Bone Alterations in Inflammatory Bowel Diseases: Role of Osteoprotegerin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Bone Mineral Density Measurement: Dual X-ray Absorptiometry
2.3. Laboratory Methods
2.3.1. OPG Serum Level: ELISA Assay
2.3.2. Serum 25-Hydroxyvitamin D
2.3.3. Serum Parathyroid Hormone (PTH)
2.4. Statistical Analysis
3. Results
3.1. Subjects’ Characteristics
3.2. Serum Osteoprotegerin Level
3.3. Bone Mineral Density in IBD Patients
3.4. Serum Vitamin D
3.5. Serum Parathyroid Hormone
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sgambato, D.; Gimigliano, F.; De Musis, C.; Moretti, A.; Toro, G.; Ferrante, E.; Miranda, A.; De Mauro, D.; Romano, L.; Iolascon, G.; et al. Bone alterations in inflammatory bowel diseases. World J. Clin. Cases 2019, 7, 1908–1925. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, S.B. Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel Dis. 2006, 12, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Greuter, T.; Vavricka, S.R. Extraintestinal manifestations in inflammatory bowel disease -epidemiology, genetics and pathogenesis. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Levine, J.S.; Burakoff, R. Extraintestinal Manifestations of Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2011, 7, 235–241. [Google Scholar]
- Harbord, M.; Annese, V.; Vavricka, S.R.; Allez, M.; Barreiro-de Acosta, M.; Boberg, K.M.; Burisch, J.; De Vos, M.; De Vries, A.M.; Dick, A.D.; et al. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis 2016, 10, 239–254. [Google Scholar] [CrossRef]
- Danzi, J.T. Extraintestinal manifestations of idiopathic inflammatory bowel disease. Arch. Intern. Med. 1988, 148, 297–302. [Google Scholar] [CrossRef]
- Vavricka, S.R.; Schoepfer, A.; Scharl, M.; Lakatos, P.L.; Navarini, A.; Rogler, G. Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 1982–1992. [Google Scholar] [CrossRef] [Green Version]
- D’Amelio, P.; Sassi, F. Gut Microbiota, Immune System, and Bone. Calcif. Tissue Int. 2018, 102, 415–425. [Google Scholar] [CrossRef]
- Irwin, R.; Raehtz, S.; Parameswaran, N.; McCabe, L.R. Intestinal inflammation without weight loss decreases bone density and growth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R1149–R1157. [Google Scholar] [CrossRef] [Green Version]
- Brunner, R.L.; Cochrane, B.; Jackson, R.D.; Larson, J.; Lewis, C.; Limacher, M.; Rosal, M.; Shumaker, S.; Wallace, R. Calcium, Vitamin D Supplementation and Physical Function in The Women’s Health Initiative. J. Am. Diet. Assoc. 2008, 108, 1472–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjarnason, I.; Macpherson, A.; Mackintosh, C.; Buxton-Thomas, M.; Forgacs, I.; Moniz, C. Reduced bone density in patients with inflammatory bowel disease. Gut 1997, 40, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Moschen, A.R.; Kaser, A.; Enrich, B.; Ludwiczek, O.; Gabriel, M.; Obrist, P.; Wolf, A.M.; Tilg, H. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 2005, 54, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.A.; Lyra, A.C.; Rocha, R.; Santana, G.O. Risk factors for osteoporosis in inflammatory bowel disease patients. World J. Gastrointest. Pathophysiol. 2015, 6, 210–218. [Google Scholar] [CrossRef]
