Body Composition Assessment by Air-Displacement Plethysmography Compared to Dual-Energy X-ray Absorptiometry in Full-Term and Preterm Aged Three to Five Years
Abstract
1. Introduction
2. Material and Methods
2.1. Study Setting and Subjects
2.2. Data Collection and Measurements
2.3. Anthropometrics
2.4. Body Composition
C2 = Dfm/(Dffm − Dfm)
FM% = (C1/BD − C2) ∗ 100%
2.5. Statistical Analysis
3. Results
3.1. Comparison between ADP and DXA in Full-Term-Born Children
3.2. Revised FFM Density Model
3.3. Comparison between ADP and DXA in Very Preterm-Born Children
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Report of the Commission on Ending Childhood Obesity; Report No. 9789241510066; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Weihrauch-Bluher, S.; Schwarz, P.; Klusmann, J.H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019, 92, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Breij, L.M.; Kerkhof, G.F.; De Lucia Rolfe, E.; Ong, K.K.; Abrahamse-Berkeveld, M.; Acton, D.; Hokken-Koelega, A.C.S. Longitudinal fat mass and visceral fat during the first 6 months after birth in healthy infants: Support for a critical window for adiposity in early life. Pediatr. Obes. 2017, 12, 286–294. [Google Scholar] [CrossRef]
- Freedman, D.S.; Sherry, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 2009, 124 (Suppl. 1), S23–S34. [Google Scholar] [CrossRef] [PubMed]
- Griffin, I.J.; Cooke, R.J. Development of whole body adiposity in preterm infants. Early Hum. Dev. 2012, 88 (Suppl. 1), S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Andres, A.; Fields, D.A.; Evans, W.J.; Kuczmarski, R.; Lowe, W.L., Jr.; Lumeng, J.C.; Oken, E.; Shepherd, J.A.; Sun, S. Body composition measurements from birth through 5 years: Challenges, gaps, and existing & emerging technologies—A National Institutes of Health Workshop. Obes. Rev. 2020, 21, e13033. [Google Scholar]
- Zanini Rde, V.; Santos, I.S.; Chrestani, M.A.; Gigante, D.P. Body fat in children measured by DXA, air-displacement plethysmography, TBW and multicomponent models: A systematic review. Matern. Child Health J. 2015, 19, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- de Fluiter, K.S.; van Beijsterveldt, I.; Goedegebuure, W.J.; Breij, L.M.; Spaans, A.M.J.; Acton, D.; Hokken-Koelega, A.C.S. Longitudinal body composition assessment in healthy term-born infants until 2 years of age using ADP and DXA with vacuum cushion. Eur. J. Clin. Nutr. 2020, 74, 642–650. [Google Scholar] [CrossRef] [PubMed]
- van Beijsterveldt, I.; van der Steen, M.; de Fluiter, K.S.; Spaans, S.; Hokken-Koelega, A.C.S. Body composition and bone mineral density by Dual Energy X-ray Absorptiometry: Reference values for young children. Clin. Nutr. 2021, 41, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Goran, M.I.; McCrory, M.A. Body-composition assessment via air-displacement plethysmography in adults and children: A review. Am. J. Clin. Nutr. 2002, 75, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Yao, M.; Liu, Y.; Lin, A.; Zou, H.; Urlando, A.; Wong, W.W.; Nommsen-Rivers, L.; Dewey, K.G. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. Am. J. Clin. Nutr. 2004, 79, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Mazahery, H.; von Hurst, P.R.; McKinlay, C.J.D.; Cormack, B.E.; Conlon, C.A. Air displacement plethysmography (pea pod) in full-term and pre-term infants: A comprehensive review of accuracy, reproducibility, and practical challenges. Matern. Health Neonatol. Perinatol. 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Allison, D.B. Air-displacement plethysmography pediatric option in 2-6 years old using the four-compartment model as a criterion method. Obesity 2012, 20, 1732–1737. [Google Scholar] [CrossRef]
- Lohman, T.G. Assessment of body composition in children. Pediatric Exerc. Sci. 1989, 1, 19–30. [Google Scholar] [CrossRef]
