Therapeutic Alternatives in Diabetic Foot Patients without an Option for Revascularization: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Epidemiology and Concomitant Diseases
4. Treatment of CLTI
5. Therapeutic Alternatives in No-Option CLTI
5.1. Vasoactive Drugs
5.2. Fibrinolytic and Defibrinogenating Agents
5.3. Hyperbaric Oxygen Therapy (HBOT)
5.4. Lumbar Sympathectomy (LSE)
5.5. Epidural Spinal Cord Stimulation (SCS)
5.6. Gene and Stem Cell Therapy
5.7. Hypertensive Extracorporeal Limb Perfusion (HELP)
5.8. Intermittent Pneumatic Compression (IPC)
5.9. Transcutaneous Muscular Electrostimulation (TES)
5.10. Special Wound Dressings
5.11. Ozone Therapy
5.12. Arterialisation of the Deep Leg Veins (DVA or Deep Vein Arterialisation)
5.13. Conservative Treatment
5.14. Timely Amputation
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamayo, T.; Brinks, R.; Hoyer, A.; Kuß, O.; Rathmann, W. The Prevalence and Incidence of Diabetes in Germany: An Analysis of Statutory Health Insurance Data on 65 Million Individuals from the Years 2009 and 2010. Dtsch. Ärzteblatt Int. 2016, 113, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef] [Green Version]
- Claessen, H.; Narres, M.; Haastert, B.; Arend, W.; Hoffmann, F.; Morbach, S.; Rümenapf, G.; Kvitkina, T.; Friedel, H.; Günster, C.; et al. Lower-extremity amputations in people with and without diabetes in Germany, 2008–2012—An analysis of more than 30 million inhabitants. Clin. Epidemiol. 2018, 10, 475–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröger, K.; Berg, C.; Santosa, F.; Malyar, N.; Reinecke, H. Lower limb amputation in Germany. Dtsch. Arztebl. Int. 2017, 114, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Hoffstad, O.; Mitra, N.; Walsh, J.; Margolis, D.J. Diabetes, lower-extremity amputation, and death. Diab. Care 2015, 38, 1852–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawall, H.; Huppert, P.; Espinola-Klein, C.; Rümenapf, G. Clinical practice guideline—the diagnosis and treatment of peripheral arterial disease. Dtsch. Arztebl. Int. 2016, 113, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.R. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45, S5–S67. [Google Scholar] [CrossRef] [Green Version]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.L.; Björck, M.; Brodmann, M.; Cohner, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 305–368. [Google Scholar] [CrossRef] [Green Version]
- NICE Clinical Guideline 147: Lower Limb Peripheral Arterial Disease: Diagnosis and Management. Available online: Https://www.nice.org.uk/cg147/evidence/lower-limb-periphral-arterial-disease-full-guideline-186865021 (accessed on 1 January 2020).
