Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Laboratory Biomarkers
3.1.1. Biomarkers Specific to Neuronal Acute Ischemic Injury
3.1.2. Biomarkers Specific to Glial Cell
3.1.3. Biomarkers Related to Endothelial Injury
3.1.4. Biomarkers Related to Coagulation
3.1.5. MicroRNA and Cytoplasmic DNA Biomarkers
3.1.6. Biomarkers Detected by Mass-Spectrometry-Based Proteomics
3.1.7. Inflammatory Cytokines and Other Biomarkers
3.2. Clinical Diagnostic Models
3.3. Biomarkers Related to Neuroimaging
3.4. Electroencephalogram (EEG) and TIA Diagnosis
3.5. Retinal Findings Using Fundus Photography
3.6. Combination of Biomarker Panels and techniques
Biomarker Type | Biomarker | Status | COR | LOE | Serum/Plasma/CSF | Stroke and TIA | Stroke/TIA and Mimics | Reference(s) |
---|---|---|---|---|---|---|---|---|
NR Peptide | Downregulated | IIb | C-LD | Serum | No | Yes | [13,14] | |
NR2 Peptide | Upregulated | IIb | C-LD | Plasma | No | Yes | [17] | |
Autoantibodies to NR2A/2B NMDA receptor subunits | Increased | IIb | C-LD | Serum | No | No | [16] | |
Ubiquitin fusion degradation protein 1 (UFD1) | Increased | IIa | C-LD | Plasma/Serum | No | Yes | [24] | |
S100 calcium-binding protein B (S100B) | Increased | IIb | C-LD | Serum | No | No | [29,136] | |
Neuron specific enolase (NSE) | Increased | IIb | C-LD | - | - | - | [26] | |
Heart-fatty acid binding protein (H-FABP) | Increased | IIb | C-LD | Plasma | No | Yes | [137] | |
Myelin basic protein (MBP) | No change | IIb | C-LD | CSF | No | Yes | [138] | |
Neurofilament Light Chain (NFL) | Decreased | IIb | C-LD | Serum | Yes | Yes (stroke only, not TIA) | [139] | |
DJ-1 (PARK7) | Increased | IIb | C-LD | Plasma | No | Yes | [25] | |
NDKA | Increased | IIb | C-LD | Plasma | No | Yes | [25] | |
T-tau | Increased | IIb | C-LD | Serum | Yes | No | [34] | |
Endothelial-Related Biomarkers | Asymmetric dimethylarginine (ADMA) | Increased | IIa | C-LD | Plasma | No | Yes | [47,140] |
lipoprotein-associated phospholipase A2 | Increased | IIb | C-LD | - | - | - | [52,53] | |
Glutathione S-Transferase-π | Increased | IIb | C-LD | Serum | No | No | [141] | |
Fibrinopeptide A | Increased | IIb | C-LD | Serum | No | No | [142] | |
von Willebrand factor (vWF) | Increased | IIb | C-LD | Plasma | No | No | [74] | |
Antibodies against metalloproteinase 1, chromobox homolog 1, and chromobox homolog 5 | Increased | IIB | C-LD | Serum | No | Yes | [90] | |
Platelet basic protein (PBP) | Increased | IIb | C-LD | Serum | No | Yes | [84] | |
Chemokine receptor 7 (CCR7) | Increased | NA* | NA* | - | - | - | [91] | |
mRNA | Panel of 34 genes | - | IIb | C-LD | Serum | No | No | [133] |
Panel of 26 genes | - | IIb | C-LD | Serum | No | No | [134] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hjalmarsson, C.; Bjerke, M.; Andersson, B.; Blennow, K.; Zetterberg, H.; Åberg, N.D.; Olsson, B.; Eckerström, C.; Bokemark, L.; Wallin, A. Neuronal and Glia-Related Biomarkers in Cerebrospinal Fluid of Patients with Acute Ischemic Stroke. J. Central Nerv. Syst. Dis. 2014, 6, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kang, T.; Li, L.; Zhang, J. Electroacupuncture reduces hemiplegia following acute middle cerebral artery infarction with alteration of serum NSE, S-100B and endothelin. Curr. Neurovascular Res. 2013, 10, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Wanby, P.; Teerlink, T.; Brudin, L.; Brattström, L.; Nilsson, I.; Palmqvist, P.; Carlsson, M. Asymmetric dimethylarginine (ADMA) as a risk marker for stroke and TIA in a Swedish population. Atherosclerosis 2006, 185, 271–277. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Top 10 Causes of Death; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Valls, J.; Peiro-Chamarro, M.; Cambray, S.; Molina-Seguin, J.; Benabdelhak, I.; Purroy, F. A Current Estimation of the Early Risk of Stroke after Transient Ischemic Attack: A Systematic Review and Meta-Analysis of Recent Intervention Studies. Cerebrovasc. Dis. 2017, 43, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Shahjouei, S.; Sadighi, A.; Chaudhary, D.; Li, J.; Abedi, V.; Holland, N.; Phipps, M.; Zand, R. A 5-Decade Analysis of Incidence Trends of Ischemic Stroke After Transient Ischemic Attack: A Systematic Review and Meta-analysis. JAMA Neurol. 2021, 78, 77–87. [Google Scholar] [CrossRef]
- Schrock, J.W.; Glasenapp, M.; Victor, A.; Losey, T.; Cydulka, R.K. Variables Associated with Discordance Between Emergency Physician and Neurologist Diagnoses of Transient Ischemic Attacks in the Emergency Department. Ann. Emerg. Med. 2012, 59, 19–26. [Google Scholar] [CrossRef]
- Ferro, J.M.; Falcão, I.; Rodrigues, G.; Canhão, P.; Melo, T.P.; Oliveira, V.; Pinto, A.N.; Crespo, M.; Salgado, A.V. Diagnosis of Transient Ischemic Attack by the Nonneurologist. Stroke 1996, 27, 2225–2229. [Google Scholar] [CrossRef]
- Sadighi, A.; Stanciu, A.; Banciu, M.; Abedi, V.; Andary, N.E.; Holland, N.; Zand, R. Rate and associated factors of transient ischemic attack misdiagnosis. eNeurologicalSci 2019, 15, 100193. [Google Scholar] [CrossRef]