- Fomon, S.J.; Haschke, F.; Ziegler, E.E.; Nelson, S.E. Body composition of reference children from birth to age 10 years. Am. J. Clin. Nutr. 1982, 35 (Suppl. 5), 1169–1175. [Google Scholar] [CrossRef]
- Wells, J.C.; Williams, J.E.; Chomtho, S.; Darch, T.; Grijalva-Eternod, C.; Kennedy, K.; Haroun, D.; Wilson, C.; Cole, T.J.; Fewtrell, M.S. Pediatric reference data for lean tissue properties: Density and hydration from age 5 to 20 y. Am. J. Clin. Nutr. 2010, 91, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Delisle Nystrom, C.; Soderstrom, E.; Henriksson, P.; Henriksson, H.; Poortvliet, E.; Lof, M. The paediatric option for BodPod to assess body composition in preschool children: What fat-free mass density values should be used? Br. J. Nutr. 2018, 120, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Nunez, C.; Kovera, A.J.; Pietrobelli, A.; Heshka, S.; Horlick, M.; Kehayias, J.J.; Wang, Z.; Heymsfield, S.B. Body composition in children and adults by air displacement plethysmography. Eur. J. Clin. Nutr. 1999, 53, 382–387. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Lohman, T.G.; Teixeira, P.J.; Guedes, D.P.; Going, S.B. Comparison of air displacement plethysmography with dual-energy X-ray absorptiometry and 3 field methods for estimating body composition in middle-aged men. Am. J. Clin. Nutr. 1998, 68, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Radley, D.; Gately, P.J.; Cooke, C.B.; Carroll, S.; Oldroyd, B.; Truscott, J.G. Estimates of percentage body fat in young adolescents: A comparison of dual-energy X-ray absorptiometry and air displacement plethysmography. Eur. J. Clin. Nutr. 2003, 57, 1402–1410. [Google Scholar] [CrossRef]
- Breij, L.M.; Steegers-Theunissen, R.P.; Briceno, D.; Hokken-Koelega, A.C. Maternal and Fetal Determinants of Neonatal Body Composition. Horm. Res. Paediatr. 2015, 84, 388–395. [Google Scholar] [CrossRef] [PubMed]
- de Fluiter, K.S.; van Beijsterveldt, I.; Breij, L.M.; Acton, D.; Hokken-Koelega, A.C.S. Association Between Fat Mass in Early Life and Later Fat Mass Trajectories. JAMA Pediatr. 2020, 174, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Roelants, J.A.; Joosten, K.F.M.; van der Geest, B.M.A.; Hulst, J.M.; Reiss, I.K.M.; Vermeulen, M.J. First week weight dip and reaching growth targets in early life in preterm infants. Clin. Nutr. 2018, 37, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Schönbeck, Y.; Talma, H.; van Dommelen, P.; Bakker, B.; Buitendijk, S.E.; HiraSing, R.A.; van Buuren, S. The world’s tallest nation has stopped growing taller: The height of Dutch children from 1955 to 2009. Pediatr. Res. 2013, 73, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G. Applicability of body composition techniques and constants for children and youths. Exerc. Sport Sci. Rev. 1986, 14, 325–357. [Google Scholar] [CrossRef] [PubMed]
- Rigby, R.A.; Stasinopoulos, D.M. Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Stat. Med. 2004, 23, 3053–3076. [Google Scholar] [CrossRef] [PubMed]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Fields, D.A.; Demerath, E.W.; Pietrobelli, A.; Chandler-Laney, P.C. Body composition at 6 months of life: Comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity 2012, 20, 2302–2306. [Google Scholar] [CrossRef] [PubMed]
- Wrottesley, S.V.; Pisa, P.T.; Micklesfield, L.K.; Pettifor, J.M.; Norris, S.A. A comparison of body composition estimates using dual-energy X-ray absorptiometry and air-displacement plethysmography in South African neonates. Eur. J. Clin. Nutr. 2016, 70, 1254–1258. [Google Scholar] [CrossRef] [PubMed]