- Bisdas, T.; Borowski, M.; Torsello, G. Current practice of first-line treatment strategies in patients with critical limb ischemia. J. Vasc. Surg. 2015, 62, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Lepäntalo, M.; Mätzke, S. Outcome of unreconstructed chronic critical leg ischaemia. Eur. J. Vasc. Endovasc. Surg. 1996, 11, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Diehm, C.; Schuster, A.; Allenberg, J.R.; Darius, H.; Haberl, R.; Lange, S.; Pittrow, D.; von Stritzky, B.; Tepohl, G.; Trampisch, H.-J. High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: Cross-sectional study. Atherosclerosis 2004, 172, 95–105. [Google Scholar] [CrossRef]
- Malyar, N.; Fürstenberg, T.; Wellmann, J.; Meyborg, M.; Lüders, F.; Gebauer, K.; Bunzemeier, H.; Roeder, N.; Reinecke, H. Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease: A nationwide population-based analysis. Eur. Heart J. 2013, 34, 2706–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprengers, R.W.; Teraa, M.; Moll, F.L.; Ardine de Witt, G.; van der Graaf, Y.; Verhaar, M.C. QoL in patients with no-option critical limb ischemia underlines the need for new effective treatment. J. Vasc. Surg. 2010, 52, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meloni, M.; Izzo, V.; Da Rod, V.; Morosett, D.; Stefanini, M.; Brocco, E.; Giurato, L.; Gandini, R.; Uccioli, L. Characteristics and outcome for persons with diabetic foot ulcer and no-option critical limb ischemia. J. Clin. Med. 2020, 9, 3745. [Google Scholar] [CrossRef]
- Ubbink DTh Spincemaille, G.H.J.J.; Reneman, R.S.; Jacobs, J.H.M. Prediction of imminent amputation in patients with non-reconstructible leg ischemia by means of microcirculatory investigations. J. Vasc. Surg. 1999, 30, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Goodney, P.P.; Holman, K.; Henke, P.K.; Travis, L.L.; Dimick, J.B.; Stukel, T.A.; Fisher, E.S.; Birkmeyer, J.D. Regional intensity of vascular care and lower extremity amputation rates. J. Vasc. Surg. 2013, 57, 1471–1480.e3. [Google Scholar] [CrossRef] [Green Version]
- Stella, J.; Engelbertz, C.; Gebauer, K.; Hassu, J.; Meyborg, M.; Freisinger, E.; Malyar, N.M. Outcome of patients with chronic limb-threatening ischemia with and without revascularization. Vasa 2020, 49, 121–127. [Google Scholar] [CrossRef]
- Almasri, J.; Adusumalli, J.; Asi, N.; Lakis, S.; Alsawas, M.; Prokop, L.J.; Bradbury, A.; Kolh, P.; Conte, M.S.; Murad, H. A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-theatening ischemia. J. Vasc. Surg. 2019, 69, 126S–136S. [Google Scholar] [CrossRef] [Green Version]
- Meloni, M.; Izzo, V.; Giurato, L.; Gandini, R.; Uccioli, L. Below-the-ankle arterial disease severely impairs the outcomes of diabetic patients with ischemic foot ulcers. Diabetes Res. Clin. Pract. 2019, 152, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H.; et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 69, 3S–125S. [Google Scholar] [CrossRef] [Green Version]
- Belch, J.J.F.; Ray, S.; Rajput-Ray, M.; Engeset, J.; Fagrell, B.; Lepäntalo, M.; McKay, A.; Mackay, I.R.; Ostergren, J.; Ruckley, C.V.; et al. The Scottish-Finnish-Swedish PARTNER study of taprostene versus placebo treatment in patients with critical limb ischemia. Int. Angiol. 2011, 30, 150–155. [Google Scholar] [PubMed]
- Brass, E.P.; Anthony, R.; Dormandy, J.; Hiatt, W.R.; Jiao, J.; Nakanishi, A.; McNamara, T.; Nehler, M. Parenteral therapy with lipo-ecraprost, a lipid-based formulation of a PGE1 analog, does not alter six-month outcomes in patients with critical leg ischemia. J. Vasc. Surg. 2006, 43, 752–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawall, H.; Pokrovsky, A.; Checinski, P.; Ratushnyuk, A.; Hamm, G.; Randerath, O.; Grieger, F.; Bentz, J.W.G. Efficacy and safety of alprostadil in patients with peripheral arterial occlusive disease Fontaine stage IV: Results of a placebo-controlled randomized multicentre trial (ESPECIAL). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, I.; Kessel, D.O.; Berridge, D.C. Fibrinolytic agents for peripheral arterial occlusion. Cochrane Database Syst. Rev. 2013, 19, CD001099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weck, M.; Rietzsch, H.; Lawall, H.; Pichlmeier, U.; Bramlage, P.; Schellong, S. Intermittent intravenous urokinase for critical limb ischemia in diabetic foot ulceration. Thromb. Haemost. 2008, 100, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Lowe, G.D.O.; Dunlop, D.J.; Lawson, D.H.; Pollock, J.G.; Watt, J.K.; Forbes, C.D.; Prentice, C.R.M.; Drummond, M.M. Double-blind controlled clinical trial of Ancrod for ischemic rest pain of the leg. Angiology 1982, 33, 46–50. [Google Scholar] [CrossRef]
- Löndahl, M.; Katzman, P.; Hammarlund, C.; Nilsson, A.; Landin-Olsson, M. Relationship between ulcer healing after hyperbaric oxygen therapy and transcutaneous oximetry, toe blood pressure and ankle-brachial index in patients with diabetes and chronic foot ulcers. Diabetologia 2011, 54, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Kranke, P.; Bennett, M.H.; Martin-St, J.M.; Schnabel, A.; Debus, S.E. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev. 2012, 4, CD004123. [Google Scholar]
- Steokenbroek, R.M.; Santema, T.B.; Legemate, D.A.; Ubbink, D.T.; van den Brink, A.; Koelemay, M.J.W. Hyperbaric oxygen for the treatment of diabetic foot ulcers: A systematic review. Eur. J. Vasc. Endovasc. Surg. 2014, 47, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, R.J.; Lalieu, R.C.; Hoencamp, R.; van Hulst, R.A.; Ubbink, D.T. A systematic review and meta-analysis of hyperbaric oxygen therapy for diabetic foot ulcers with arterial insufficiency. J. Vasc. Surg. 2020, 71, 682–692.e1. [Google Scholar] [CrossRef]
- Fedorko, L.; Bowen, J.M.; Jones, W.; Oreopoulos, G.; Goeree, R.; Hopkins, R.B.; O’Reilly, D.J. Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with non-healing ulcers of the lower limb: A prospective, double-blind, randomized controlled Clinical trial. Diabetes Care 2016, 39, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santema, K.T.B.; Stoekenbroek, R.M.; Koelemay, M.J.W.; Reekers, J.A.; van Dortmont, L.M.C.; Oomen, A.; Smeets, L.; Wever, J.J.; Legemate, D.A.; Ubbink, D.T. Hyperbaric oxygen treatment of ischemic lower-extremity ulcers in patients with diabetes: Results of the DAMOCLES multicenter randomized trial. Diabetes Care 2018, 41, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalieu, R.C.; Brouwer, R.J.; Ubbink, D.T.; Hoencamp, R.; Bol Raap, R.; van Hulst, R.A. Hyperbaric oxygen therapy for nonischemic diabetic ulcers: A systematic review. Wound Rep. Regen. 2020, 28, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Setacci, C.; de Donato, G.; Teraa, M.; Moll, F.L.; Ricco, J.B.; Becker, F.; Robert-Ebadi, H.; Cao, P.; Eckstein, H.H.; De Rango, P.; et al. Treatment of critical limb ischemia. Clinical Practice Guidelines of the European Society for Vascular Surgery. Eur. J. Vasc. Endovasc. Surg. 2011, 42, S43–S59. [Google Scholar] [CrossRef] [Green Version]
- Karanth, V.K.; Karanth, T.K.; Karanth, L. Lumbar sympathectomy techniques for critical lower limb ischaemia due to non-reconstructable peripheral arterial disease. Cochrane Database Syst. Rev. 2016, 2016, CD011519. [Google Scholar] [CrossRef]
- Klomp, H.M.; Steyerberg, E.W.; Habbema, J.D.; van Urk, H.; ESES study group. What is the evidence on efficacy of spinal cord stimulation in (subgroups of) patients with critical limb ischemia? Ann. Vasc. Surg. 2009, 23, 355–363. [Google Scholar] [CrossRef]
- Ubbink, D.T.; Vermeulen, H. Spinal cord stimulation for non-reconstructible chronic critical leg ischemia. Cochrane Database Syst. Rev. 2003. [Google Scholar] [CrossRef]
- Available online: http://www.awmf.org/uploads/tx_szleitlinien/041-002l_S3_Epidurale_Rückenmarkstimulation_2013-07.pdf (accessed on 1 January 2020).