- Nadarajan, V.; Perry, R.J.; Johnson, J.; Werring, D.J. Transient ischaemic attacks: Mimics and chameleons. Pr. Neurol. 2014, 14, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Motamed, H.; Aliniagerdroudbari, E.; Babaniamansour, S.; Jami, A.; Baratloo, A. The Prehospital Ambulance Stroke Test vs. the Cincinnati Prehospital Stroke Scale: A diagnostic accuracy study. Australas. J. Paramed. 2020, 17, 17. [Google Scholar] [CrossRef]
- Jensen, M.B.; Chacon, M.R.; Sattin, J.A.; Aleu, A.; Lyden, P.D. The Promise and Potential Pitfalls of Serum Biomarkers for Ischemic Stroke and Transient Ischemic Attack. Neurologist 2008, 14, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, M.B.; Furie, K.L. Molecular biomarkers in stroke diagnosis and prognosis. Biomarkers Med. 2009, 3, 363–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insel, T.R.; Miller, L.P.; Gelhard, R.E. The ontogeny of excitatory amino acid receptors in rat forebrain—I.N-methyl-d-aspartate and quisqualate receptors. Neuroscience 1990, 35, 31–43. [Google Scholar] [CrossRef]
- Furukawa, H.; Singh, S.K.; Mancusso, R.; Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature 2005, 438, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Gascón, S.; Sobrado, M.; Roda, J.M.; Rodríguez-Peña, Á.; Díaz-Guerra, M. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol. Psychiatry 2007, 13, 99–114. [Google Scholar] [CrossRef]
- Dambinova, S.A.; Khounteev, G.A.; Izykenova, G.A.; Zavolokov, I.G.; Ilyukhina, A.Y.; Skoromets, A.A. Blood Test Detecting Autoantibodies to N-Methyl-d-aspartate Neuroreceptors for Evaluation of Patients with Transient Ischemic Attack and Stroke. Clin. Chem. 2003, 49, 1752–1762. [Google Scholar] [CrossRef] [Green Version]
- Simpkins, K.L.; Guttmann, R.P.; Dong, Y.; Chen, Z.; Sokol, S.; Neumar, R.W.; Lynch, D.R. Selective Activation Induced Cleavage of the NR2B Subunit by Calpain. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 11322–11331. [Google Scholar] [CrossRef]
- Weissman, J.D.; Khunteev, G.A.; Heath, R.; Dambinova, S.A. NR2 antibodies: Risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J. Neurol. Sci. 2011, 300, 97–102. [Google Scholar] [CrossRef]
- Dambinova, S.A.; Bettermann, K.; Glynn, T.; Tews, M.; Olson, D.; Weissman, J.D.; Sowell, R.L. Diagnostic Potential of the NMDA Receptor Peptide Assay for Acute Ischemic Stroke. PLoS ONE 2012, 7, e42362. [Google Scholar] [CrossRef] [Green Version]
- Dolmans, L.S.; Rutten, F.; Bartelink, M.-L.E.L.; Van Dijk, E.J.; Nederkoorn, P.J.; Kappelle, J.; Hoes, A.W. Serum biomarkers in patients suspected of transient ischaemic attack in primary care: A diagnostic accuracy study. BMJ Open 2019, 9, e031774. [Google Scholar] [CrossRef]
- Pantcheva, P.; Elias, M.; Duncan, K.; Borlongan, C.V.; Tajiri, N.; Kaneko, Y. The role of DJ-1 in the oxidative stress cell death cascade after stroke. Neural Regen. Res. 2014, 9, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Tajiri, N.; Shojo, H.; Borlongan, C.V. Oxygen–Glucose-Deprived Rat Primary Neural Cells Exhibit DJ -1 Translocation into Healthy Mitochondria: A Potent Stroke Therapeutic Target. CNS Neurosci. Ther. 2014, 20, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Shojo, H.; Burns, J.; Staples, M.; Tajiri, N.; Borlongan, C.V. DJ-1 ameliorates ischemic cell death in vitro possibly via mitochondrial pathway. Neurobiol. Dis. 2014, 62, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullett, S.J.; Hamilton, R.L.; Hinkle, D.A. DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2009, 29, 125–131. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, D.W.; Kim, M.J.; Woo, S.J.; Kim, H.R.; Kim, S.M.; Jo, H.S.; Hwang, H.S.; Kim, D.S.; Cho, S.W.; et al. Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury. Exp. Mol. Med. 2012, 44, 586–593. [Google Scholar] [CrossRef]
- Allard, L.; Turck, N.; Burkhard, P.R.; Walter, N.; Rosell, A.; Gex-Fabry, M.; Hochstrasser, D.F.; Montaner, J.; Sanchez, J.-C. Ubiquitin Fusion Degradation Protein 1 as a Blood Marker for The Early Diagnosis of Ischemic Stroke. Biomark. Insights 2007, 2, 155–164. [Google Scholar] [CrossRef]
- Allard, L.; Burkhard, P.R.; Lescuyer, P.; Burgess, J.A.; Walter, N.; Hochstrasser, D.F.; Sanchez, J.-C. PARK7 and Nucleoside Diphosphate Kinase A as Plasma Markers for the Early Diagnosis of Stroke. Clin. Chem. 2005, 51, 2043–2051. [Google Scholar] [CrossRef]
- González-Quevedo, A.; González-García, S.; Hernández-Díaz, Z.; Fernández Concepción, O.; Quevedo Sotolongo, L.; Peña-Sánchez, M.; Márquez Rosales, B.; Santiesteban Freixas, R.; Fernández-Almirall, I.; Menéndez-Sainz, M.C.; et al. Serum neuron specific enolase could predict subclinical brain damage and the subsequent occurrence of brain related vascular events during follow up in essential hypertension. J. Neurol. Sci. 2016, 363, 158–163. [Google Scholar] [CrossRef]