- Radley, D.; Gately, P.J.; Cooke, C.B.; Carroll, S.; Oldroyd, B.; Truscott, J.G. Percentage fat in overweight and obese children: Comparison of DXA and air displacement plethysmography. Obes. Res. 2005, 13, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Marín, D.; Luque, V.; Ferré, N.; Fewtrell, M.S.; Williams, J.E.; Wells, J.C.K. Associations of age and body mass index with hydration and density of fat-free mass from 4 to 22 years. Eur. J. Clin. Nutr. 2019, 73, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Bazzocchi, A.; Ponti, F.; Albisinni, U.; Battista, G.; Guglielmi, G. DXA: Technical aspects and application. Eur. J. Radiol. 2016, 85, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Orsso, C.E.; Silva, M.I.B.; Gonzalez, M.C.; Rubin, D.A.; Heymsfield, S.B.; Prado, C.M.; Haqq, A.M. Assessment of body composition in pediatric overweight and obesity: A systematic review of the reliability and validity of common techniques. Obes. Rev. 2020, 21, e13041. [Google Scholar] [CrossRef]
- Testolin, C.G.; Gore, R.; Rivkin, T.; Horlick, M.; Arbo, J.; Wang, Z.; Chiumello, G.; Heymsfield, S.B. Dual-energy X-ray absorptiometry: Analysis of pediatric fat estimate errors due to tissue hydration effects. J. Appl. Physiol. [1985] 2000, 89, 2365–2372. [Google Scholar] [CrossRef][Green Version]
- Laskey, M.A. Dual-energy X-ray absorptiometry and body composition. Nutrition 1996, 12, 45–51. [Google Scholar] [CrossRef]
- Bergmann, R.L.; Bergmann, K.E.; Richter, R.; Schlaud, M.; Henrich, W.; Weichert, A. Growth attainment in German children born preterm, and cardiovascular risk factors in adolescence. Analysis of the population representative KiGGS data. J. Perinat. Med. 2017, 45, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Engan, M.; Vollsaeter, M.; Oymar, K.; Markestad, T.; Eide, G.E.; Halvorsen, T.; Juliusson, P.; Clemm, H. Comparison of physical activity and body composition in a cohort of children born extremely preterm or with extremely low birth weight to matched term-born controls: A follow-up study. BMJ Paediatr. Open 2019, 3, e000481. [Google Scholar] [CrossRef]
- Lee, J.; Park, H.K.; Kim, J.H.; Choi, Y.Y.; Lee, H.J. Bone Mineral Density According to Dual Energy X-ray Absorptiometry is Associated with Serial Serum Alkaline Phosphatase Level in Extremely Low Birth Weight Infants at Discharge. Pediatr. Neonatol. 2017, 58, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Figueras-Aloy, J.; Alvarez-Dominguez, E.; Perez-Fernandez, J.M.; Moretones-Sunol, G.; Vidal-Sicart, S.; Botet-Mussons, F. Metabolic bone disease and bone mineral density in very preterm infants. J. Pediatr. 2014, 164, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.J.; Turkovic, L.; Wilson, A.C.; Verheggen, M.; Logie, K.M.; Pillow, J.J.; Hall, G.L. Lung function trajectories throughout childhood in survivors of very preterm birth: A longitudinal cohort study. Lancet Child Adolesc. Health 2018, 2, 350–359. [Google Scholar] [CrossRef]
Full-Term | Very Preterm | p-Value | |||
---|---|---|---|---|---|
Boys | Girls | Boys | Girls | ||
Birth | N = 79 | N = 75 | N = 39 | N = 28 | |
Gestational age (weeks) | 39.47 (1.29) | 39.77 (1.24) | 27.50 (1.55) | 27.44 (1.55) | <0.001 |
Birth weight SDS | 0.39 (1.00) | 0.19 (1.09) | 0.27 (0.68) | 0.05 (0.76) | 0.416 |
BPD (%) | NA | NA | 12 (30.8%) | 5 (17.9%) | |
Ethnicity (%) | <0.020 | ||||
White | 54 (68.4%) | 45 (60.0%) | 30 (76.9%) | 23 (82.1%) | |
Non-white | 25 (31.6%) | 30 (40.0%) | 9 (23.1%) | 5 (17.9%) | |
All visits, total group | |||||
Weight-for-height SDS | 0.07 (1.11) | 0.40 (0.91) | −0.55 (1.10) | −0.51 (1.13) | <0.001 |
Height SDS | −0.26 (0.79) | −0.20 (1.02) | −0.87 (0.76) | −0.70 (1.11) | <0.001 |
Age 3 years | N = 18 | N = 24 | N = 13 | N = 10 | |
Age (years) | 3.06 (0.11) | 3.08 (0.10) | 3.44 (0.15) | 3.46 (0.18) | <0.001 |
Weight-for-height SDS | 0.31 (1.08) | 0.51 (1.02) | −0.43 (0.94) | −0.47 (0.95) | 0.001 |
Height SDS | −0.13 (0.72) | 0.09 (0.93) | −0.69 (0.65) | −0.58 (1.34) | 0.008 |
