Correlation between Forced Vital Capacity and the Severity of Frailty-Induced Dysphagia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol for VFSS
2.3. Pulmonary Function Test
2.4. Sample Size Calculation
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Patients with Brain-Lesion-Induced Dysphagia
3.3. Patients with Frailty-Induced Dysphagia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Mao, G.; Leng, S.X. Frailty syndrome: An overview. Clin. Interv. Aging 2014, 9, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.L. The frailty syndrome: Definition and natural history. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Bahat, G.; Yilmaz, O.; Durmazoglu, S.; Kilic, C.; Tascioglu, C.; Karan, M.A. Association between Dysphagia and Frailty in Community Dwelling Older Adults. J. Nutr. Health Aging 2019, 23, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Kwak, S. Videofluoroscopic Swallowing Study Findings Associated With Subsequent Pneumonia in Patients With Dysphagia Due to Frailty. Front. Med. 2021, 8, 690968. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H. Presbyphagia and Sarcopenic Dysphagia: Association between Aging, Sarcopenia, and Deglutition Disorders. J. Frailty Aging 2014, 3, 97–103. [Google Scholar] [CrossRef]
- O’Donoghue, S.; Bagnall, A. Videofluoroscopic evaluation in the assessment of swallowing disorders in paediatric and adult populations. Folia Phoniatr. Logop. 1999, 51, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Oh, Y.; Ryu, J.S. Findings of Abnormal Videofluoroscopic Swallowing Study Identified by High-Resolution Manometry Parameters. Arch. Phys. Med. Rehabil. 2016, 97, 421–428. [Google Scholar] [CrossRef]
- Ingleby, H.R.; Bonilha, H.S.; Steele, C.M. A Tutorial on Diagnostic Benefit and Radiation Risk in Videofluoroscopic Swallowing Studies. Dysphagia 2021, 1–26. [Google Scholar] [CrossRef]
- Oku, Y.; Yagi, N.; Nishino, M.; Shinkawa, T.; Takata, Y.; Nagami, S.; Okada, M. Swallowing Dynamics and Breathing-Swallowing Coordination Are Altered in Patients with Mild Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2021, 50, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Ouahchi, Y.; Ben Salah, N.; Mjid, M.; Hedhli, A.; Abdelhedi, N.; Beji, M.; Toujani, S.; Verin, E. Breathing pattern during sequential swallowing in healthy adult humans. J. Appl. Physiol. 2019, 126, 487–493. [Google Scholar] [CrossRef]
- Ghannouchi, I.; Speyer, R.; Doma, K.; Cordier, R.; Verin, E. Swallowing function and chronic respiratory diseases: Systematic review. Respir. Med. 2016, 117, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Borders, J.C.; Brates, D. Use of the Penetration-Aspiration Scale in Dysphagia Research: A Systematic Review. Dysphagia 2020, 35, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Eo, H.; Park, D. Usefulness of the Modified Videofluoroscopic Dysphagia Scale in Evaluating Swallowing Function among Patients with Amyotrophic Lateral Sclerosis and Dysphagia. J. Clin. Med. 2021, 10, 4300. [Google Scholar] [CrossRef]
- Chang, M.C.; Lee, C.; Park, D. Validation and Inter-rater Reliability of the Modified Videofluoroscopic Dysphagia Scale (mVDS) in Dysphagic Patients with Multiple Etiologies. J. Clin. Med. 2021, 10, 2990. [Google Scholar] [CrossRef]
- Lee, B.J.; Eo, H.; Lee, C.; Park, D. Usefulness of the Modified Videofluoroscopic Dysphagia Scale in Choosing the Feeding Method for Stroke Patients with Dysphagia. Healthcare 2021, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.J.; Brochard, L.; Bush, A.; Donaldson, G.; Han, M.K. Advancing Global Respiratory Health, Sleep, and Critical Care: Editorial from the New American Journal of Respiratory and Critical Care Medicine Team. Am. J. Respir. Crit. Care Med. 2022, 205, i–ii. [Google Scholar] [CrossRef]
- Standardization of Spirometry, 1994 Update. American Thoracic Society. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [CrossRef]