- Bharosay, A.; Bharosay, V.V.; Saxena, K.; Varma, M. Role of Brain Biomarker in Predicting Clinical Outcome in Hypertensive Cerebrovascular Ischemic Stroke. Indian J. Clin. Biochem. 2018, 33, 178–183. [Google Scholar] [CrossRef]
- Jauch, E.C.; Lindsell, C.; Broderick, J.; Fagan, S.C.; Tilley, B.C.; Levine, S.R. Association of Serial Biochemical Markers with Acute Ischemic Stroke: The National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006, 37, 2508–2513. [Google Scholar] [CrossRef] [Green Version]
- Scarcello, E.; Morrone, F.; Piro, P.; Tarsitano, S.; Intrieri, F.; Vaccarella, S.; Guerra, E.; Serra, R.; de Franciscis, S. Protein S-100B as Biochemical Marker of Brain Ischemic Damage After Treatment of Carotid Stenosis. Ann. Vasc. Surg. 2011, 25, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Fassbender, K.; Schmidt, R.; Schreiner, A.; Fatar, M.; Mühlhauser, F.; Daffertshofer, M.; Hennerici, M. Leakage of brain-originated proteins in peripheral blood: Temporal profile and diagnostic value in early ischemic stroke. J. Neurol. Sci. 1997, 148, 101–105. [Google Scholar] [CrossRef]
- Abraha, H.D.; Butterworth, R.J.; Bath, P.M.; Wassif, W.S.; Garthwaite, J.; Sherwood, R.A. Serum S-100 Protein, Relationship to Clinical Outcome in Acute Stroke. Ann. Clin. Biochem. 1997, 34 Pt 5, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Foerch, C.; Otto, B.; Singer, O.C.; Neumann-Haefelin, T.; Yan, B.; Berkefeld, J.; Steinmetz, H.; Sitzer, M. Serum S100B Predicts a Malignant Course of Infarction in Patients with Acute Middle Cerebral Artery Occlusion. Stroke 2004, 35, 2160–2164. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Lakhotia, M.; Pahadiya, H.; Singh, J. To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J. Neurosci. Rural Pr. 2015, 6, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Onatsu, J.; Vanninen, R.; Jäkälä, P.; Mustonen, P.; Pulkki, K.; Korhonen, M.; Hedman, M.; Höglund, K.; Blennow, K.; Zetterberg, H.; et al. Tau, S100B and NSE as Blood Biomarkers in Acute Cerebrovascular Events. In Vivo 2020, 34, 2577–2586. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Maeda, S.; Vossel, K.; Mucke, L. The Many Faces of Tau. Neuron 2011, 70, 410–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trojanowski, J.Q.; Schuck, T.; Schmidt, M.L.; Lee, V.M. Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1989, 37, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Foerch, C.; Curdt, I.; Yan, B.; Dvorak, F.; Hermans, M.; Berkefeld, J.; Raabe, A.; Neumann-Haefelin, T.; Steinmetz, H.; Sitzer, M. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J. Neurol. Neurosurg. Psychiatry 2006, 77, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Qin, Q.; Shang, Y.-J.; Fang, C.-P.; Zhang, W.-W.; Gu, M.-L.; Chen, Y.; Hu, Z.D.; Deng, A.-M. The accuracy of glial fibrillary acidic protein in acute stroke differential diagnosis: A meta-analysis. Scand. J. Clin. Lab. Investig. 2013, 73, 601–606. [Google Scholar] [CrossRef]
- Glushakova, O.Y.; Glushakov, A.; Miller, E.R.; Valadka, A.B.; Hayes, R.L. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ. 2016, 2, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, F.; Haberer, I.; Sitzer, M.; Foerch, C. Characterisation of the Diagnostic Window of Serum Glial Fibrillary Acidic Protein for the Differentiation of Intracerebral Haemorrhage and Ischaemic Stroke. Cerebrovasc. Dis. 2008, 27, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Vos, P.; Wunderlich, M.T.; de Bruijn, C.H.; Lamers, K.J. Release of Glial Tissue–Specific Proteins After Acute Stroke: A comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000, 31, 2670–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindy, M.S.; Bhat, A.N.; Bhat, N.R. Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Mol. Brain Res. 1992, 13, 199–206. [Google Scholar] [CrossRef]
- Stryer, L. Biochemistry, 4th ed.; W H Freeman & Co.: New York, NY, USA, 1995. [Google Scholar]
- Blum, A.; Vaispapir, V.; Keinan-Boker, L.; Soboh, S.; Yehuda, H.; Tamir, S. Endothelial dysfunction and procoagulant activity in acute ischemic stroke. J. Vasc. Interv. Neurol. 2012, 5, 33–39. [Google Scholar] [PubMed]
- Lp-PLA2 Studies Collaboration; Thompson, A.; Gao, P.; Orfei, L.; Watson, S.; Di Angelantonio, E.; Kaptoge, S.; Ballantyne, C.; Cannon, C.P.; Criqui, M.; et al. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: Collaborative analysis of 32 prospective studies. Lancet 2010, 375, 1536–1544. [Google Scholar] [CrossRef] [Green Version]
- Tai, W.; Garcia, M.; Mlynash, M.; Kemp, S.; Albers, G.W.; Olivot, J.-M. Lipoprotein Phospholipase A2 Mass and Activity Are Not Associated with the Diagnosis of Acute Brain Ischemia. Cerebrovasc. Dis. 2014, 38, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Kocak, S.; Ertekin, B.; Girisgin, A.S.; Dundar, Z.D.; Ergin, M.; Mehmetoglu, I.; Bodur, S.; Cander, B. Lipoprotein-associated phospholipase-A 2 activity and its diagnostic potential in patients with acute coronary syndrome and acute ischemic stroke. Turk. J. Emerg. Med. 2016, 17, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Cucchiara, B.L.; Messe, S.R.; Sansing, L.; MacKenzie, L.; Taylor, R.A.; Pacelli, J.; Shah, Q.; Kasner, S.E. Lipoprotein-Associated Phospholipase A 2 and C-Reactive Protein for Risk-Stratification of Patients With TIA. Stroke 2009, 40, 2332–2336. [Google Scholar] [CrossRef] [Green Version]