- Krela-Kaźmierczak, I.; Szymczak-Tomczak, A.; Łykowska-Szuber, L.; Wysocka, E.; Michalak, M.; Stawczyk-Eder, K.; Waszak, K.; Linke, K.; Eder, P. Interleukin 6, osteoprotegerin, sRANKL and bone metabolism in inflammatory bowel diseases. Adv. Clin. Exp. Med. 2018, 27, 449–453. [Google Scholar] [CrossRef]
- Burri, E.; Maillard, M.H.; Schoepfer, A.M.; Seibold, F.; Van Assche, G.; Rivière, P.; Laharie, D.; Manz, M. Treatment Algorithm for Mild and Moderate-to-Severe Ulcerative Colitis: An Update. Digestion 2020, 101, 2–15. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, U.; Iolascon, G.; Cianferotti, L.; Masi, L.; Marcucci, G.; Giusti, F.; Marini, F.; Parri, S.; Feola, M.; Rao, C.; et al. Clinical guidelines for the prevention and treatment of osteoporosis: Summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. J. Orthop. Traumatol. 2017, 18, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Shuhart, C.R.; Yeap, S.S.; Anderson, P.A.; Jankowski, L.G.; Lewiecki, E.M.; Morse, L.R.; Rosen, H.N.; Weber, D.R.; Zemel, B.S.; Shepherd, J.A. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J. Clin. Densitom. 2019, 22, 453–471. [Google Scholar] [CrossRef]
- Silva, B.C.; Leslie, W.D.; Resch, H.; Lamy, O.; Lesnyak, O.; Binkley, N.; McCloskey, E.V.; Kanis, J.A.; Bilezikian, J.P. Trabecular Bone Score: A Noninvasive Analytical Method Based upon the DXA Image. J. Bone Miner. Res. 2014, 29, 518–530. [Google Scholar] [CrossRef]
- Haschka, J.; Hirschmann, S.; Kleyer, A.; Englbrecht, M.; Faustini, F.; Simon, D.; Figueiredo, C.P.; Schuster, L.; Muschitz, C.; Kocijan, R.; et al. High-resolution Quantitative Computed Tomography Demonstrates Structural Defects in Cortical and Trabecular Bone in IBD Patients. J. Crohns Colitis 2016, 10, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2020 Update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, C.N.; Sargent, M.; Leslie, W.D. Serum osteoprotegerin is increased in Crohn’s disease: A population-based case control study. Inflamm. Bowel Dis. 2005, 11, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Coufal, S.; Galanova, N.; Bajer, L.; Gajdarova, Z.; Schierova, D.; Zakostelska, Z.J.; Kostovcikova, K.; Jackova, Z.; Stehlikova, Z.; Drastich, P.; et al. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells 2019, 8, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krela-Kaźmierczak, I.; Kaczmarek-Ryś, M.; Szymczak-Tomczak, A.; Michalak, M.; Skrzypczak-Zielinska, M.; Drwęska-Matelska, N.; Marcinkowska, M.; Eder, P.; Łykowska-Szuber, L.; Wysocka, E.; et al. Bone Metabolism and the c.-223C > T Polymorphism in the 5′UTR Region of the Osteoprotegerin Gene in Patients with Inflammatory Bowel Disease. Calcif. Tissue Int. 2016, 99, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Xu, C.; Zhao, H.; Xia, P.; Song, R.; Gu, J.; Liu, X.; Bian, J.; Yuan, Y.; Liu, Z. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway. PLoS ONE 2015, 10, e0142519. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Nahidi, L.; Leach, S.T.; Lemberg, D.A.; Day, A.S. Osteoprotegerin exerts its pro-inflammatory effects through nuclear factor-κB activation. Dig. Dis. Sci. 2013, 58, 3144–3155. [Google Scholar] [CrossRef]
