Endometrial Dysbiosis Is Related to Inflammatory Factors in Women with Repeated Implantation Failure: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Sample Collection
2.3. Bacterial DNA Extraction and RT-PCR
2.4. Quantification of Absolute and Relative Bacterial DNA
2.5. Interleukins (ILs) in Endometrial Biopsy
2.6. COX2, HIF-1α and IGF-I Quantification in Endometrial Biopsy
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Determination of Microbiota Composition in Patient’s Biopsies
3.3. Inflammatory and Anti-Inflammatory Molecules in Endometrial Biopsies
3.4. Correlation between Microbiota Composition and Inflammatory Markers in Endometrial Biopsies
3.5. Correlation between Microbiota Composition, Biochemical Markers and Clinical Parameters Related to IVF Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyono, K.; Hashimoto, T.; Kikuchi, S.; Nagai, Y.; Sakuraba, Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: An analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod. Med. Biol. 2019, 18, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutriq, S.; González-González, A.; Plaza-Andrades, I.; Laborda-Illanes, A.; Sánchez-Alcoholado, L.; Peralta-Linero, J.; Domínguez-Recio, M.E.; Bermejo-Pérez, M.J.; Lavado-Valenzuela, R.; Alba, E.; et al. Gut and Endometrial Microbiome Dysbiosis: A New Emergent Risk Factor for Endometrial Cancer. J. Pers. Med. 2021, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Jiang, I.; Yong, P.J.; Allaire, C.; Bedaiwy, M.A. Intricate Connections between the Microbiota and Endometriosis. Int. J. Mol. Sci. 2021, 22, 5644. [Google Scholar] [CrossRef]
- Lu, W.; He, F.; Lin, Z.; Liu, S.; Tang, L.; Huang, Y.; Hu, Z. Dysbiosis of the endometrial microbiota and its association with inflammatory cytokines in endometrial cancer. Int. J. Cancer 2021, 148, 1708–1716. [Google Scholar] [CrossRef]
- Chen, W.; Wei, K.; He, X.; Wei, J.; Yang, L.; Li, L.; Chen, T.; Tan, B. Identification of Uterine Microbiota in Infertile Women Receiving in vitro Fertilization with and Without Chronic Endometritis. Front. Cell Dev. Biol. 2021, 9, 693267. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Scott, R.T. Reproductive tract microbiome in assisted reproductive technologies. Fertil. Steril. 2015, 104, 1364–1371. [Google Scholar] [CrossRef] [Green Version]
- Skafte-Holm, A.; Humaidan, P.; Bernabeu, A.; Lledo, B.; Jensen, J.S.; Haahr, T. The Association between Vaginal Dysbiosis and Reproductive Outcomes in Sub-Fertile Women Undergoing IVF-Treatment: A Systematic PRISMA Review and Meta-Analysis. Pathogens 2021, 10, 295. [Google Scholar] [CrossRef]
- Cicinelli, E.; Matteo, M.; Tinelli, R.; Lepera, A.; Alfonso, R.; Indraccolo, U.; Marrocchella, S.; Greco, P.; Resta, L. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum. Reprod. Oxf. Engl. 2015, 30, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Quaas, A.; Dokras, A. Diagnosis and treatment of unexplained infertility. Rev. Obstet. Gynecol. 2008, 1, 69–76. [Google Scholar] [PubMed]