- Delgado, P.; Chacon, P.; Penalba, A.; Pelegrí, D.; García-Berrocoso, T.; Giralt, D.; Santamarina, E.; Ribó, M.; Maisterra, O.; Álvarez-Sabín, J.; et al. Lipoprotein-Associated Phospholipase A2 Activity Is Associated with Large-Artery Atherosclerotic Etiology and Recurrent Stroke in TIA Patients. Cerebrovasc. Dis. 2012, 33, 150–158. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, H.; Cucchiara, B.L.; Li, J.; Zhao, X.; Liang, X.; Wang, C.; Li, H.; Mullen, M.T.; Johnston, S.C.; et al. Association of Lp-PLA2-A and early recurrence of vascular events after TIA and minor stroke. Neurology 2015, 85, 1585–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, M.T.; Messé, S.R.; Kasner, S.E.; Sansing, L.; Husain, M.R.; Norman, G.L.; Shums, Z.; Cucchiara, B.L. Anti-Phosphatidylserine-Prothrombin Antibodies are Associated with Outcome in a TIA Cohort. Front. Neurol. 2012, 3, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, S.; Lapierre, V.; Girerd, N.; Bonnerot, M.; Burkhard, P.R.; Lagerstedt, L.; Bracard, S.; Debouverie, M.; Turck, N.; Sanchez, J.-C. Diagnostic performance of peroxiredoxin 1 to determine time-of-onset of acute cerebral infarction. Sci. Rep. 2016, 6, 38300. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Iso, H.; Noda, H.; Kitamura, A.; Imano, H.; Kiyama, M.; Ohira, T.; Okada, T.; Yao, M.; Tanigawa, T.; et al. Plasma Fibrinogen Concentrations and Risk of Stroke and Its Subtypes Among Japanese Men and Women. Stroke 2006, 37, 2488–2492. [Google Scholar] [CrossRef] [Green Version]
- Lord, S.T. Fibrinogen and fibrin: Scaffold proteins in hemostasis. Curr. Opin. Hematol. 2007, 14, 236–241. [Google Scholar] [CrossRef]
- Maresca, G.; Di Blasio, A.; Marchioli, R.; Di Minno, G. Measuring Plasma Fibrinogen to Predict Stroke and Myocardial Infarction: An update. Arter. Thromb. Vasc. Biol. 1999, 19, 1368–1377. [Google Scholar] [CrossRef] [Green Version]
- Folsom, A.R.; Wu, K.K.; Rosamond, W.D.; Sharrett, A.R.; Chambless, L.E. Prospective Study of Hemostatic Factors and Incidence of Coronary Heart Disease: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997, 96, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Danesh, J.; Collins, R.; Appleby, P.; Peto, R. Association of Fibrinogen, C-reactive Protein, Albumin, or Leukocyte Count with Coronary Heart Disease: Meta-analyses of prospective studies. JAMA 1998, 279, 1477–1482. [Google Scholar] [CrossRef]
- Sato, S.; Nakamura, M.; Iida, M.; Naito, Y.; Kitamura, A.; Okamura, T.; Nakagawa, Y.; Imano, H.; Kiyama, M.; Iso, H.; et al. Plasma fibrinogen and coronary heart disease in urban Japanese. Am. J. Epidemiol. 2000, 152, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmsen, L.; Svärdsudd, K.; Korsan-Bengtsen, K.; Larsson, B.; Welin, L.; Tibblin, G. Fibrinogen as a Risk Factor for Stroke and Myocardial Infarction. N. Engl. J. Med. 1984, 311, 501–505. [Google Scholar] [CrossRef]
- Kannel, W.B.; Wolf, P.A.; Castelli, W.P.; D’Agostino, R.B. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 1987, 258, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Kofoed, S.C.; Wittrup, H.H.; Sillesen, H.; Nordestgaard, B.G. Fibrinogen predicts ischaemic stroke and advanced atherosclerosis but not echolucent, rupture-prone carotid plaques: The Copenhagen City Heart Study. Eur. Heart J. 2003, 24, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Lang, Q.; Zhou, M.; Feng, H.; Guo, J.; Chen, N.; He, L. Research on the relationship between fibrinogen level and subtypes of the TOAST criteria in the acute ischemic stroke. BMC Neurol. 2013, 13, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Napoli, M.; Singh, P. Is Plasma Fibrinogen Useful in Evaluating Ischemic Stroke Patients?: Why, how, and when. Stroke 2009, 40, 1549–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothwell, P.M.; Howard, S.C.; Power, D.A.; Gutnikov, S.A.; Algra, A.; van Gijn, J.; Clark, T.G.; Murphy, M.F.; Warlow, C.P. Fibrinogen Concentration and Risk of Ischemic Stroke and Acute Coronary Events in 5113 Patients with Transient Ischemic Attack and Minor Ischemic Stroke. Stroke 2004, 35, 2300–2305. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.-F.; Eng, E.T.; Zhu, J.; Lu, C.; Walz, T.; Springer, T.A. Sequence and structure relationships within von Willebrand factor. Blood 2012, 120, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Springer, T.A. Von Willebrand factor, Jedi knight of the bloodstream. Blood 2014, 124, 1412–1425. [Google Scholar] [CrossRef] [Green Version]
- Randi, A.M.; Laffan, M.A. Von Willebrand factor and angiogenesis: Basic and applied issues. J. Thromb. Haemost. 2017, 15, 13–20. [Google Scholar] [CrossRef]
