Oxidative and Antioxidative Status Expressed as OSI Index and GSH/GSSG Ratio in Children with Bone Tumors after Anticancer Therapy Completion
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.S.; DeNicola, G.M. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020, 30, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Scirè, A.; Cianfruglia, L.; Minnelli, C.; Bartolini, D.; Torquato, P.; Principato, G.; Galli, F.; Armeni, T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019, 45, 152–168. [Google Scholar] [CrossRef] [PubMed]
- Nathan, F.M.; Singh, V.A.; Dhanoa, A.; Palanisamy, U.D. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma. BMC Cancer 2011, 27, 382. [Google Scholar] [CrossRef] [PubMed]
- Hensley, C.T.; Faubert, B.; Yuan, Q.; Lev-Cohain, N.; Jin, E.; Kim, J.; Jiang, L.; Ko, B.; Skelton, R.; Loudat, L.; et al. Metabolic heterogeneity in human lung tumors. Cell 2016, 164, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Shang, L.; Brooks, M.D.; Jiagge, E.; Zhu, Y.; Buschhaus, J.M.; Conley, S.; Fath, M.A.; Davis, A.; Gheordunescu, E.; et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 2018, 28, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Gamcsik, M.P.; Kasibhatla, M.S.; Teeter, S.D.; Colvin, O.M. Glutathione levels in human tumors. Biomarkers 2012, 17, 671–691. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217, 2291–2298. [Google Scholar] [CrossRef]
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxidative Med. Cell. Longev. 2013, 2013, 972913. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Kageyama, S.; Moyama, C.; Ando, S.; Ii, H.; Ashihara, E.; Horinaka, M.; Sakai, T.; Kubota, S.; Kawauchi, A.; et al. γ-Glutamylcyclotransferase, a novel regulator of HIF-1α expression, triggers aerobic glycolysis. Cancer Gene Ther. 2021, 29, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.C.; Zhang, D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013, 27, 2179–2191. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qiu, B.; Lee, D.S.; Walton, Z.E.; Ochocki, J.D.; Mathew, L.K.; Mancuso, A.; Gade, T.P.; Keith, B.; Nissim, I.; et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014, 513, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Lee, E.E.; Sudderth, J.; Yue, Y.; Zia, A.; Glass, D.; Deberardinis, R.J.; Wang, R.C. Glutathione depletion, pentose phosphate pathway activation, and hemolysis in erythrocytes protecting cancer cells from vitamin C-induced oxidative stress. J. Biol. Chem. 2016, 291, 22861–22867. [Google Scholar] [CrossRef] [PubMed]
- Evola, F.R.; Costarella, L.; Pavone, V.; Caff, G.; Cannavò, L.; Sessa, A.; Avondo, S.; Sessa, G. Biomarkers of osteosarcoma, chondrosarcoma, and Ewing sarcoma. Front. Pharmacol. 2017, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Posthuma DeBoer, J.; Witlox, M.A.; Kaspers, G.J.; van Royen, B.J. Molecular alterations as target for therapy in metastatic osteosarcoma: A review of literature. Clin. Exp. Metastasis 2011, 28, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, E.; Karimdjee-Soilihi, B.; Michiels, J.F.; Ricci, J.E.; Millet, M.A.; Vandenbos, F.; Sullivan, T.J.; Collins, T.L.; Johnson, M.G.; Medina, J.C.; et al. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. Int. J. Cancer 2009, 125, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yamazaki, Y.; Kanno, Y.; Igarashi, K.; Aisaki, K.; Kanno, J.; Nakamura, T. Ewing’s sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. J. Clin. Investig. 2014, 124, 3061–3074. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, T.G.P.; Cidre-Aranaz, F.; Surdez, D.; Tomazou, E.M.; de Álava, E.; Kovar, H.; Sorensen, P.H.; Delattre, O.; Dirksen, U. Ewing sarcoma. Nat. Rev. Dis. Primers 2018, 4, 5. [Google Scholar] [CrossRef]