- Park, H.J.; Kim, Y.S.; Yoon, T.K.; Lee, W.S. Chronic endometritis and infertility. Clin. Exp. Reprod. Med. 2016, 43, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, I.; Cicinelli, E.; Garcia-Grau, I.; Gonzalez-Monfort, M.; Bau, D.; Vilella, F.; De Ziegler, D.; Resta, L.; Valbuena, D.; Simon, C. The diagnosis of chronic endometritis in infertile asymptomatic women: A comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am. J. Obstet. Gynecol. 2018, 218, 602.e1–602.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Geerts, D.; Hu, S.; Yue, J.; Li, Z.; Zhu, G.; Jin, L. The depot GnRH agonist protocol improves the live birth rate per fresh embryo transfer cycle, but not the cumulative live birth rate in normal responders: A randomized controlled trial and molecular mechanism study. Hum. Reprod. Oxf. Engl. 2020, 35, 1306–1318. [Google Scholar] [CrossRef] [PubMed]
- Hillier, S.L.; Krohn, M.A.; Rabe, L.K.; Klebanoff, S.J.; Eschenbach, D.A. The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1993, 16 (Suppl. S4), S273–S281. [Google Scholar] [CrossRef]
- Robertson, S.A.; Chin, P.Y.; Glynn, D.J.; Thompson, J.G. Peri-conceptual cytokines—Setting the trajectory for embryo implantation, pregnancy and beyond. Am. J. Reprod. Immunol. 2011, 66 (Suppl. S1), 2–10. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A. Control of the immunological environment of the uterus. Rev. Reprod. 2000, 5, 164–174. [Google Scholar] [CrossRef]
- Sehring, J.; Beltsos, A.; Jeelani, R. Human implantation: The complex interplay between endometrial receptivity, inflammation, and the microbiome. Placenta 2022, 117, 179–186. [Google Scholar] [CrossRef]
- Daniele, S.; Scarfò, G.; Ceccarelli, L.; Fusi, J.; Zappelli, E.; Biagini, D.; Lomonaco, T.; Di Francesco, F.; Franzoni, F.; Martini, C. The Mediterranean Diet Positively Affects Resting Metabolic Rate and Salivary Microbiota in Human Subjects: A Comparison with the Vegan Regimen. Biology 2021, 10, 1292. [Google Scholar] [CrossRef]
- Singh, D. Histone deacetylase A potential therapeutic target for ovarian dysfunction. Front. Biosci. 2018, 23, 512–534. [Google Scholar] [CrossRef] [Green Version]
- Yahya, M.A.; Sharon, S.M.; Hantisteanu, S.; Hallak, M.; Bruchim, I. The Role of the Insulin-Like Growth Factor 1 Pathway in Immune Tumor Microenvironment and Its Clinical Ramifications in Gynecologic Malignancies. Front. Endocrinol. 2018, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; MacIntyre, D.A.; Marchesi, J.R.; Lee, Y.S.; Bennett, P.R.; Kyrgiou, M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome 2016, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosmann, C.; Anahtar, M.N.; Handley, S.A.; Farcasanu, M.; Abu-Ali, G.; Bowman, B.A.; Padavattan, N.; Desai, C.; Droit, L.; Moodley, A.; et al. Lactobacillus-Deficient Cervicovaginal Bacterial Communities Are Associated with Increased HIV Acquisition in Young South African Women. Immunity 2017, 46, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Koninckx, P.R.; Ussia, A.; Tahlak, M.; Adamyan, L.; Wattiez, A.; Martin, D.C.; Gomel, V. Infection as a potential cofactor in the genetic-epigenetic pathophysiology of endometriosis: A systematic review. Facts Views Vis. ObGyn 2019, 11, 209–216. [Google Scholar]
- Wang, M.-L.; Liu, M.-C.; Xu, J.; An, L.-G.; Wang, J.-F.; Zhu, Y.-H. Uterine Microbiota of Dairy Cows with Clinical and Subclinical Endometritis. Front. Microbiol. 2018, 9, 2691. [Google Scholar] [CrossRef]
