Association between Body Composition and the Risk of Portopulmonary Hypertension Assessed by Computed Tomography in Patients with Liver Cirrhosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of POPH Risk Using Chest CT
2.3. Assessment of Body Composition and Sarcopenia
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Patients
3.2. Comparison of Cirrhotic Patients with Low-Risk and High-Risk for POPH Based on Chest CT
3.3. Comparison of the Characteristics of Cirrhotic Patients with and without Obesity
3.4. Impact of Body Composition on POPH High-Risk in Cirrhotic Patients
3.5. Decision Tree Analysis for Factors Associated with POPH High-Risk
3.6. Association between Body Composition and Survival in Patients with Cirrhosis
3.7. Association between Sarcopenia, Obesity, and Survival in Patients with Cirrhosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [PubMed]
- Krowka, M.J.; Swanson, K.L.; Frantz, R.P.; McGoon, M.D.; Wiesner, R.H. Portopulmonary hypertension: Results from a 10-year screening algorithm. Hepatology 2006, 44, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- DuBrock, H.M.; Krowka, M.J. The myths and realities of portopulmonary hypertension. Hepatology 2020, 72, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Krowka, M.J.; Fallon, M.B.; Kawut, S.M.; Fuhrmann, V.; Heimbach, J.K.; Ramsay, M.A.; Sitbon, O.; Sokol, R.J. International Liver Transplant Society practice guidelines: Diagnosis and management of hepatopulmonary syndrome and portopulmonary hypertension. Transplantation 2016, 100, 1440–1452. [Google Scholar] [CrossRef]
- Swanson, K.L.; Wiesner, R.H.; Nyberg, S.L.; Rosen, C.B.; Krowka, M.J. Survival in portopulmonary hypertension: Mayo Clinic experience categorized by treatment subgroups. Am. J. Transplant. 2008, 8, 2445–2453. [Google Scholar] [CrossRef]
- Sitbon, O.; Bosch, J.; Cottreel, E.; Csonka, D.; de Groote, P.; Hoeper, M.M.; Kim, N.H.; Martin, N.; Savale, L.; Krowka, M. Macitentan for the treatment of portopulmonary hypertension (PORTICO): A multicentre, randomised, double-blind, placebo-controlled, phase 4 trial. Lancet Respir. Med. 2019, 7, 594–604. [Google Scholar] [CrossRef]
- Murray, K.F.; Carithers, R.L., Jr. AASLD practice guidelines: Evaluation of the patient for liver transplantation. Hepatology 2005, 41, 1407–1432. [Google Scholar] [CrossRef]
- Savale, L.; Guimas, M.; Ebstein, N.; Fertin, M.; Jevnikar, M.; Renard, S.; Horeau-Langlard, D.; Tromeur, C.; Chabanne, C.; Prevot, G.; et al. Portopulmonary hypertension in the current era of pulmonary hypertension management. J. Hepatol. 2020, 73, 130–139. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Honda, A.; Sugiyama, Y.; Nakano, D.; Tsutsumi, T.; Tahara, N.; Torimura, T.; Fukumoto, Y. Association between the albumin-bilirubin (ALBI) score and severity of portopulmonary hypertension (PoPH): A data-mining analysis. Hepatol. Res. 2021, 51, 1207–1218. [Google Scholar] [CrossRef]