Age 4 years | N = 33 | N = 24 | |||
Age (years) | 4.11 (0.13) | 4.15 (0.15) | NA | NA | |
Weight-for-height SDS | −0.13 (1.21) | 0.45 (0.83) | NA | NA | |
Height SDS | −0.32 (0.89) | 0.02 (1.08) | NA | NA | |
Age 5 years | N = 46 | N = 41 | N = 26 | N = 18 | |
Age (years) | 5.11 (0.14) | 5.08 (0.13) | 5.97 (0.17) | 5.94 (0.12) | <0.001 |
Weight-for-height SDS | 0.13 (1.05) | 0.31 (0.14) | −0.61 (1.18) | −0.53 (1.25) | <0.001 |
Height SDS | −0.27 (0.75) | −0.51 (0.98) | −0.96 (0.80) | −0.77 (1.00) | 0.002 |
Full-Term N = 186 | Very Preterm N = 67 | p-Value | |
---|---|---|---|
FM (kg) | |||
DXA | 5.16 (1.26) | 4.43 (1.26) | <0.001 |
ADP default | 4.09 (1.45) | 2.54 (1.35) | <0.001 |
ADP revised | 4.47 (1.40) | 2.98 (1.73) | <0.001 |
Mean difference (LoA) ADP default–DXA | −1.08 * (−2.92; 0.76) | −1.89 * (−4.10; 0.32) | <0.001 |
Mean difference (LoA) ADP revised–DXA | −0.67 * (−2.38; 1.04) | −1.45 * (−3.53; 0.63) | <0.001 |
FM% | |||
DXA | 28.26 (4.88) | 24.39 (4.76) | <0.001 |
ADP default | 22.47 (6.91) | 14.60 (7.88) | <0.001 |
ADP revised | 24.90 (6.64) | 17.07 (7.93) | <0.001 |
Mean difference (LoA) ADP default–DXA | −5.78 * (−16.25; 4.69) | −9.79 * (−20.92; 1.34) | <0.001 |
Mean difference (LoA) ADP revised–DXA | −3.54 * (−13.44; 6.36) | −7.32 * (−18.26; 3.62) | <0.001 |
FFM (kg) | |||
DXA | 13.06 (2.01) | 13.72 (2.59) | 0.064 |
ADP default | 13.96 (2.25) | 15.36 (3.36) | 0.002 |
ADP revised | 13.41 (2.13) | 14.91 (3.28) | 0.001 |
Mean difference (LoA) ADP default–DXA | 0.90 * (−1.00; 2.80) | 1.64 * (−0.63; 3.91) | <0.001 |
Mean difference (LoA) ADP revised–DXA | 0.50 * (−1.30; 2.30) | 1.20 * (−0.92; 3.32) | <0.001 |
Age (years) | Boys | Girls | ||||
---|---|---|---|---|---|---|
C1 | C2 | Dffm | C1 | C2 | Dffm | |
2.75 | 5.432 | 5.031 | 1.0797 | 5.449 | 5.050 | 1.0790 |
3 | 5.424 | 5.022 | 1.0801 | 5.426 | 5.025 | 1.0800 |
3.25 | 5.416 | 5.013 | 1.0804 | 5.405 | 5.001 | 1.0808 |
3.5 | 5.409 | 5.005 | 1.0807 | 5.393 | 4.987 | 1.0813 |
3.75 | 5.402 | 4.998 | 1.0809 | 5.386 | 4.980 | 1.0816 |
4 | 5.395 | 4.990 | 1.0812 | 5.384 | 4.978 | 1.0816 |
4.25 | 5.390 | 4.984 | 1.0814 | 5.384 | 4.978 | 1.0816 |
4.5 | 5.386 | 4.980 | 1.0816 | 5.384 | 4.978 | 1.0816 |
4.75 | 5.384 | 4.978 | 1.0817 | 5.384 | 4.978 | 1.0816 |
5 | 5.384 | 4.977 | 1.0817 | 5.384 | 4.978 | 1.0816 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Beijsterveldt, I.A.L.P.; Beunders, V.A.A.; Bijlsma, A.; Vermeulen, M.J.; Joosten, K.F.M.; Hokken-Koelega, A.C.S. Body Composition Assessment by Air-Displacement Plethysmography Compared to Dual-Energy X-ray Absorptiometry in Full-Term and Preterm Aged Three to Five Years. J. Clin. Med. 2022, 11, 1604. https://doi.org/10.3390/jcm11061604
van Beijsterveldt IALP, Beunders VAA, Bijlsma A, Vermeulen MJ, Joosten KFM, Hokken-Koelega ACS. Body Composition Assessment by Air-Displacement Plethysmography Compared to Dual-Energy X-ray Absorptiometry in Full-Term and Preterm Aged Three to Five Years. Journal of Clinical Medicine. 2022; 11(6):1604. https://doi.org/10.3390/jcm11061604
Chicago/Turabian Stylevan Beijsterveldt, Inge A. L. P., Victoria A. A. Beunders, Alja Bijlsma, Marijn J. Vermeulen, Koen F. M. Joosten, and Anita C. S. Hokken-Koelega. 2022. "Body Composition Assessment by Air-Displacement Plethysmography Compared to Dual-Energy X-ray Absorptiometry in Full-Term and Preterm Aged Three to Five Years" Journal of Clinical Medicine 11, no. 6: 1604. https://doi.org/10.3390/jcm11061604
APA Stylevan Beijsterveldt, I. A. L. P., Beunders, V. A. A., Bijlsma, A., Vermeulen, M. J., Joosten, K. F. M., & Hokken-Koelega, A. C. S. (2022). Body Composition Assessment by Air-Displacement Plethysmography Compared to Dual-Energy X-ray Absorptiometry in Full-Term and Preterm Aged Three to Five Years. Journal of Clinical Medicine, 11(6), 1604. https://doi.org/10.3390/jcm11061604