- Diaz-Martínez, M.d.C.; Bernabeu, A.; Lledó, B.; Carratalá-Munuera, C.; Quesada, J.A.; Lozano, F.M.; Ruiz, V.; Morales, R.; Llácer, J.; Ten, J.; et al. Impact of the Vaginal and Endometrial Microbiome Pattern on Assisted Reproduction Outcomes. J. Clin. Med. 2021, 10, 4063. [Google Scholar] [CrossRef]
- Marik, J.J. Response to Hovav et al. [Diagnostic laparoscopy in primary and secondary infertility (J Assist Reprod Genet 1998;15:535–537)]. J. Assist. Reprod. Genet. 1999, 16, 454–455. [Google Scholar] [CrossRef]
- Sheikholeslami, M.-R.; Schaefer, R.F.; Mukunyadzi, P. Diffuse giant inflammatory polyposis: A challenging clinicopathologic diagnosis. Arch. Pathol. Lab. Med. 2004, 128, 1286–1288. [Google Scholar] [CrossRef]
- Smith, J.F.; Eisenberg, M.L.; Millstein, S.G.; Nachtigall, R.D.; Shindel, A.W.; Wing, H.; Cedars, M.; Pasch, L.; Katz, P.P.; Infertility Outcomes Program Project Group. The use of complementary and alternative fertility treatment in couples seeking fertility care: Data from a prospective cohort in the United States. Fertil. Steril. 2010, 93, 2169–2174. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ko, E.Y.-L.; Wong, K.K.-W.; Chen, X.; Cheung, W.-C.; Law, T.S.-M.; Chung, J.P.-W.; Tsui, S.K.-W.; Li, T.-C.; Chim, S.S.-C. Endometrial microbiota in infertile women with and without chronic endometritis as diagnosed using a quantitative and reference range-based method. Fertil. Steril. 2019, 112, 707–717.e1. [Google Scholar] [CrossRef] [PubMed]
- Sirota, I.; Zarek, S.; Segars, J. Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology. Semin. Reprod. Med. 2014, 32, 035–042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-H.; Wang, C.-A.; Lin, C.-C.; Chen, L.-C.; Chang, W.-C.; Tsai, S.-J. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. J. Clin. Endocrinol. Metab. 2005, 90, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gizzo, S.; Capuzzo, D.; Zicchina, C.; Di Gangi, S.; Coronella, M.L.; Andrisani, A.; Gangemi, M.; Nardelli, G.B. Could empirical low-dose-aspirin administration during IVF cycle affect both the oocytes and embryos quality via COX 1–2 activity inhibition? J. Assist. Reprod. Genet. 2014, 31, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Qu, Q.; Dai, H.; Liu, Y.; Jiang, L.; Huang, X.; Hao, C. Effects of hypoxia-inducible factor-1α on endometrial receptivity of women with polycystic ovary syndrome. Mol. Med. Rep. 2017, 1, 414–421. [Google Scholar] [CrossRef]
- Yen, M.; Donma, O.; Yildizfer, F.; Ekmekci, O.; Asli Karatas Kul, Z.; Esat Imal, A.; Keser, Z.; Cagil, E.; Mengi, M.; Ekmekci, H.; et al. Association of fetuin A, adiponectin, interleukin 10 and total antioxidant capacity with IVF outcomes. Iran. J. Reprod. Med. 2014, 12, 747–754. [Google Scholar] [PubMed]
- Rutanen, E.-M. Insulin-like growth factors in endometrial function. Gynecol. Endocrinol. 1998, 12, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Mehta, B.; Nath, N.; Chimote, N.; Chimote, M.; Chimote, N. Follicular fluid insulin like growth factor-1 (FF IGF-1) is a biochemical marker of embryo quality and implantation rates in in vitro fertilization cycles. J. Hum. Reprod. Sci. 2013, 6, 140. [Google Scholar] [CrossRef]
- Yan, J.; Charles, J.F. Gut Microbiota and IGF-1. Calcif. Tissue Int. 2018, 102, 406–414. [Google Scholar] [CrossRef]