- Rana, T.; Schultz, M.A.; Freeman, M.L.; Biswas, S. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic. Biol. Med. 2012, 53, 2298–2307. [Google Scholar] [CrossRef]
- Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Atashi, F.; Modarressi, A.; Pepper, M.S. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 2015, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, M.; Menon, M.K.C.; Seyoum, N.; Bekele, M.; Tigeneh, W.; Seifu, D. Blood and tissue enzymatic activities of GDH and LDH, index of glutathione, and oxidative stress among breast cancer patients attending referral hospitals of Addis Ababa, Ethiopia: Hospital-Based comparative cross-sectional study. Oxidative Med. Cell. Longev. 2018, 2018, 6039453. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Feng, J.F.; Zeng, P.; Yang, Y.H.; Luo, J.; Yang, Y.W. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr. Relat. Cancer 2011, 18, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Feng, J.; Yang, Y.; Dai, C.; Lu, A.; Li, J.; Liao, Y.; Xiang, M.; Huang, Q.; Wang, D.; et al. Significance of serum total oxidant/antioxidant status in patients with colorectal cancer. PLoS ONE 2017, 12, e0170003. [Google Scholar] [CrossRef] [PubMed]
- López Laur, J.D.; Abud, M.; López Fontana, C.; Silva, J.; Cisella, Y.; Pérez Elizalde, R.; Ortiz, A. Antioxidant power and cellular damage in prostate cancer. Arch. Españoles Urol. 2008, 61, 563–569. [Google Scholar]
- Dincer, Y.; Yüksel, S.; Batar, B.; Güven, M.; Onaran, I.; Celkan, T. DNA repair gene polymorphisms and their relation with DNA damage, DNA repair, and total antioxidant capacity in childhood acute lymphoblastic leukemia survivors. J. Pediatr. Hematol. Oncol. 2015, 37, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Zitka, O.; Skalickova, S.; Gumulec, J.; Masarik, M.; Adam, V.; Hubalek, J.; Trnkova, L.; Kruseova, J.; Eckschlager, T.; Kizek, R. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 2012, 4, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Tatzber, F.; Griebenow, S.; Wonisch, W.; Winkler, R. Dual method for the determination of peroxidase activity and total peroxides-iodide leads to a significant increase of peroxidase activity in human sera. Anal. Biochem. 2003, 316, 147–153. [Google Scholar] [CrossRef]
- Limón-Pacheco, J.; Gonsebatt, M.E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. 2009, 674, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Joerger, M.; Huober, J. Diagnostic and prognostic use of bone turnover markers. Cancer Res. 2012, 192, 197–223. [Google Scholar]