- Zhao, B.-Q.; Chauhan, A.K.; Canault, M.; Patten, I.S.; Yang, J.J.; Dockal, M.; Scheiflinger, F.; Wagner, D.D. Von Willebrand factor–cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 2009, 114, 3329–3334. [Google Scholar] [CrossRef]
- Kleinschnitz, C.; De Meyer, S.F.; Schwarz, T.; Austinat, M.; Vanhoorelbeke, K.; Nieswandt, B.; Deckmyn, H.; Stoll, G. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 2009, 113, 3600–3603. [Google Scholar] [CrossRef] [Green Version]
- Suidan, G.L.; Brill, A.; De Meyer, S.F.; Voorhees, J.R.; Cifuni, S.M.; Cabral, J.E.; Wagner, D.D. Endothelial Von Willebrand Factor Promotes Blood–Brain Barrier Flexibility and Provides Protection from Hypoxia and Seizures in Mice. Arter. Thromb. Vasc. Biol. 2013, 33, 2112–2120. [Google Scholar] [CrossRef] [Green Version]
- Tobin, W.O.; Kinsella, J.A.; Kavanagh, G.F.; O’Donnell, J.S.; McGrath, R.T.; Tierney, S.; Egan, B.; Feeley, T.M.; Coughlan, T.; Collins, D.R.; et al. Profile of von Willebrand factor antigen and von Willebrand factor propeptide in an overall TIA and ischaemic stroke population and amongst subtypes. J. Neurol. Sci. 2017, 375, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Menih, M.; Križmarić, M.; Hojs Fabjan, T. Clinical role of von Willebrand factor in acute ischemic stroke. Wien. Klin. Wochenschr. 2017, 129, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.; Hsu, F.-C.; Keene, K.L.; Chen, W.-M.; Dzhivhuho, G.; Rowles, J.L., 3rd; Southerland, A.M.; Furie, K.L.; Rich, S.S.; Worrall, B.B.; et al. Genetic Drivers of von Willebrand Factor Levels in an Ischemic Stroke Population and Association with Risk for Recurrent Stroke. Stroke 2017, 48, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Sirachainan, N.; Boonyatarp, M.; Kadegasem, P.; Sasanakul, W.; Visudtibhan, A.; Natesirinilkul, R.; Chuansumrit, A.; Wongwerawattanakoon, P. High Factor VIII and Von Willebrand Factor Levels Are Not Risk Factors of Cryptogenic Arterial Ischemic Stroke in Thai Children. J. Child Neurol. 2014, 30, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.M.; Carter, A.M.; Hysi, P.G.; Msc, G.S.; Hodgkiss, D.; Soranzo, N.; Traylor, M.; Bevan, S.; Dichgans, M.; Rothwell, P.M.W.; et al. Ischemic stroke is associated with theABOlocus: The EuroCLOT study. Ann. Neurol. 2012, 73, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-B.; Liu, J.-L.; Wang, W.; Luo, X.-M.; Zhou, X.; Li, J.-P.; Cao, X.-L.; Long, X.-H.; Chen, J.-G.; Qin, C. Plasma Exosomal miRNA-122-5p and miR-300-3p as Potential Markers for Transient Ischaemic Attack in Rats. Front. Aging Neurosci. 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Hossmann, K.-A. Pathophysiology and Therapy of Experimental Stroke. Cell. Mol. Neurobiol. 2006, 26, 1055–1081. [Google Scholar] [CrossRef]
- Christensen, T. Experimental Focal Cerebral Ischemia: Pathophysiology, Metabolism and Pharmacology of the Ischemic Penumbra; University of Copenhagen: Copenhagen, Denmark, 2007. [Google Scholar]
- Chinnery, P.F.; Elliott, H.R.; Syed, A.; Rothwell, P.M. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: A genetic association study. Lancet Neurol. 2010, 9, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Olshina, M.A.; Sharon, M. Mass spectrometry: A technique of many faces. Q. Rev. Biophys. 2016, 49, 18. [Google Scholar] [CrossRef] [Green Version]
- George, P.M.; Mlynash, M.; Adams, C.M.; Kuo, C.J.; Albers, G.W.; Olivot, J.-M. Novel Tia Biomarkers Identified by Mass Spectrometry-Based Proteomics. Int. J. Stroke Off. J. Int. Stroke Soc. 2015, 10, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Fiedorowicz, A.; Kozak-Sykała, A.; Bobak, Ł.; Kałas, W.; Strządała, L. Ceramides and sphingosine-1-phosphate as potential markers in diagnosis of ischaemic stroke. Neurol. Neurochir. Polska 2019, 53, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Tajouri, L.; Fernandez, F.; Griffiths, L.R. Gene Expression Studies in Multiple Sclerosis. Curr. Genom. 2007, 8, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherzer, C.R.; Eklund, A.C.; Morse, L.J.; Liao, Z.; Locascio, J.J.; Fefer, D.; Schwarzschild, M.A.; Schlossmacher, M.G.; Hauser, M.A.; Vance, J.M.; et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl. Acad. Sci. USA 2007, 104, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Maes, O.C.; Xu, S.; Yu, B.; Chertkow, H.M.; Wang, E.; Schipper, H.M. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol. Aging 2007, 28, 1795–1809. [Google Scholar] [CrossRef]
- Barr, T.L.; Conley, Y.; Ding, J.; Dillman, A.; Warach, S.; Singleton, A.; Matarin, M. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurol. 2010, 75, 1009–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, X.-M.; Tomiyoshi, G.; Nakamura, R.; Shinmen, N.; Kuroda, H.; Kimura, R.; Mine, S.; Kamitsukasa, I.; Wada, T.; et al. Association of serum levels of antibodies against MMP1, CBX1, and CBX5 with transient ischemic attack and cerebral infarction. Oncotarget 2018, 9, 5600–5613. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-C.; Ahn, J.H.; Kim, I.H.; Park, J.H.; Yan, B.C.; Cho, G.-S.; Ohk, T.G.; Park, C.W.; Cho, J.H.; Kim, Y.-M.; et al. Transient ischemia-induced change of CCR7 immunoreactivity in neurons and its new expression in astrocytes in the gerbil hippocampus. J. Neurol. Sci. 2014, 336, 203–210. [Google Scholar] [CrossRef]