- Granot, I.; Gnainsky, Y.; Dekel, N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction 2012, 144, 661–668. [Google Scholar] [CrossRef]
- Cela, V.; Malacarne, E.; Obino, M.E.R.; Marzi, I.; Papini, F.; Vergine, F.; Pisacreta, E.; Zappelli, E.; Pietrobono, D.; Scarfò, G.; et al. Exploring Epithelial–Mesenchymal Transition Signals in Endometriosis Diagnosis and In Vitro Fertilization Outcomes. Biomedicines 2021, 9, 1681. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, S.; Zarnani, A.H.; Jeddi-Tehrani, M.; Tavakoli, M.; Mohammadzadeh, A.; Dabbagh, A.; Mirahmadian, M. Cytokine profile in the endometrium of normal fertile and women with repeated implantation failure. Iran. J. Immunol. IJI 2011, 8, 201–208. [Google Scholar] [PubMed]
- Elnashar, A.M. Impact of endometrial microbiome on fertility. Middle East Fertil. Soc. J. 2021, 26, 4. [Google Scholar] [CrossRef]
- Kindinger, L.M.; MacIntyre, D.A.; Lee, Y.S.; Marchesi, J.R.; Smith, A.; McDonald, J.A.K.; Terzidou, V.; Cook, J.R.; Lees, C.; Israfil-Bayli, F.; et al. Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. Sci. Transl. Med. 2016, 8, 350ra102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toson, B.; Simon, C.; Moreno, I. The Endometrial Microbiome and Its Impact on Human Conception. Int. J. Mol. Sci. 2022, 23, 485. [Google Scholar] [CrossRef] [PubMed]
- Mlodzik, N.; Lukaszuk, K.; Sieg, W.; Jakiel, G.; Smolarczyk, R. Endometrial microbiota—Do they mean more than we have expected? Ginekol. Pol. 2020, 91, 45–48. [Google Scholar] [CrossRef]
- Coughlan, C.; Walters, S.; Ledger, W.; Li, T.C. A comparison of psychological stress among women with and without reproductive failure. Int. J. Gynecol. Obstet. 2014, 124, 143–147. [Google Scholar] [CrossRef]
- Makrigiannakis, A.; Makrygiannakis, F.; Vrekoussis, T. Approaches to Improve Endometrial Receptivity in Case of Repeated Implantation Failures. Front. Cell Dev. Biol. 2021, 9, 613277. [Google Scholar] [CrossRef]
- Moreno, I.; Garcia-Grau, I.; Perez-Villaroya, D.; Gonzalez-Monfort, M.; Bahçeci, M.; Barrionuevo, M.J.; Taguchi, S.; Puente, E.; Dimattina, M.; Lim, M.W.; et al. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. Microbiome 2022, 10, 1. [Google Scholar] [CrossRef]
- Chen, P.; Chen, P.; Guo, Y.; Fang, C.; Li, T. Interaction Between Chronic Endometritis Caused Endometrial Microbiota Disorder and Endometrial Immune Environment Change in Recurrent Implantation Failure. Front. Immunol. 2021, 12, 748447. [Google Scholar] [CrossRef]
- García-Velasco, J.A.; Budding, D.; Campe, H.; Malfertheiner, S.F.; Hamamah, S.; Santjohanser, C.; Schuppe-Koistinen, I.; Nielsen, H.S.; Vieira-Silva, S.; Laven, J. The reproductive microbiome—Clinical practice recommendations for fertility specialists. Reprod. Biomed. Online 2020, 41, 443–453. [Google Scholar] [CrossRef] [PubMed]
Reverse | Forward | T Annealing | |
---|---|---|---|
16S | AGGGTTGCGCTCGTTG | GTGCCAGCAGCCGCGGTAA | 64 °C |
Lactobacillus | CCACCTTCCTCCGGTTTGTCA | AGGGTGAAGTCGTAACAAGTAGCC | 60 °C |
Enterobacteriaceae species | CAGGTCGTCACGGTAACAAG | GTGGTTCAGTTTCAGCATGTAC | 65 °C |
Enterococcus species | AGAGAGTAAGGTCCGATTGAAC | GGTTGTTTCCCGTATTATGC | 55 °C |
Escherichia coli | AGAAGCTTGCTCTTTGCTGA | CTTTGGTCTTGCGACGTTAT | 59.3 °C |