- Atsukawa, M.; Tsubota, A.; Hatano, M.; Kondo, C.; Shioda, K.; Ohno, H.; Kawano, T.; Hayama, K.; Arai, T.; Nakagawa-Iwashita, A.; et al. Prevalence and characteristics of portopulmonary hypertension in cirrhotic patients who underwent both hepatic vein and pulmonary artery catheterization. Hepatol. Res. 2020, 50, 1244–1254. [Google Scholar] [CrossRef]
- Ishikawa, T.; Egusa, M.; Kawamoto, D.; Nishimura, T.; Sasaki, R.; Saeki, I.; Sakaida, I.; Takami, T. Screening for portopulmonary hypertension using computed tomography-based measurements of the main pulmonary artery and ascending aorta diameters in patients with portal hypertension. Hepatol. Res. 2022, 52, 255–268. [Google Scholar] [CrossRef]
- Frank, R.C.; Min, J.; Abdelghany, M.; Paniagua, S.; Bhattacharya, R.; Bhambhani, V.; Pomerantsev, E.; Ho, J.E. Obesity is associated with pulmonary hypertension and modifies outcomes. J. Am. Heart Assoc. 2020, 9, e014195. [Google Scholar] [CrossRef]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Hirooka, M.; Tsuji, K.; Itobayashi, E.; Kariyama, K.; Ishikawa, T.; Tajiri, K.; Ochi, H.; Tada, T.; et al. A better method for assessment of hepatic function in hepatocellular carcinoma patients treated with radiofrequency ablation: Usefulness of albumin-bilirubin grade. Hepatol. Res. 2018, 48, E61–E67. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Nishimura, K.; Ohnishi, S.; Imai, K.; Suetsugu, A.; Takai, K.; Shimizu, M.; Moriwaki, H. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015, 31, 193–199. [Google Scholar] [CrossRef]
- Ebadi, M.; Tandon, P.; Moctezuma-Velazquez, C.; Ghosh, S.; Baracos, V.E.; Mazurak, V.C.; Montano-Loza, A.J. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J. Hepatol. 2018, 69, 608–616. [Google Scholar] [CrossRef]
- Wirtz, T.H.; Loosen, S.H.; Schulze-Hagen, M.; Weiskirchen, R.; Buendgens, L.; Abu Jhaisha, S.; Brozat, J.F.; Puengel, T.; Vucur, M.; Paffenholz, P.; et al. CT-based determination of excessive visceral adipose tissue is associated with an impaired survival in critically ill patients. PLoS ONE 2021, 16, e0250321. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Yoshiji, H.; Nagoshi, S.; Akahane, T.; Asaoka, Y.; Ueno, Y.; Ogawa, K.; Kawaguchi, T.; Kurosaki, M.; Sakaida, I.; Shimizu, M.; et al. Evidence-based clinical practice guidelines for liver cirrhosis 2020. Hepatol. Res. 2021, 51, 725–749. [Google Scholar] [CrossRef] [PubMed]
- Kawut, S.M.; Krowka, M.J.; Trotter, J.F.; Roberts, K.E.; Benza, R.L.; Badesch, D.B.; Taichman, D.B.; Horn, E.M.; Zacks, S.; Kaplowitz, N.; et al. Clinical risk factors for portopulmonary hypertension. Hepatology 2008, 48, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Segraves, J.M.; Cartin-Ceba, R.; Leise, M.D.; Krowka, M.J. Relationship between portopulmonary hypertension and splenectomy: Mayo Clinic experience and review of published works. Hepatol. Res. 2018, 48, E340–E346. [Google Scholar] [CrossRef] [PubMed]
- Talwalkar, J.A.; Swanson, K.L.; Krowka, M.J.; Andrews, J.C.; Kamath, P.S. Prevalence of spontaneous portosystemic shunts in patients with portopulmonary hypertension and effect on treatment. Gastroenterology 2011, 141, 1673–1679. [Google Scholar] [CrossRef]