- Belch, J.; Hiatt, W.R.; Baumgartner, I.; Driver, I.V.; Nikol, S.; Norgren, L.; Van Belle, E. Effect of fibroblast growth factor NV1FGF on amputation and death: A randomized placebo-controlled trial of gene therapy in critical limb ischemia. Lancet 2011, 377, 1929–1937. [Google Scholar] [CrossRef] [Green Version]
- Kitrou, P.; Karnabatidis, D.; Brountzos, E.; Katsanos, K.; Reppas, L.; Spiliopoulos, S. Gene-based therapies in patients with critical limb ischemia. Expert Opin. Biol. Ther. 2017, 17, 449–456. [Google Scholar] [CrossRef]
- Rigato, M.; Monami, M.; Fadini, G.P. Autologous cell therapy for peripheral erterial diesease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ. Res. 2017, 120, 1326–1340. [Google Scholar] [CrossRef]
- Teraa, M.; Sprengers, R.W.; Schutgens, R.E.; Slaper-Cortenbach, I.C.; van der Graaf, Y.; Algra, A.; van der Tweel, I.; Doevendans, P.A.; Mali, W.P.; Moll, F.L.; et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in Patientrs with no-option limb ischemia: The randomizes, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation 2015, 131, 851–860. [Google Scholar] [PubMed] [Green Version]
- Gao, W.; Chen, D.; Liu, G.; Ran, X. Autologous stem cell therapy for peripheral arterial disease: A systematic review and meta-analysis of randomized controlled trials. Stem Cell Res. Ther. 2019, 10, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khin, N.Y.; Dijkstra, M.L.; Huckson, M.; Phillips, M.; McMillan, D.; Itoh, S.; Roger, G.; Lane, R.J. Hypertensive extracorporeal limb perfusion for critical limb ischemia. J. Vasc. Surg. 2013, 58, 1244–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, L.G.; Reid, M.R. The conservative treatment of atherosclerotic peripheral vascular disease: Passive vascular exercises (PAVEX Therapy). Ann. Surg. 1934, 100, 750–760. [Google Scholar] [CrossRef]
- Tawfick, W.A.; Hamada, N.; Soylu, E.; Fahy, A.; Hynes, N.; Sultan, S. Sequential compression biomechanical device versus primary amputation in patients with critical limb ischemia. Vasc. Endovasc. Surg. 2013, 47, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.S.; Teljeur, C.; Harrington, P.; Ryan, M. A systemic review of intermittent pneumatic compression for critical limb ischemia. Vasc. Med. 2015, 20, 41–50. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mermi, E.U.; Zobaci, E.; Aksoy, E.; Yastı, Ç. Augmentation of arterial blood velocity with electrostimulation in patients with critical limb ischemia unsuitable for revascularization. Vascular 2017, 25, 137–141. [Google Scholar] [CrossRef]
- Paola, L.D.; Cimaglia, P.; Carone, A.; Boscarino, G.; Scavone, G. Use of Integra Dermal Regeneration Template for Limb Salvage in Diabetic Patients With No-Option Critical Limb Ischemia. Int. J. Low. Extrem. Wounds 2020, 20, 128–134. [Google Scholar] [CrossRef]
- Bocci, V.; Zanardi, I.; Travagli, V. The irrationality of a non-specific immunomodulation therapy used in cardiovascular diseases deserves a critical comment. Atherosclerosis 2010, 211, 38–39; discussion 40. [Google Scholar] [CrossRef]
- Halstead, A.E.; Vaughan, R.T. Arteriovenous anastomosis in the treatment of gangrene of the extremities. Surg. Gynecol. Obstet. 1912, 14, 1–9. [Google Scholar]