Gardnerella vaginalis | TTACTGGTGTATCACTGTAAGG | CCGTCACAGGCTGAACAGT | 57 °C |
Klebsiella pneumoniae | ACGGCCGAATATGACGAATTC | AGAGTGATCTGCTCATGAA | 56 °C |
Staphylococcus species | CAGGAGAAGTTAAAGAACAAGAAG | GTGAACGAACTAATTGAGATACG | 58.4 °C |
Streptococcus species | GTACAGTTGCTTCAGGACGTATC | ACGTTCGATTTCATCACGTTG | 55 °C |
Pseudopropionibacterium | TGCTTTCGATACGGGTTGAC | AGGAGGTGATCCAACCGCA | 60 °C |
Prevotella | GTGGCGCGTATTTTATGTATGTG | ATCCGCCATACGCCCTTAG | 59 °C |
Neisseria Subflava | CCAACGATGTTCGCGAATTG | TGGAAGACGGATTTGGTGTAAT | 58 °C |
Mycoplasma hominis | CATGCATGTCGAGCGAGGTT | CCATGCGGTTCCATGCGT | 57 °C |
Bifidobacterium | ATCGCAGTCTGCAACTCGA | ATCCGAACTGAGACCGGTT | 59 °C |
Neisseria gonorrhoeae | GTTTCAGCGGCAGCATTCA | CCGGAACTGGTTTCATCTGATT | 57 °C |
Chlamydia trachomatis | GGATCCGTAAGTTAGACGAAATTTTG | TTTAATGCGAAAGGAAATCTGATTG | 58.1 °C |
Parameter | Eubiosis Patients | Dysbiosis Patients | p-Value |
---|---|---|---|
Age (years) | 38.5 ± 4.4 | 39.1 ± 2.7 | 0.7511 |
Occupation (N) | 11 | 10 | |
BMI | 21 ± 2.4 | 22.0 ± 1.7 | 0.4112 |
Years of infertility | 4.2 ± 1.4 | 3.9 ± 1.1 | 0.5492 |
AMH (ng/mL) | 2.1 ± 1.1 | 1.9 ± 0.9 | 0.6471 |
IVF cycles (N) | 2 | 2 | >0.9999 |
Good quality embryos (N) | 5.00 | 4.5 | 0.8524 |
Good quality embryos/number of trials | 2 | 2.667 | 0.4951 |
Number of ET | 4 | 4 | >0.9999 |
Endometrial Species | Eubiosis Patients (Composition of Microbial Species % versus Total) | Dysbiosis Patients (Composition of Microbial Species % versus Total) |
---|---|---|
Lactobacillus | 97.9 ± 3.7 | 27.3 ± 21.8 **** |
Streptococcus | 8.00 ± 0.50 | 49.78 ± 39.37 |
Staphylococcus | 7.78 ± 1.20 | 7.78 ± 0.90 |
Bifidobacterium | 0 | 39.7 ± 37.5 |
Gardnerella | 0 | 50.6 ± 14.0 |
Propionibacterium | 6.4 ± 1.2 | 6.4 ± 1.2 |
Biochemical Parameters | Eubiosis Patients (MEAN ± SD) | Dysbiosis Patients (MEAN ± SD) |
---|---|---|
IL-1β pg/µg | 28.5 ± 9.6 | 73.0 ± 28.8 **** |
IL-6 pg/µg | 6.43 ± 7.85 | 12.7 ± 6.3 * |
IL-8 pg/µg | 2203 ± 843 | 2321 ± 659 |
IL-10 pg/µg | 58.0 ± 8.8 | 30.4 ± 10.2 **** |
HIF-1α ng/µg | 7.58 ± 4.27 | 16.9 ± 5.9 *** |
IGF-1 ng/µg | 39.9 ± 25.2 | 14.5 ± 11.8 ** |
COX-2 ng/µg | 24.9 ± 12.2 | 43.2 ± 21.0 * |
Total Population | Eubiosis Patients | Dysbiosis Patients | |||||||
---|---|---|---|---|---|---|---|---|---|
Correlation | Z-Value | p-Value | Correlation | Z-Value | p-Value | Correlation | Z-Value | p-Value | |
Lactobacillus, IL-1β | −0.776 | −4.784 | <0.0001 | −0.514 | −1.706 | 0.0880 | −0.455 | −1.534 | 0.1251 |
Lactobacillus, IL-10 | 0.767 | 4.641 | <0.0001 | −0.033 | −0.098 | 0.9221 | 0.086 | 0.273 | 0.7851 |
Lactobacillus, HIF-1α | −0.705 | −3.824 | 0.0001 | 0.377 | 1.189 | 0.2346 | −0.306 | −0.893 | 0.3716 |
Lactobacillus, IGF-1 | 0.457 | 2.210 | 0.0271 | 0.108 | 0.327 | 0.7439 | −0.439 | −1.413 | −0.809 |
Lactobacillus, COX-2 | −4.494 | −2.480 | 0.0132 | 0.562 | 1.908 | 0.565 | −0.239 | −0.760 | 0.4473 |
Lactobacillus, Good quality embryos | 0.041 | 0.174 | 0.8618 | −0.642 | −2.285 | 0.0223 | −0,25 | −0.066 | 0.9476 |
Lactobacillus, Number of trials | 0.214 | 0.924 | 0.3554 | −0.630 | −2.223 | 0.0262 | −0.079 | −0.208 | 0.8350 |
IL-1β, IL-6 | 0.476 | 2.376 | 0.0175 | −0.602 | −2.087 | 0.0369 | 0.751 | 3.088 | 0.0020 |