- Miheller, P.; Műzes, G.; Rácz, K.; Blázovits, A.; Lakatos, P.; Herszényi, L.; Tulassay, Z. Changes of OPG and RANKL concentrations in Crohn’s disease after infliximab therapy. Inflamm. Bowel Dis. 2007, 13, 1379–1384. [Google Scholar] [CrossRef]
- Ashcroft, R.M.; Criuckshank, S.M.; Croucher, P.I.; Perry, M.J.; Rollingson, S.; Lippitt, J.M.; Child, J.A.; Dunstan, C.; Felsburg, G.J.; Morgan, G.J.; et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 2003, 19, 849–861. [Google Scholar] [CrossRef]
- Mainini, G.; Incoronato, M.; Urso, L.; Scaffa, C. Serum osteoprotegerin correlates with age and bone mass in postmenopausal, but not in fertile age women. Clin. Exp. Obstet. Gynecol. 2011, 38, 355–359. [Google Scholar] [PubMed]
- Indridason, O.S.; Franzson, L.; Sigurdsson, G. Serum osteoprotegerin and its relationship with bone mineral density and markers of bone turnover. Osteoporos. Int. 2005, 16, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Kärnsund, S.; Lo, B.; Bendtsen, F.; Holm, J.; Burisch, J. Systematic review of the prevalence and development of osteoporosis or low bone mineral density and its risk factors in patients with inflammatory bowel disease. World J. Gastroenterol. 2020, 26, 5362–5374. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, F.; Rotundo, S.; Armili, S.; Mimmi, S.; Lucia, F.; Montenegro, N.; Antico, G.C.; Cerra, A.; Gaetano, M.; Galato, F.; et al. Serum 25-hydroxyvitamin D measurement: Comparative evaluation of three automated immunoassays. Pract. Lab. Med. 2021, 26, e00251. [Google Scholar] [CrossRef] [PubMed]
All IBD Patients | Subjects Enrolled, N (% Total) | Mean Age (Years ± SD) | Steroid Use (N of Cycles/Subject) |
---|---|---|---|
70 (100%) | 44 (±17.3) | 3.7 | |
CD | 34 (49%) | 43 (±16.4) | 4 |
-male | 18 | 44 (±16.8) | 4.1 |
-female | 16 | 41 (±16.3) | 3.9 |
UC | 36 (51%) | 45 (±18.4) | 3.4 |
-male | 21 | 50 (±19.7) | 3.4 |
-female | 15 | 39 (±14.8) | 3.3 |
Control group | 70 (100%) | 46 (±22.1) | 0 |
-male | 37 | 49 (±20) | 0 |
-female | 33 | 43 (±24.8) | 0 |
Group 1 (n = 40) | Group 2 (n = 30) | |
---|---|---|
CD | 20 | 14 |
UC | 20 | 16 |
OPG Mean Level (pg/mL) ± SD | p-Value | |||
---|---|---|---|---|
All IBD patients | 48.1 (±26.64) | p < 0.05 | ||
CD | 47.39 (±24.39) | p = 0.8266 | ||
-males | 41.7 (±12.77) | p = 0.155 | ||
-females | 53.7 (±32.29) | |||
UC | 48.8 (±28.9) | |||
-males | 49.9 (±27.67) | p = 0.88 | ||
-females | 51.4 (±31.43) | |||
Control group | 61.3 (±47.19) |
UC | CD | ||||||
---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 1 | Group 2 | ||||