- Malandraki, G.; Robbins, J. Dysphagia. Handb. Clin. Neurol. 2013, 110, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Hoesterey, D.; Das, N.; Janssens, W.; Buhr, R.G.; Martinez, F.J.; Cooper, C.B.; Tashkin, D.P.; Barjaktarevic, I. Spirometric indices of early airflow impairment in individuals at risk of developing COPD: Spirometry beyond FEV1/FVC. Respir. Med. 2019, 156, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Enright, S.J.; Unnithan, V.B. Effect of inspiratory muscle training intensities on pulmonary function and work capacity in people who are healthy: A randomized controlled trial. Phys. Ther. 2011, 91, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.J.; Bausek, N. Effect of respiratory muscle training on dysphagia in stroke patients—A retrospective pilot study. Laryngoscope Investig. Otolaryngol. 2020, 5, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Kijima, M.; Isono, S.; Nishino, T. Coordination of swallowing and phases of respiration during added respiratory loads in awake subjects. Am. J. Respir. Crit. Care Med. 1999, 159, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Bolser, D.C.; Gestreau, C.; Morris, K.F.; Davenport, P.W.; Pitts, T.E. Central neural circuits for coordination of swallowing, breathing, and coughing: Predictions from computational modeling and simulation. Otolaryngol. Clin. N. Am. 2013, 46, 957–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Score | |
---|---|---|
Lip closure | Intact/not intact | 0/6 |
Mastication | Possible/not possible | 0/11.5 |
Oral transit time | ≤1.5 s/>1.5 s | 0/4 |
Triggering pharyngeal swallow (swallowing reflex) | Intact/delayed | 0/7 |
Epiglottis inversion | Yes/no | 0/13 |
Valleculae residue | 0%/<10%/≥10%, <50%/≥50% | 0/3/6/9 |
Pyriformis residue | 0%/<10%/≥10%, <50%/≥50% | 0/6.5/13/19.5 |
Pharyngeal wall coating | No/yes | 0/13 |
Aspiration | Intact/penetration/aspiration | 0/8.5/17 |
Total score | 100 |
Variable | Total | Brain Lesions | Frailty | p-Value |
---|---|---|---|---|
Total, n (%) | 114 (100%) | 54 (47%) | 60 (53%) | |
Age, years | 71.20 ± 10.67 | 73.17 ± 8.69 | 69.38 ± 11.96 | 0.090 |
Gender, n (%) | ||||
Female | 23/114 (20%) | 7/54 (13%) | 16/60 (26.7%) | 0.069 |
Male | 91/114 (80%) | 47/54 (87%) | 44/60 (73.3%) | |
BMI (kg/m2) | 19.58 ± 3.99 | 18.80 ± 3.58 | 20.28 ± 4.23 | 0.049 * |
T-tube | 24/114 (21%) | 12/54 (22.2%) | 12/60 (20.0%) | 0.771 |
L-tube | 52/114 (46%) | 32/54 (59.3%) | 20/60 (33.3%) | 0.006 * |
Pulmonary function test | ||||
FVC (% predicted) | 50.75 ± 24.83 | 51.63 ± 22.91 | 50.20 ± 24.50 | 0.913 |
FEV1 (% predicted) | 54.33 ± 22.41 | 51.45 ± 23.44 | 56.73 ± 21.47 | 0.310 |
FEV1/FVC ratio | 79.75 ± 14.20 | 81.33 ± 14.65 | 77.28 ± 16.14 | 0.259 |
VFSS | ||||
mVDS score | 42.04 ± 22.14 | 43.71 ± 21.63 | 40.54 ± 22.67 | 0.396 |
PAS | 4.52 ± 3.19 | 5.31 ± 3.25 | 3.80 ± 2.97 | 0.032 * |
No. of Patients | |
---|---|
Total, n (%) | 54 (100%) |
Cerebral infarction | 35 (64.81%) |
Cerebral hemorrhage | 1 (1.85%) |
Traumatic brain injury | 6 (11.11%) |
Meningitis | 3 (5.56%) |
Brain tumor | 9 (16.67%) |
Unstandardized Coefficients | Standardized Coefficients | 95% CI | Collinearity Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | B | Standard Error | Beta | t | Parameter | B | Standard Error | Tolerance | VIF | |
FEV1/FVC | PAS | −0.008 | 0.035 | −0.035 | −0.214 | PAS | −0.008 | 0.035 | 0.991 | 1.009 |
FVC | PAS | −0.016 | 0.022 | −0.119 | −0.718 | PAS | −0.016 | 0.022 | 0.991 | 1.009 |
FEV1/FVC | mVDS | 0.231 | 0.235 | 0.162 | 0.985 | mVDS | 0.231 | 0.235 | 0.991 | 1.009 |
FVC | mVDS | 0.049 | 0.150 | 0.053 | 0.323 | mVDS | 0.049 | 0.150 | 0.991 | 1.009 |
Unstandardized Coefficients | Standardized Coefficients | 95% CI | Collinearity Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | B | Standard Error | Beta | t | p-Value | Lower Bound | Upper Bound | Tolerance | VIF | |
FEV1/FVC | PAS | 0.043 | 0.033 | 0.227 | 1.288 | 0.206 | −5.014 | 0.110 | 1.000 | 1.000 |
FVC | PAS | −0.018 | 0.022 | −0.142 | −0.807 | 0.425 | −0.062 | 0.027 | 1.000 | 1.000 |
FEV1/FVC | mVDS | −0.293 | 0.226 | −0.218 | −1.297 | 0.203 | −0.751 | 0.165 | 1.000 | 1.000 |
FVC | mVDS | −0.425 | 0.149 | −0.480 | −2.852 | 0.007 * | −0.726 | −0.123 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.J.; Lee, S.C.; Choi, H.Y.; Chang, M.C.; Park, D. Correlation between Forced Vital Capacity and the Severity of Frailty-Induced Dysphagia. J. Clin. Med. 2022, 11, 1962. https://doi.org/10.3390/jcm11071962
Lee BJ, Lee SC, Choi HY, Chang MC, Park D. Correlation between Forced Vital Capacity and the Severity of Frailty-Induced Dysphagia. Journal of Clinical Medicine. 2022; 11(7):1962. https://doi.org/10.3390/jcm11071962
Chicago/Turabian StyleLee, Byung Joo, Sang Cheol Lee, Ho Yong Choi, Min Cheol Chang, and Donghwi Park. 2022. "Correlation between Forced Vital Capacity and the Severity of Frailty-Induced Dysphagia" Journal of Clinical Medicine 11, no. 7: 1962. https://doi.org/10.3390/jcm11071962
APA StyleLee, B. J., Lee, S. C., Choi, H. Y., Chang, M. C., & Park, D. (2022). Correlation between Forced Vital Capacity and the Severity of Frailty-Induced Dysphagia. Journal of Clinical Medicine, 11(7), 1962. https://doi.org/10.3390/jcm11071962