- Levine, A.M.; Triche, T.; Rosenberg, S.A. Osteosarcoma cells in tissue culture: II. Characterization and localization of alkaline phosphatase activity. Clin. Orthop. Relat. Res. 1980, 146, 259–268. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Gajewska, J.; Klepacka, T.; Chełchowska, M.; Laskowska-Klita, T.; Woźniak, W. Clinical utility of biochemical bone turnover markers in children and adolescents with osteosarcoma. Adv. Med. Sci. 2010, 55, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.M.; Kim, Y.N.; Park, K.H.; Kang, B.; Chon, H.J.; Kim, C.; Kim, J.H.; Rha, S.Y. Bone alkaline phosphatase as a surrogate marker of bone metastasis in gastric cancer patients. BMC Cancer 2016, 16, 385. [Google Scholar] [CrossRef]
- Rychłowska-Pruszyńska, M.; Gajewska, J.; Ambroszkiewicz, J.; Karwacki, M.; Szamotulska, K. The levels of bone alkaline phosphatase (BALP) and soluble epidermal growth factor receptor-2 (ECD/HER-2) in pediatric patients with osteosarcoma during clinical treatment. Dev. Period Med. 2018, 22, 58–64. [Google Scholar] [PubMed]
- Chevion, S.; Or, R.; Berry, E.M. The antioxidant status of patients subjected to total body irradiation. Biochem. Mol. Biol. Int. 1999, 47, 1019–1027. [Google Scholar] [PubMed]
- Scibior, D.; Skrzycki, M.; Podsiad, M.; Czeczot, H. Glutathione level and glutathione-dependent enzyme activities in blood serum of patients with gastrointestinal tract tumors. Clin. Biochem. 2008, 41, 852–858. [Google Scholar] [CrossRef]
- Didžiapetrienė, J.; Kazbarienė, B.; Tikuišis, R.; Dulskas, A.; Dabkevičienė, D.; Lukosevičienė, V.; Kontrimavičiūtė, E.; Sužiedėlis, K.; Ostapenko, V. Oxidant/Antioxidant Status of Breast Cancer Patients in Pre- and Post-Operative Periods. Medicina 2020, 56, 70. [Google Scholar] [CrossRef] [PubMed]
- Grunwell, J.R.; Gillespie, S.E.; Ward, J.M.; Fitzpatrick, A.M.; Brown, L.A.; Gauthier, T.W.; Hebbar, K.B. Comparison of glutathione, cysteine, and their redox potentials in the plasma of critically ill and healthy children. Front. Pediatr. 2015, 3, 46. [Google Scholar] [CrossRef][Green Version]
- Asantewaa, G.; Harris, I.S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 2021, 68, 292–299. [Google Scholar] [CrossRef]
- Zhong, Z.; Mao, S.; Lin, H.; Li, H.; Lin, J.; Lin, J.M. Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry. Talanta 2019, 204, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; You, X.; Yi, T.; Lu, B.; Liu, J.; Lu, G.; Ma, M.; Zou, C.; Wu, J.; et al. Nanoparticle enhanced combination therapy for stem-like progenitors defined by single-cell transcriptomics in chemotherapy-resistant osteosarcoma. Signal Transduct. Target. Ther. 2020, 5, 196. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, S.; Ii, H.; Taniguchi, K.; Kubota, S.; Yoshida, T.; Isono, T.; Chano, T.; Yoshiya, T.; Ito, K.; Yoshiki, T.; et al. Mechanisms of tumor growth inhibition by depletion of gamma-glutamylcyclotransferase (GGCT): A novel molecular target for anticancer therapy. Int. J. Mol. Sci. 2018, 19, 2054. [Google Scholar] [CrossRef] [PubMed]
- Gromov, P.; Gromova, I.; Friis, E.; Timmermans-Wielenga, V.; Rank, F.; Simon, R.; Sauter, G.; Moreira, J.M. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker. J. Proteome Res. 2010, 9, 3941–3953. [Google Scholar] [CrossRef] [PubMed]
- Uejima, D.; Nishijo, K.; Kajita, Y.; Ishibe, T.; Aoyama, T.; Kageyama, S.; Iwaki, H.; Nakamura, T.; Iida, H.; Yoshiki, T.; et al. Involvement of cancer biomarker C7orf24 in the growth of human osteosarcoma. Anticancer Res. 2011, 31, 1297–1305. [Google Scholar] [PubMed]