- Sakamoto, M.; Ueno, T.; Kin, M.; Ohira, H.; Torimura, T.; Inuzuka, S.; Sata, M.; Tanikawa, K. Ito cell contraction in response to endothelin-1 and substance P. Hepatology 1993, 18, 978–983. [Google Scholar] [CrossRef]
- DuBrock, H.M.; Rodriguez-Lopez, J.M.; LeVarge, B.L.; Curry, M.P.; VanderLaan, P.A.; Zsengeller, Z.K.; Pernicone, E.; Preston, I.R.; Yu, P.B.; Nikolic, I.; et al. Macrophage migration inhibitory factor as a novel biomarker of portopulmonary hypertension. Pulm. Circ. 2016, 6, 498–507. [Google Scholar] [CrossRef]
- Tsiakalos, A.; Hatzis, G.; Moyssakis, I.; Karatzaferis, A.; Ziakas, P.D.; Tzelepis, G.E. Portopulmonary hypertension and serum endothelin levels in hospitalized patients with cirrhosis. Hepatobiliary Pancreat. Dis. Int. 2011, 10, 393–398. [Google Scholar] [CrossRef]
- Virdis, A.; Duranti, E.; Rossi, C.; Dell’Agnello, U.; Santini, E.; Anselmino, M.; Chiarugi, M.; Taddei, S.; Solini, A. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: Role of perivascular adipose tissue. Eur. Heart J. 2015, 36, 784–794. [Google Scholar] [CrossRef]
- Sepúlveda-Loyola, W.; Osadnik, C.; Phu, S.; Morita, A.A.; Duque, G.; Probst, V.S. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 1164–1176. [Google Scholar] [CrossRef]
- Maheshwari, J.A.; Kolaitis, N.A.; Anderson, M.R.; Benvenuto, L.; Gao, Y.; Katz, P.P.; Greenland, J.; Wolters, P.J.; Covinsky, K.; Hays, S.R.; et al. Construct and predictive validity of sarcopenia in lung transplant candidates. Ann. Am. Thorac. Soc. 2021, 18, 1464–1474. [Google Scholar] [CrossRef]
- Zhu, M.; Li, H.; Yin, Y.; Ding, M.; Philips, C.A.; Romeiro, F.G.; Qi, X. U-shaped relationship between subcutaneous adipose tissue index and mortality in liver cirrhosis. J. Cachexia Sarcopenia Muscle 2023, 14, 508–516. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
Characteristic | All Patients | POPH Low-Risk | POPH High-Risk | p-Value |
---|---|---|---|---|
(n = 148) | (n = 102) | (n = 46) | ||
Age (years) | 70 (58–76) | 70 (59–76) | 65 (65–78) | 0.545 |
Female, n (%) | 74 (50) | 44 (43) | 30 (65) | 0.013 |
Body mass index (kg/m2) | 22.8 (21.7–25.5) | 22.3 (21.4–24.5) | 24.5 (22.3–28.2) | <0.001 |
Etiology of cirrhosis, n (%) | 0.344 | |||
HCV | 40 (27) | 23 (23) | 17 (37) | |
HBV | 18 (12) | 13 (13) | 5 (11) | |
ALD | 38 (26) | 31 (30) | 7 (15) | |
AIH or PBC | 11 (7) | 8 (8) | 3 (7) | |
NASH | 12 (8) | 8 (8) | 4 (9) | |
Others | 29 (20) | 19 (19) | 10 (22) | |
Type 2 diabetes mellitus, n (%) | 43 (29) | 32 (31) | 11 (24) | 0.436 |
Hypertension, n (%) | 42 (28) | 26 (25) | 16 (35) | 0.246 |
Dyslipidemia, n (%) | 7 (5) | 6 (6) | 1 (2) | 0.325 |
Ascites, n (%) | 75 (51) | 54 (53) | 21 (46) | 0.479 |
Hepatic encephalopathy, n (%) | 18 (12) | 15 (15) | 3 (7) | 0.158 |
Esophageal varices, n (%) | 119 (80) | 84 (82) | 35 (76) | 0.379 |
Portosystemic shunt, n (%) | 17 (11) | 8 (8) | 9 (20) | 0.039 |
aAO-D (mm) | 33 (31–36) | 33 (31–36) | 34 (32–36) | 0.410 |