- Yan, J.; Greer, J.M.; Etherington, K.; Cadigan, G.P.; Cavanagh, H.; Henderson, R.D.; O’Sullivan, J.D.; Pandian, J.D.; Read, S.L.; McCombe, P.A. Immune activation in the peripheral blood of patients with acute ischemic stroke. J. Neuroimmunol. 2009, 206, 112–117. [Google Scholar] [CrossRef]
- Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine:Receptor Structure, Interactions, and Antagonism. Annu. Rev. Immunol. 2007, 25, 787–820. [Google Scholar] [CrossRef]
- Okada, T.; Cyster, J.G. CC Chemokine Receptor 7 Contributes to Gi-Dependent T Cell Motility in the Lymph Node. J. Immunol. 2007, 178, 2973–2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worbs, T.; Förster, R. A key role for CCR7 in establishing central and peripheral tolerance. Trends Immunol. 2007, 28, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Nicola, D.; Pallas-Bazarra, N.; Valle-Argos, B.; Nieto-Sampedro, M. CCR7 is expressed in astrocytes and upregulated after an inflammatory injury. J. Neuroimmunol. 2010, 227, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengozzi, M.; Kirkham, F.A.; Girdwood, E.E.R.; Bunting, E.; Drazich, E.; Timeyin, J.; Ghezzi, P.; Rajkumar, C. C-Reactive Protein Predicts Further Ischemic Events in Patients with Transient Ischemic Attack or Lacunar Stroke. Front. Immunol. 2020, 11, 1403. [Google Scholar] [CrossRef] [PubMed]
- Purroy, F.; Montaner, J.; Molina, C.A.; Delgado, P.; Arenillas, J.F.; Chacon, P.; Quintana, M.; Alvarez-Sabin, J. C-reactive protein predicts further ischemic events in transient ischemic attack patients. Acta Neurol. Scand. 2007, 115, 60–66. [Google Scholar] [CrossRef]
- Gong, X.; Zou, X.; Liu, L.; Pu, Y.; Wang, Y.; Pan, Y.; Soo, Y.O.Y.; Leung, T.W.H.; Zhao, X.; Wang, Y.; et al. Prognostic Value of Inflammatory Mediators in 1-Year Outcome of Acute Ischemic Stroke with Middle Cerebral Artery Stenosis. Mediat. Inflamm. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Lin, J.; Wang, D.; Wang, A.; Zhao, X.; Liu, L.; Wang, C.; Wang, Y. Soluble CD40L Is a Useful Marker to Predict Future Strokes in Patients with Minor Stroke and Transient Ischemic Attack. Stroke 2015, 46, 1990–1992. [Google Scholar] [CrossRef] [Green Version]
- Morgenthaler, N.G.; Struck, J.; Jochberger, S.; Dünser, M.W. Copeptin: Clinical use of a new biomarker. Trends Endocrinol. Metab. 2008, 19, 43–49. [Google Scholar] [CrossRef]
- Baylis, P.; Heath, D. Plasma-arginine-vasopressin response to insulin-induced hypoglycæmia. Lancet 1977, 310, 428–430. [Google Scholar] [CrossRef]
- Stoiser, B.; Mörtl, D.; Hülsmann, M.; Berger, R.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Pacher, R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Investig. 2006, 36, 771–778. [Google Scholar] [CrossRef]
- Khan, S.Q.; Dhillon, O.S.; O’Brien, R.J.; Struck, J.; Quinn, P.A.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; Ng, L.L. C-Terminal Provasopressin (Copeptin) as a Novel and Prognostic Marker in Acute Myocardial Infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 2007, 115, 2103–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gegenhuber, A.; Struck, J.; Dieplinger, B.; Poelz, W.; Pacher, R.; Morgenthaler, N.G.; Bergmann, A.; Haltmayer, M.; Mueller, T. Comparative Evaluation of B-Type Natriuretic Peptide, Mid-Regional Pro-A-type Natriuretic Peptide, Mid-Regional Pro-Adrenomedullin, and Copeptin to Predict 1-Year Mortality in Patients with Acute Destabilized Heart Failure. J. Card. Fail. 2007, 13, 42–49. [Google Scholar] [CrossRef] [PubMed]
- De Marchis, G.M.; Weck, A.; Audebert, H.; Benik, S.; Foerch, C.; Buhl, D.; Schuetz, P.; Jung, S.; Seiler, M.; Morgenthaler, N.G.; et al. Copeptin for the Prediction of Recurrent Cerebrovascular Events After Transient Ischemic Attack: Results from the CoRisk study. Stroke 2014, 45, 2918–2923. [Google Scholar] [CrossRef] [Green Version]
- Greisenegger, S.; Segal, H.C.; Burgess, A.I.; Poole, D.L.; Mehta, Z.; Rothwell, P.M. Copeptin and Long-Term Risk of Recurrent Vascular Events After Transient Ischemic Attack and Ischemic Stroke: Population-Based Study. Stroke 2015, 46, 3117–3123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purroy, F.; Suárez-Luis, I.; Cambray, S.; Farre, J.; Benabdelhak, I.; Mauri-Capdevila, G.; Sanahuja, J.; Quílez, A.; Begué, R.; Gil, M.I.; et al. The determination of copeptin levels helps management decisions among transient ischaemic attack patients. Acta Neurol. Scand. 2015, 134, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Lamb, K.E.; Quinn, T.J.; Lees, K.R.; Horvers, M.; Verrijth, M.J.; Walters, M.R. A recognition tool for transient ischaemic attack. QJM Mon. J. Assoc. Physicians 2009, 102, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, D. Diagnosis of TIA (DOT) score—Design and validation of a new clinical diagnostic tool for transient ischaemic attack. BMC Neurol. 2016, 16, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedeva, E.R.; Gurary, N.M.; Gilev, D.V.; Christensen, A.F.; Olesen, J. Explicit diagnostic criteria for transient ischemic attacks to differentiate it from migraine with aura. Cephalalgia Int. J. Headache 2017, 38, 1463–1470. [Google Scholar] [CrossRef]
