https://doi.org/10.3390/jcm12113725
Kudura K, Ritz N, Templeton AJ, Kutzker T, Foerster R, Antwi K, Kreissl MC, Hoffmann MHK. Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition. Journal of Clinical Medicine. 2023; 12(11):3725. https://doi.org/10.3390/jcm12113725
Chicago/Turabian StyleKudura, Ken, Nando Ritz, Arnoud J. Templeton, Tim Kutzker, Robert Foerster, Kwadwo Antwi, Michael C. Kreissl, and Martin H. K. Hoffmann. 2023. "Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition" Journal of Clinical Medicine 12, no. 11: 3725. https://doi.org/10.3390/jcm12113725
APA StyleKudura, K., Ritz, N., Templeton, A. J., Kutzker, T., Foerster, R., Antwi, K., Kreissl, M. C., & Hoffmann, M. H. K. (2023). Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition. Journal of Clinical Medicine, 12(11), 3725. https://doi.org/10.3390/jcm12113725