- Dong, J.; Zhou, Y.; Liao, Z.; Huang, Q.; Feng, S.; Li, Y. Role of gamma-glutamyl cyclotransferase as a therapeutic target for colorectal cancer based on the lentivirus-mediated system. Anticancer Drugs 2016, 27, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, T.; Wang, Y.; Yang, L.; Hu, C.; Chen, L.; Wu, S. gamma-Glutamyl cyclotransferase contributes to tumor progression in high grade serous ovarian cancer by regulating epithelial-mesenchymal transition via activating PI3K/AKT/mTOR pathway. Gynecol. Oncol. 2018, 149, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Hong, E.S.; Mendoza, A.; Issaq, S.; Tran Hoang, C.; Lizardo, M.; LeBlanc, A.; Khanna, C. Metabolomics uncovers a link between inositol metabolism and osteosarcoma metastasis. Oncotarget 2017, 8, 38541–38553. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.M.; Roberts, R.D.; Lizardo, M.M. Understanding and modeling metastasis biology to improve therapeutic strategies for combating osteosarcoma progression. Front. Oncol. 2020, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Scotlandi, K.; Remondini, D.; Castellani, G.; Manara, M.C.; Nardi, F.; Cantiani, L.; Francesconi, M.; Mercuri, M.; Caccuri, A.M.; Serra, M.; et al. Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J. Clin. Oncol. 2009, 27, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.; Magwere, T.; Burchill, S.A. Oxidative stress and therapeutic opportunities: Focus on the Ewing’s sarcoma family of tumors. Expert Rev. Anticancer Ther. 2011, 11, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Magwere, T.; Myatt, S.S.; Burchill, S.A. Manipulation of oxidative stress to induce cell death in Ewing’s sarcoma family of tumours. Eur. J. Cancer. 2008, 44, 2276–2287. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Chuang, C.H.; Wu, S.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Yamamori, T.; Yasui, H.; Yamazumi, M.; Wada, Y.; Nakamura, Y.; Nakamura, H.; Inanami, O. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic. Biol. Med. 2012, 53, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, A.; Ohmura, S.; Orth, M.F.; Knott, M.M.L.; Colombo, M.V.; Arrigoni, C.; Bardinet, V.; Saucier, D.; Wehweck, F.S.; Li, J.; et al. Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat. Commun. 2020, 11, 2423. [Google Scholar] [CrossRef] [PubMed]
- Pani, G.; Galeotti, T.; Chiarugi, P. Metastasis: Cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 2010, 29, 351–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Sarkar, F.H. Signaling mechanism(s) of reactive oxygen species in epithelial-mesenchymal transition reminiscent of cancer stem cells in tumor progression. Curr. Stem Cell Res. Ther. 2010, 5, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017, 4, 144–164. [Google Scholar] [CrossRef] [PubMed]
Number of Patients | Percent of Patients | ||
---|---|---|---|
Gender | Male | 20 | 57% |
Female | 15 | 43% | |
Type of tumor (histological subtype) | Osteosarcoma | 24 | 69% |
osteoblastic | 15 | 62.50% | |
chondroblastic | 3 | 12.50% | |
teleangiectatic | 1 | 4% | |
mixed | 5 | 21% | |
Ewing’s sarcoma | 11 | 31% | |
Localization of primary tumor | Femur | 19 | 54.50% |
Humerus | 6 | 17% | |
Tibia | 4 | 11.50% | |
other | 6 | 17% | |
Metastases | With metastases | 21 | 60% |
Without metastases | 14 | 40% | |
Histological response | >90% tumor necrosis | 23 | 66% |