- Nah, H.-W.; Kwon, S.U.; Kang, D.-W.; Lee, D.-H.; Kim, J.S. Diagnostic and Prognostic Value of Multimodal MRI in Transient Ischemic Attack. Int. J. Stroke Off. J. Int. Stroke Soc. 2013, 9, 895–901. [Google Scholar] [CrossRef]
- Yuan, J.; Jia, Z.; Song, Y.; Yang, S.; Li, Y.; Yang, L.; Qin, W.; Hu, W. Incidence and Predictors of Acute Ischemic Lesions on Brain Magnetic Resonance Imaging in Patients with a Clinical Diagnosis of Transient Ischemic Attack in China. Front. Neurol. 2019, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Nah, H.-W. Small Vessel Transient Ischemic Attack and Lacunar Infarction Detected with Perfusion-Weighted MRI. J. Stroke 2017, 19, 365–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppenheim, C.; Lamy, C.; Touzé, E.; Calvet, D.; Hamon, M.; Mas, J.L.; Méder, J.F. Do transient ischemic attacks with diffusion-weighted imaging abnormalities correspond to brain infarctions? AJNR Am. J. Neuroradiol. 2006, 27, 1782–1787. [Google Scholar] [PubMed]
- Fonseca, A.C.; Merwick, Á.; Dennis, M.; Ferrari, J.; Ferro, J.M.; Kelly, P.; Lal, A.; Ois, A.; Olivot, J.M.; Purroy, F. European Stroke Organisation (ESO) guidelines on management of transient ischaemic attack. Eur. Stroke J. 2021, 6, CLXIII–CLXXXVI. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, N.; Kate, M.; Mohimen, A.; Kesavadas, C.; Sylaja, P.N. Risk factors of white matter hyperintensities in South Asian patients with transient ischemic attack and minor stroke. Neuroradiology 2020, 62, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Nagy, M.; Azeem, M.U.; Soliman, Y.; Nawab, S.A.; Jun-O’Connell, A.H.; Goddeau, R.P., Jr.; Moonis, M.; Silver, B.; Henninger, N. Pre-existing White Matter Hyperintensity Lesion Burden and Diagnostic Certainty of Transient Ischemic Attack. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2019, 28, 944–953. [Google Scholar] [CrossRef]
- Foschi, M.; Pavolucci, L.; Rondelli, F.; Spinardi, L.; Favaretto, E.; Filippini, M.; Degli Esposti, D.; Strocchi, E.; Faggioli, G.; Cortelli, P. Prospective observational cohort study of early recurrent TIA: Features, frequency, and outcome. Neurology 2020, 95, e1733–e1744. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.Y.X.; Coutts, S.B. Role of Brain and Vessel Imaging for the Evaluation of Transient Ischemic Attack and Minor Stroke. Stroke 2018, 49, 1791–1795. [Google Scholar] [CrossRef]
- Coutts, S.B.; Modi, J.; Patel, S.K.; Demchuk, A.M.; Goyal, M.; Hill, M. CT/CT Angiography and MRI Findings Predict Recurrent Stroke After Transient Ischemic Attack and Minor Stroke: Results of the prospective CATCH study. Stroke 2012, 43, 1013–1017. [Google Scholar] [CrossRef]
- Quenault, A.; De Lizarrondo, S.M.; Etard, O.; Gauberti, M.; Orset, C.; Haelewyn, B.; Segal, H.C.; Rothwell, P.M.; Vivien, D.; Touzé, E.; et al. Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain J. Neurol. 2017, 140, 146–157. [Google Scholar] [CrossRef]
- Zhou, J.; Payen, J.-F.; Wilson, D.A.; Traystman, R.J.; Van Zijl, P.C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 2003, 9, 1085–1090. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, I.Y.; Chan, S.-T.; Wang, Y.; Mandeville, E.T.; Igarashi, T.; Lo, E.H.; Ji, X.; Sun, P.Z. pH-sensitive MRI demarcates graded tissue acidification during acute stroke―pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI. NeuroImage 2016, 141, 242–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.Z.; Ayata, C.; Lo, E.H. Fleeting footprints: Finding MRI biomarkers of transient ischaemic attack. Brain J. Neurol. 2016, 140, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Serlin, Y.; Ofer, J.; Ben-Arie, G.; Veksler, R.; Ifergane, G.; Shelef, I.; Minuk, J.; Horev, A.; Friedman, A. Blood-Brain Barrier Leakage: A New Biomarker in Transient Ischemic Attacks. Stroke 2019, 50, 1266–1269. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.M.; Bechara, J.; Middleton, S.; Johnstone, S.J. Acute EEG Patterns Associated with Transient Ischemic Attack. Clin. EEG Neurosci. 2019, 50, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Bentes, C.; Canhão, P.; Peralta, A.R.; Viana, P.; Fonseca, A.C.; Geraldes, R.; Pinho e Melo, T.; Paiva, T.; Ferro, J.M. Usefulness of EEG for the differential diagnosis of possible transient ischemic attack. Clin. Neurophysiol. Pr. 2018, 3, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Vuong, L.N.; Thulasi, P.; Biousse, V.; Garza, P.; Wright, D.W.; Newman, N.J.; Bruce, B.B. Ocular fundus photography of patients with focal neurologic deficits in an emergency department. Neurology 2015, 85, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Bruce, B.; Bidot, S.; Nahab, F.; Siegelman, J.; Bianchi, N.; Sandor, K.; Lin, M.Y.; Bell, S.; Ross, M.; Wright, D.; et al. Retinal Microvascular Changes Differentiate Mild Stroke and Transient Ischemic Attack (TIA) from Mimics among Patients Presenting to the Emergency Department (ED) with Suspected TIA: The FOTO-TIA Study (2266). Neurology 2020, 94, 2266. [Google Scholar]