Z-Score Lumbar Spine | Z-Score Femoral Neck | T-Score Lumbar Spine | T-Score Femoral Neck | Z-Score Lumbar Spine | Z-Score Femoral Neck | T-Score Lumbar Spine | T-Score Femoral Neck |
−0.94 (±0.98) | −0.86 (±0.91) | −0.44 (±0.82) | −1.38 (±0.89) | −0.97 (±1.05) | −0.88 (±0.96) | −1.35 (±1.54) | −1.92 (±0.94) |
Mean OPG ± SD | |||||||
59 ± 29.5 | 43 ± 27.6 | 54.9 ± 20.3 | 44.2±25.6 | ||||
r value, p-value | |||||||
r = 0.47, p < 0.05 | r = −0.5, p < 0.05 | r = −0.79, p < 0.05 | r = 0.13, p = 0.6 | r = 0.83, p < 0.05 | r = 0.65 p = 0.3 | r = 0.77, p < 0.05 | r = −0.48 p = 0.08 |
UC (n 20) | CD (n 20) | p-Value | |
---|---|---|---|
Lumbar spine Z-score ≤ −2 SD | 5/20 (25%) | 7/20 (35%) | p = 0.7 |
Femoral neck Z-score ≤ −2 SD | 2/20 (10%) | 4/20 (20%) | p = 0.8 |
Lumbar spine Z-score > −2 SD | 15/20 (75%) | 13/20 (65%) | p = 0.5 |
Femoral neck Z-score > −2 SD | 18/20 (90%) | 16/20 (80%) | p = 0.16 |
Fragility fractures | 0 (0%) | 0 (0%) | - |
UC (n 16) | CD (n 14) | p-Value | |
---|---|---|---|
T-score lumbar spine >−1 | 5/16 (31%) | 4/14 (28.5%) | p = 0.8 |
T-score femoral neck >−1 | 3/16 (19%) | 2/14 (14%) | p = 0.6 |
T-score lumbar spine −1–−2.5 SD | 8/16 (50%) | 5/14 (36%) | p = 0.2 |
T-score femoral neck −1–−2.5 SD | 4/16 (25%) | 4/14 (28.5%) | p = 0.4 |
T-score lumbar spine ≤2.5 SD | 2/16 (12.5%) | 3/14 (21%) | p = 0.8 |
T-score femoral neck ≤2.5 SD | 3/16 (19%) | 5/14 (36%) | p = 0.5 |
Fragility fractures | 2/16 (12.5%) | 1/14 (7%) | NS |
Serum 25(OH)D—Group 1 | |||
---|---|---|---|
>30 ng/mL | <30 ng/mL | ||
20 (50%) | 20 (50%) | ||
Z > −2.0 | Z ≤ −2.0 | Z > −2.0 | Z ≤ −2.0 |
14 (70%) | 6 (30%) | 10 (50%) | 10 (50%) |
r = 0.41, p = 0.07 |
Serum 25(OH)D—Group 2 | |||
---|---|---|---|
>30 ng/mL | <30 ng/mL | ||
12 (40%) | 18 (60%) | ||
T > −1 | T < −1 | T > −1 | T < −1 |
4 (33.3%) | 8 (66.6%) | 2 (11%) | 16 (89%) |
r = 0.42, p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priadko, K.; Moretti, A.; Iolascon, G.; Gravina, A.G.; Miranda, A.; Sgambato, D.; De Musis, C.; Romano, M.; Gimigliano, F. Bone Alterations in Inflammatory Bowel Diseases: Role of Osteoprotegerin. J. Clin. Med. 2022, 11, 1840. https://doi.org/10.3390/jcm11071840
Priadko K, Moretti A, Iolascon G, Gravina AG, Miranda A, Sgambato D, De Musis C, Romano M, Gimigliano F. Bone Alterations in Inflammatory Bowel Diseases: Role of Osteoprotegerin. Journal of Clinical Medicine. 2022; 11(7):1840. https://doi.org/10.3390/jcm11071840
Chicago/Turabian StylePriadko, Kateryna, Antimo Moretti, Giovanni Iolascon, Antonietta Gerarda Gravina, Agnese Miranda, Dolores Sgambato, Cristiana De Musis, Marco Romano, and Francesca Gimigliano. 2022. "Bone Alterations in Inflammatory Bowel Diseases: Role of Osteoprotegerin" Journal of Clinical Medicine 11, no. 7: 1840. https://doi.org/10.3390/jcm11071840
APA StylePriadko, K., Moretti, A., Iolascon, G., Gravina, A. G., Miranda, A., Sgambato, D., De Musis, C., Romano, M., & Gimigliano, F. (2022). Bone Alterations in Inflammatory Bowel Diseases: Role of Osteoprotegerin. Journal of Clinical Medicine, 11(7), 1840. https://doi.org/10.3390/jcm11071840