mPA-D (mm) | 27 (25–29) | 26 (24–27) | 30 (29–32) | <0.001 |
mPA-D/aAO-D | 0.80 (0.73–0.90) | 0.75 (0.71–0.85) | 0.92 (0.85–0.99) | <0.001 |
IVC (mm) | 27 (25–30) | 27 (25–30) | 29 (26–31) | 0.008 |
Child–Pugh score | 7 (5–9) | 7 (5–10) | 7 (5–9) | 0.413 |
Child–Pugh class (A/B/C) | 63/51/34 | 43/33/26 | 20/18/8 | 0.512 |
Laboratory test | ||||
MELDscore | 9 (7–12) | 10 (7–13) | 8 (7–11) | 0.030 |
ALBIscore | −1.90 (−2.38–−1.18) | −1.88 (−2.37–−1.20) | −1.95 (−2.43–−1.08) | 0.590 |
Internationalnormalizedratio | 1.12 (1.02–1.26) | 1.15 (1.02–1.30) | 1.08 (1.01–1.24) | 0.154 |
Platelet (109/L) | 94 (62–143) | 93 (63–140) | 104 (54–155) | 0.868 |
Creatinine (mg/dL) | 0.74 (0.60–0.95) | 0.74 (0.60–0.98) | 0.72 (0.59–0.88) | 0.463 |
Albumin (g/dL) | 3.2 (3.5–3.8) | 3.2 (2.5–3.8) | 3.2 (2.4–3.8) | 0.581 |
Bilirubin (mg/dL) | 1.2 (0.7–1.7) | 1.2 (0.9–1.8) | 1.0 (0.8–1.5) | 0.194 |
Sodium (meq/L) | 139 (137–140) | 138 (137–140) | 139 (136–141) | 0.080 |
Ammonia (μg/dL) | 58 (41–93) | 56 (41–87) | 66 (42–98) | 0.397 |
HemoglobinA1c (%) | 5.5 (5.0–6.2) | 5.0 (5.6–5.5) | 5.5 (5.0–6.2) | 0.493 |
Triglycerides (mg/dL) | 51 (67–104) | 68 (52–98) | 64 (47–106) | 0.714 |
Totalcholesterol (mg/dL) | 140 (114–169) | 143 (114–169) | 138 (120–170) | 0.838 |
Systolic blood pressure (mmHg) | 118 (109–131) | 118 (109–133) | 119 (108–130) | 0.547 |
Diastolic blood pressure (mmHg) | 68 (59–77) | 68 (59–78) | 68 (58–77) | 0.553 |
SMI (cm2/m2) | 42 (37–48) | 42 (36–47) | 42 (37–50) | 0.493 |
SATI (cm2/m2) | 35 (22–63) | 32 (20–50) | 53 (30–85) | <0.001 |
VATI (cm2/m2) | 34 (20–56) | 31 (17–50) | 45 (30–69) | <0.001 |
TATI (cm2/m2) | 71 (45–124) | 65 (38–103) | 103 (68–151) | <0.001 |
Handgrip strength (kg) | 21 (16–29) | 21 (16–29) | 21 (16–27) | 0.688 |
Sarcopenia, n (%) | 41 (28) | 30 (29) | 11 (24) | 0.489 |
Characteristic | No Obesity | Obesity | p-Value |
---|---|---|---|
(n = 105) | (n = 43) | ||
Age (years) | 70 (59–76) | 66 (54–76) | 0.637 |
Female, n (%) | 47 (45) | 27 (63) | 0.046 |
Body mass index (kg/m2) | 22.0 (21.0–23.4) | 27.0 (25.7–31.5) | <0.001 |
Etiology of cirrhosis, n (%) | 0.018 | ||
HCV | 23 (24) | 15 (35) | |
HBV | 15 (14) | 3 (7) | |
ALD | 31 (30) | 7 (16) | |
AIH or PBC | 9 (9) | 2 (5) | |
NASH | 4 (4) | 8 (19) | |
Others | 21 (20) | 8 (19) | |
Type 2 diabetes mellitus, n (%) | 28 (27) | 15 (35) | 0.318 |
Hypertension, n (%) | 24 (23) | 18 (42) | 0.019 |
Dyslipidemia, n (%) | 4 (4) | 3 (7) | 0.410 |
Ascites, n (%) | 62 (59) | 13 (30) | 0.002 |
Esophageal varices, n (%) | 82 (78) | 37 (86) | 0.269 |
Portosystemic shunt, n (%) | 7 (7) | 10 (23) | 0.004 |
aAO-D (mm) | 33 (31–36) | 33 (32–36) | 0.333 |
mPA-D (mm) | 27 (24–29) | 29 (25–30) | 0.011 |
mPA-D/aAO-D | 0.80 (0.72–0.89) | 0.84 (0.74–0.94) | 0.198 |
POPH high-risk, n (%) | 26 (25) | 20 (47) | 0.009 |
IVC (mm) | 27 (25–30) | 29 (26–31) | 0.019 |
Child–Pugh score | 7 (5–10) | 6 (5–8) | 0.156 |
Child–Pugh class (A/B/C) | 40/39/26 | 2020/12/8 | 0.228 |
Laboratory test | |||
MELDscore | 9 (7–13) | 9 (7–12) | 0.769 |
ALBIscore | −1.85 (−2.39–−1.16) | −2.06 (−2.36–−1.17) | 0.553 |