- Ho, V.T.; Gologorsky, R.; Chandra, V.; Prent, A.; Lee, J.; Dua, A. Open, percutaneous, and hybrid deep venous arterialization technique for no-option foot salvage. J. Vasc. Surg. 2019, 71, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Schreve, M.A.; Huizing, E.; Del Giudice, C.; Branzan, D.; Ünlü, Ç.; Varcoe, R.L.; Ferraresi, R.; Kum, S. Midterm Outcomes of Percutaneous Deep Venous Arterialization with a Dedicated System for Patients With No-Option Chronic Limb-Threatening Ischemia: The ALPS Multicenter Study. J. Endovasc. Ther. 2020, 27, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Marston, W.A.; Davies, S.W.; Armstrong, B.; Farber, M.A.; Mendes, R.C.; Fulton, J.J.; Keagy, B.A. Natural history of limbs with arterial insufficiency and cronic ulceration treated without revascularization. J. Vasc. Surg. 2006, 44, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgzyri, T.; Larsson, J.; Thörne, J.; Eriksson, K.F.; Apelquist, J. Outcome of ischemic foot ulcer in diabetic patients who had no invasive vascular intervention. Eur. J. Vasc. Endovasc. Surg. 2013, 46, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steunenberg, S.L.; de Vries, J.; Raats, J.W.; Verbogt, N.; Lodder, P.; van Eijck, G.J.; Veen, E.J.; de Groot, H.G.W.; Ho, G.H.; van der Laan, L. Important differences between QoL and health status in elderly patients suffering from critical limb ischemia. Clin. Interv. Aging 2019, 14, 1221–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkagi, D.; Hoshina, K.; Akai, A.; Yamamoto, K. Outcomes in Patients with critical limb ischemia due to arteriosclerosis obliterans who do not undergo arterial reconstructions. Int. Heart J. 2018, 59, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Santema, T.B.; Stoekenbroek, R.M.; van Loon, J.; Koelemay, M.J.W.; Ubbink, D.T. Not all patients with critical limb ischemia require revascularisation. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Gabel, J.A.; Bianchi, C.; Possagnoli, I.; Oyoyo, U.E.; Teruya, T.H.; Kiang, S.C.; Abou-Zamzam, A.M.; Bishop, V.; Eastridge, D. A conservative approach to select patients with ischemic wounds is safe and effective in the setting of deferred revascularization. J. Vasc. Surg. 2020, 71, 1286–1295. [Google Scholar] [CrossRef]
- Ogurtsova, K.; Morbach, S.; Haastert, B.; Dubský, M.; Rümenapf, G.; Ziegler, D.; Jirkovska, A.; Icks, A. Cumulative long-term recurrence of diabetic foot ulcers in two cohorts from centers in Germany and the Czech Republic. Diabetes Res. Clin. Pract. 2020, 172, 108621. [Google Scholar] [CrossRef]
- Game, F. Choosing life or limb. Improving survival in the multi-complex diabetic foot patient. Diabetes Metab. Res. Rev. 2012, 28 (Suppl. 1), 97–100. [Google Scholar] [CrossRef]
- Evans, K.; Attinger, C.E.; Al-Attar, A.; Salgado, C.; Chu, C.K.; Mardini, S.; Neville, R. The importance of limb preservation in the diabetic population. J. Diabetes Its Complicat. 2011, 25, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, J.A.; Katzen, B.T.; Neville, R.F.; Lookstein, R.A.; Zeller, T.; Miller, L.E.; Jaff, M.R. Determinants of long-term outcomes and costs in the management of critical limb ischemia: A population-based cohort study. J. Am. Heart Assoc. 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abu Dabrh, A.M.; Steffen, M.; Undavalli, C.; Asi, N.; Wang, Z.; Elamin, M.B.; Conte, M.; Murad, M.H. The natural history of untreated severe or critical limb ischemia. J. Vasc. Surg. 2015, 62, 1642–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willrich, A.; Pinzur, M.; McNeil, M.; Juknelis, D.; Lavery, L. Health related QoL, cognizive function, and depression in diabetic patients with foot ulcer or amputation:a preliminary study. Foot Ankle Int. 2005, 26, 128–134. [Google Scholar] [CrossRef]