IL-1β, IL-10 | −0.540 | −2.833 | 0.0046 | 0.594 | 2.051 | 0.0403 | 0.058 | 0.182 | 0.8553 |
IL-1β, HIF-1α | 0.551 | 2.073 | 0.0069 | −0.310 | −0.963 | 0.3354 | 0.117 | 0.331 | 0.7405 |
IL-1β, COX-2 | 0.404 | 2.007 | 0.0448 | −0.646 | −2.307 | 0.0210 | 0.197 | 0.630 | 0.5286 |
IL-1β, Good quality embryos | −0.151 | −0.661 | 0.5085 | 0.701 | 2.609 | 0.0091 | −0.560 | −1.673 | 0.0944 |
IL-1β, Number of trials | −0.090 | −0.394 | 0.6934 | 0.845 | 3.719 | 0.0002 | −0.007 | −0.019 | 0.9849 |
IL-6, IL-8 | 0.481 | 2.283 | 0.0224 | 0.560 | 1.900 | 0.0574 | 0.292 | 0.851 | 0.3949 |
IL-6, IL-10 | −0.568 | −2.955 | 0.0031 | −0.838 | −3.640 | 0.0003 | −0.123 | −0.390 | 0.6965 |
IL-6, IGF-1 | −0.462 | −2.238 | 0.0252 | -0.360 | −0.949 | 0.3426 | −0.198 | −0.602 | 0.693 |
IL-8, HIF-1α | 0.235 | 0.987 | 0.3237 | 0.658 | 2.366 | 0.0180 | 0.322 | 0.817 | 0.4141 |
IL-8, COX-2 | 0.136 | 0.596 | 0.5515 | 0.599 | 2.077 | 0.0378 | 0.245 | 0.707 | 0.4794 |
IL-10, HIF-1α | −0.542 | −2.647 | 0.0081 | 0.099 | 0.298 | 0.7653 | 0.078 | 0.221 | 0.8253 |
IL-10, IGF-1 | 0.412 | 2.010 | 0.0445 | 0.247 | 0.756 | 0.4494 | −0.289 | −0.894 | 0.3715 |
IL-10, COX-2 | −0.558 | −2.956 | 0.0031 | 0.096 | 0.290 | 0.7721 | −0.465 | −1.593 | −0.809 |
HIF-1α, IGF−1 | −0.474 | −2.183 | 0.0290 | −0.566 | −1.926 | 0.0542 | 0.530 | 1.561 | 0.1184 |
HIF-1α, COX-2 | 0.430 | 2.005 | 0.0449 | 0.552 | 1.864 | 0.0623 | −0.172 | −0.492 | 0.6228 |
HIF-1α, Good quality embryos | 0.166 | 0.671 | 0.5023 | −0.605 | −2.103 | 0.0355 | 0.697 | 1.926 | 0.0541 |
HIF-1α, Number of ET | −0.393 | −1.662 | 0.0965 | 0.848 | 3.750 | 0.0002 | −0.408 | −1.224 | 0.2208 |
IGF-1, Good quality embryos | −0.240 | −1.066 | 0.2862 | −0.597 | −2.067 | 0.0388 | 0.061 | 0.163 | 0.8706 |
Cox-2, Number of ET | 0.022 | 0.097 | 0.9230 | −0.924 | −4.839 | <0.0001 | −0.430 | −1.453 | 0.1462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cela, V.; Daniele, S.; Obino, M.E.R.; Ruggiero, M.; Zappelli, E.; Ceccarelli, L.; Papini, F.; Marzi, I.; Scarfò, G.; Tosi, F.; et al. Endometrial Dysbiosis Is Related to Inflammatory Factors in Women with Repeated Implantation Failure: A Pilot Study. J. Clin. Med. 2022, 11, 2481. https://doi.org/10.3390/jcm11092481
Cela V, Daniele S, Obino MER, Ruggiero M, Zappelli E, Ceccarelli L, Papini F, Marzi I, Scarfò G, Tosi F, et al. Endometrial Dysbiosis Is Related to Inflammatory Factors in Women with Repeated Implantation Failure: A Pilot Study. Journal of Clinical Medicine. 2022; 11(9):2481. https://doi.org/10.3390/jcm11092481
Chicago/Turabian StyleCela, Vito, Simona Daniele, Maria Elena Rosa Obino, Maria Ruggiero, Elisa Zappelli, Lorenzo Ceccarelli, Francesca Papini, Ilaria Marzi, Giorgia Scarfò, Fulvia Tosi, and et al. 2022. "Endometrial Dysbiosis Is Related to Inflammatory Factors in Women with Repeated Implantation Failure: A Pilot Study" Journal of Clinical Medicine 11, no. 9: 2481. https://doi.org/10.3390/jcm11092481
APA StyleCela, V., Daniele, S., Obino, M. E. R., Ruggiero, M., Zappelli, E., Ceccarelli, L., Papini, F., Marzi, I., Scarfò, G., Tosi, F., Franzoni, F., Martini, C., & Artini, P. G. (2022). Endometrial Dysbiosis Is Related to Inflammatory Factors in Women with Repeated Implantation Failure: A Pilot Study. Journal of Clinical Medicine, 11(9), 2481. https://doi.org/10.3390/jcm11092481