<90% tumor necrosis | 12 | 34% | |
Type of surgery | Resection | 30 | 86% |
Amputation | 5 | 14% |
Bone Tumor Survivors n = 35 | Healthy Children n = 32 | p | |
---|---|---|---|
Age (years) | 15.7 ± 3.2 | 14.0 ± 5.6 | 0.147 |
Girls/Boys (%) | 42.9/57.1 | 43.7/56.3 | 0.580 |
Post-therapy period (months) | 14.0 (7.5–17.0) | not applicable | not applicable |
BALP (U/L) | 78.8 (41.2–127.3) | 98.7 (65.0–119.3) | 0.467 |
TAC (mmol/L) | 1.58 ± 0.42 | 1.28 ± 0.35 | 0.002 |
TOC (mmol/L) | 0.219 ± 0.079 | 0.209 ± 0.115 | 0.678 |
OSI | 0.144 (0.094–0.193) | 0.126 (0.101–0.213) | 0.706 |
GSH (µmol/L) | 17.4 (13.4–24.7) | 10.6 (7.8–14.2) | <0.001 |
GSSG (µmol/L) | 6.60 (5.38–8.75) | 5.73 (4.68–8.18) | 0.054 |
GSH/GSSG | 2.61 (2.26–3.10) | 1.69 (1.46–2.00) | 0.001 |
Survivors with Osteosarcoma n = 24 | Survivors with Ewing’s Sarcoma n = 11 | p | |
---|---|---|---|
Age (years) | 15.3 ± 2.9 | 16.5 ± 3.7 | 0.389 |
Post-therapy period (months) | 14.0 (5.8–17.0) | 16.0 (9.5–18.0) | 0.444 |
BALP (U/L) | 82.5 (45.3–127.1) | 51.6 (36.1–110.0) | 0.338 |
TAC (mmol/L) | 1.66 ± 0.42 | 1.42 ± 0.41 | 0.120 |
TOC (mmol/L) | 0.195 ± 0.078 | 0.271 ± 0.057 | 0.006 |
OSI | 0.127 (0.074–0.163) | 0.188 (0.165–0.214) | 0.008 |
GSH (µmol/L) | 19.2 (14.1–34.3) | 14.1 (11.3–18.3) | 0.092 |
GSSG (µmol/L) | 6.48 (5.23–9.36) | 6.60 (5.97–7.53) | 0.826 |
GSH/GSSG | 2.93 (2.56–3.19) | 2.41 (1.61–2.70) | 0.029 |
TOC (mmol/L) r(p) | TAC (mmol/L) r(p) | OSI r(p) | |
---|---|---|---|
GSH (µmol/L) | −0.197 (0.279) | 0.394 (0.026) | −0.323 (0.072) |
GSSG (µmol/L) | −0.200 (0.274) | 0.068 (0.713) | −0.190 (0.299) |
GSH/GSSG | −0.014 (0.940) | 0.504 (0.003) | −0.209 (0.252) |
TOC (mmol/L) r(p) | TAC (mmol/L) r(p) | OSI r(p) | |
---|---|---|---|
GSH (µmol/L) | −0.132 (0.449) | 0.384 (0.023) | −0.329 (0.054) |
GSSG (µmol/L) | −0.104 (0.554) | 0.413 (0.014) | −0.263 (0.127) |
GSH/GSSG | −0.087 (0.619) | −0.002 (0.992) | −0.175 (0.315) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewska, J.; Chełchowska, M.; Rychłowska-Pruszyńska, M.; Klepacka, T.; Ambroszkiewicz, J. Oxidative and Antioxidative Status Expressed as OSI Index and GSH/GSSG Ratio in Children with Bone Tumors after Anticancer Therapy Completion. J. Clin. Med. 2022, 11, 1663. https://doi.org/10.3390/jcm11061663
Gajewska J, Chełchowska M, Rychłowska-Pruszyńska M, Klepacka T, Ambroszkiewicz J. Oxidative and Antioxidative Status Expressed as OSI Index and GSH/GSSG Ratio in Children with Bone Tumors after Anticancer Therapy Completion. Journal of Clinical Medicine. 2022; 11(6):1663. https://doi.org/10.3390/jcm11061663
Chicago/Turabian StyleGajewska, Joanna, Magdalena Chełchowska, Magdalena Rychłowska-Pruszyńska, Teresa Klepacka, and Jadwiga Ambroszkiewicz. 2022. "Oxidative and Antioxidative Status Expressed as OSI Index and GSH/GSSG Ratio in Children with Bone Tumors after Anticancer Therapy Completion" Journal of Clinical Medicine 11, no. 6: 1663. https://doi.org/10.3390/jcm11061663
APA StyleGajewska, J., Chełchowska, M., Rychłowska-Pruszyńska, M., Klepacka, T., & Ambroszkiewicz, J. (2022). Oxidative and Antioxidative Status Expressed as OSI Index and GSH/GSSG Ratio in Children with Bone Tumors after Anticancer Therapy Completion. Journal of Clinical Medicine, 11(6), 1663. https://doi.org/10.3390/jcm11061663