Internationalnormalizedratio | 1.12 (1.01–1.26) | 1.12 (1.05–1.30) | 0.615 |
Platelet (109/L) | 94 (62–153) | 91 (62–129) | 0.661 |
Creatinine (mg/dL) | 0.75 (0.62–0.98) | 0.67 (0.51–0.86) | 0.046 |
Albumin (g/dL) | 3.2 (2.5–3.8) | 3.2 (2.4–3.8) | 0.479 |
Bilirubin (mg/dL) | 1.1 (0.8–1.7) | 1.3 (0.8–1.6) | 0.703 |
Sodium (meq/L) | 138 (136–140) | 139 (137–141) | 0.026 |
Ammonia (μg/dL) | 57 (39–87) | 66 (48–101) | 0.080 |
HemoglobinA1c (%) | 5.5 (4.9–6.2) | 5.8 (5.1–6.5) | 0.097 |
Triglycerides (mg/dL) | 65 (51–98) | 71 (49–130) | 0.594 |
Totalcholesterol (mg/dL) | 140 (112–171) | 142 (120–166) | 0.724 |
Systolic blood pressure (mmHg) | 117 (107–129) | 127 (112–135) | 0.026 |
Diastolic blood pressure (mmHg) | 67 (59–77) | 72 (59–80) | 0.401 |
SMI (cm2/m2) | 40 (36–45) | 48 (41–52) | <0.001 |
SATI (cm2/m2) | 30 (19–41) | 75 (47–115) | <0.001 |
VATI (cm2/m2) | 30 (18–77) | 58 (40–77) | <0.001 |
TATI (cm2/m2) | 63 (41–89) | 138 (103–166) | <0.001 |
Handgrip strength (kg) | 21 (17–29) | 22 (15–28) | 0.571 |
Sarcopenia, n (%) | 33 (31) | 8 (19) | 0.104 |
Characteristic | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value a | |
Body mass index (kg/m2) | 1.21 (1.10–1.33) | <0.001 | 1.16 (1.05–1.28) | 0.004 |
SATI (cm2/m2) | 1.02 (1.01–1.03) | <0.001 | 1.02 (1.00–1.03) | 0.010 |
VATI (cm2/m2) | 1.03 (1.01–1.04) | <0.001 | 1.02 (1.01–1.23) | 0.006 |
TATI (cm2/m2) | 1.02 (1.01–1.02) | <0.001 | 1.11 (1.00–1.02) | 0.003 |
SMI (cm2/m2) | 1.01 (0.98–1.05) | 0.439 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miwa, T.; Hanai, T.; Nishimura, K.; Tajirika, S.; Nakahata, Y.; Imai, K.; Suetsugu, A.; Takai, K.; Yamamoto, M.; Shimizu, M. Association between Body Composition and the Risk of Portopulmonary Hypertension Assessed by Computed Tomography in Patients with Liver Cirrhosis. J. Clin. Med. 2023, 12, 3351. https://doi.org/10.3390/jcm12103351
Miwa T, Hanai T, Nishimura K, Tajirika S, Nakahata Y, Imai K, Suetsugu A, Takai K, Yamamoto M, Shimizu M. Association between Body Composition and the Risk of Portopulmonary Hypertension Assessed by Computed Tomography in Patients with Liver Cirrhosis. Journal of Clinical Medicine. 2023; 12(10):3351. https://doi.org/10.3390/jcm12103351
Chicago/Turabian StyleMiwa, Takao, Tatsunori Hanai, Kayoko Nishimura, Satoko Tajirika, Yuki Nakahata, Kenji Imai, Atsushi Suetsugu, Koji Takai, Mayumi Yamamoto, and Masahito Shimizu. 2023. "Association between Body Composition and the Risk of Portopulmonary Hypertension Assessed by Computed Tomography in Patients with Liver Cirrhosis" Journal of Clinical Medicine 12, no. 10: 3351. https://doi.org/10.3390/jcm12103351
APA StyleMiwa, T., Hanai, T., Nishimura, K., Tajirika, S., Nakahata, Y., Imai, K., Suetsugu, A., Takai, K., Yamamoto, M., & Shimizu, M. (2023). Association between Body Composition and the Risk of Portopulmonary Hypertension Assessed by Computed Tomography in Patients with Liver Cirrhosis. Journal of Clinical Medicine, 12(10), 3351. https://doi.org/10.3390/jcm12103351