- Wukich, D.K.; Ahn, J.; Raspovic, K.M.; La Fontaine, J.; Lavery, L.A. Improved QoL after transtibial amputation in patients with diabetes-related foot complications. Int. J. Low. Extr. Wounds 2017, 16, 114–121. [Google Scholar] [CrossRef]
- Nehler, M.R.; Coll, J.R.; Hiatt, W.R.; Regensteiner, J.G.; Schnickel, G.T.; Klenke, W.A.; Strecker, P.K.; Anderson, M.W.; Jones, D.N.; Whitehill, T.A.; et al. Functional outcome in a contemporary series of major lower extremity amputations. J. Vasc. Surg. 2003, 38, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Wölfle, K.; Schaal, J.; Rittler, S.; Bruijnen, H.; Loeprecht, H. Infrainguinal bypass grafting in patients with end-stage renal disease and critical limb ischaemia: Is it worthwhile? Zentralbl. Chir. 2003, 128, 709–714. [Google Scholar]
- Sigl, M.; Noe, T.; Ruemenapf, G.; Kraemer, B.K.; Morbach, S.; Borggrefe, M.; Amendt, K. Outcomes of severe limb ischemia with tissue loss and impact of revascularization in haemodialysis patients with wound, ischemia, and foot infection (wifi) stage 3 or 4. Vasa 2020, 49, 63–71. [Google Scholar] [CrossRef]
- Lavery, L.A.; Hunt, N.A.; Ndip, A.; Lavery, D.C.; Van Houtum, W.; Boulton, A.J. Impact of chronic kidney disease on survival after amputation in individuals with diabetes. Diabetes Care 2010, 33, 2365–2369. [Google Scholar] [CrossRef] [Green Version]
Fontaine | Rutherford | |||
---|---|---|---|---|
Stadium | Klinisches Bild | Grade | Category | Clinical Picture |
I | asymptomatic | 0 | 0 | asymptomatic |
II a | walking distance > 200 m | I | 1 | mild intermittent claudication |
II b | walking distance < 200 m | I | 2 | moderate intermittent claudication |
I | 3 | severe intermittent claudication | ||
III | ischemic rest pain | II | 4 | ischemic rest pain |
IV | ulcer, gangrene | III | 5 | minor tissue loss |
III | 6 | major tissue loss |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruemenapf, G.; Morbach, S.; Sigl, M. Therapeutic Alternatives in Diabetic Foot Patients without an Option for Revascularization: A Narrative Review. J. Clin. Med. 2022, 11, 2155. https://doi.org/10.3390/jcm11082155
Ruemenapf G, Morbach S, Sigl M. Therapeutic Alternatives in Diabetic Foot Patients without an Option for Revascularization: A Narrative Review. Journal of Clinical Medicine. 2022; 11(8):2155. https://doi.org/10.3390/jcm11082155
Chicago/Turabian StyleRuemenapf, Gerhard, Stephan Morbach, and Martin Sigl. 2022. "Therapeutic Alternatives in Diabetic Foot Patients without an Option for Revascularization: A Narrative Review" Journal of Clinical Medicine 11, no. 8: 2155. https://doi.org/10.3390/jcm11082155
APA StyleRuemenapf, G., Morbach, S., & Sigl, M. (2022). Therapeutic Alternatives in Diabetic Foot Patients without an Option for Revascularization: A Narrative Review. Journal of Clinical Medicine, 11(8), 2155. https://doi.org/10.3390/jcm11082155