- Bruce, B.; Bidot, S.; Nahab, F.; Siegelman, J.; Sandor, K.; Lin, M.Y.; Meyer, B.; Ross, M.; Wright, D.; Biousse, V.; et al. Retinal Microvascular Changes and Vessel Diameters are Moderately Associated with Positive Magnetic Resonance Diffusion Weighted Imaging (MR-DWI) among Patients Presenting to the Emergency Department (ED) with Suspected TIA: The FOTO-TIA Study (2914). Neurology 2021, 96, 2914. [Google Scholar]
- Bruce, B.; Bidot, S.; Nahab, F.; Siegelman, J.; Sandor, K.; Lin, M.Y.; Meyer, B.; Ross, M.; Wright, D.; Biousse, V.; et al. Retinal Microvascular Changes Do Not Appear to Predict 90-Day Risk of Stroke and Cardiovascular Events (CVE) among Patients Presenting to the Emergency Department with Suspected TIA: The FOTO-TIA Study (2853). Neurology 2021, 96, 2853. [Google Scholar]
- Zhan, X.; Jickling, G.C.; Tian, Y.; Stamova, B.; Xu, H.; Ander, B.P.; Turner, R.J.; Mesias, M.; Verro, P.; Bushnell, C.; et al. Transient ischemic attacks characterized by RNA profiles in blood. Neurology. 2011, 77, 1718–1724. [Google Scholar] [CrossRef] [Green Version]
- Jickling, G.C.; Zhan, X.; Stamova, B.; Ander, B.P.; Tian, Y.; Liu, D.; Sison, S.-M.; Verro, P.; Johnston, S.C.; Sharp, F.R. Ischemic Transient Neurological Events Identified by Immune Response to Cerebral Ischemia. Stroke 2012, 43, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penn, A.M.; Bibok, M.B.; Saly, V.K.; Coutts, S.B.; Lesperance, M.L.; Balshaw, R.F.; Votova, K.; Croteau, N.S.; Trivedi, A.; Jackson, A.M.; et al. Verification of a proteomic biomarker panel to diagnose minor stroke and transient ischaemic attack: Phase 1 of SpecTRA, a large scale translational study. Biomark. Biochem. Indic. Expo. Response Susceptibil. Chem. 2018, 23, 392–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frappier, T.; Stetzkowski-Marden, F.; Pradel, L.A. Interaction domains of neurofilament light chain and brain spectrin. Biochem. J. 1991, 275 Pt 2, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann-Ivol, C.G.; Burkhard, P.R.; Le Floch-Rohr, J.; Allard, L.; Hochstrasser, D.F.; Sanchez, J.-C. Fatty Acid Binding Protein as a Serum Marker for the Early Diagnosis of Stroke: A pilot study. Mol. Cell. Proteom. 2004, 3, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, T.; Alling, C.; Karlsson, B.; Karlsson, I.; Winblad, B. Brain and plasma proteins in spinal fluid as markers for brain damage and severity of stroke. Stroke 1984, 15, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Traenka, C.; Disanto, G.; Seiffge, D.J.; Gensicke, H.; Hert, L.; Grond-Ginsbach, C.; Peters, N.; Regeniter, A.; Kloss, M.; De Marchis, G.M.; et al. Serum Neurofilament Light Chain Levels Are Associated with Clinical Characteristics and Outcome in Patients with Cervical Artery Dissection. Cerebrovasc. Dis. 2015, 40, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ercan, M.; Mungan, S.; Güzel, I.; Celik, H.T.; Bal, C.; Abusoglu, S.; Akbulut, D.; Oğuz, E.F.; Yilmaz, F.M. Serum asymmetric dimethylarginine and nitric oxide levels in Turkish patients with acute ischemic stroke. Adv. Clin. Exp. Med. 2018, 28, 693–698. [Google Scholar] [CrossRef]
- Turck, N.; Robin, X.; Walter, N.; Fouda, C.; Hainard, A.; Sztajzel, R.; Wagner, G.; Hochstrasser, D.F.; Montaner, J.; Burkhard, P.R.; et al. Blood Glutathione S-Transferase-π as a Time Indicator of Stroke Onset. PLoS ONE 2012, 7, e43830. [Google Scholar] [CrossRef]
- Fon, E.A.; Mackey, A.; Côté, R.; Wolfson, C.; McIlraith, D.M.; Leclerc, J.; Bourque, F. Hemostatic markers in acute transient ischemic attacks. Stroke 1994, 25, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Dolmans, L.S.; Hoes, A.W.; Bartelink, M.-L.E.L.; Koenen, N.C.T.; Kappelle, L.J.; Rutten, F.H. Patient delay in TIA: A systematic review. J. Neurol. 2019, 266, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Schellinger, P.D.; Bryan, R.N.; Caplan, L.R.; Detre, J.A.; Edelman, R.R.; Jaigobin, C.; Kidwell, C.S.; Mohr, J.P.; Sloan, M.; Sorensen, A.G.; et al. Evidence-based guideline: The role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke [Report of the TherapeuTIcs and Technology Assessment Subcommittee of the American Academy of Neurology]. Neurology 2010, 75, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gürer, G.; Gursoy-Ozdemir, Y.; Erdemli, E.; Can, A.; Dalkara, T. Astrocytes are More Resistant to Focal Cerebral Ischemia Than Neurons and Die by a Delayed Necrosis. Brain Pathol. 2009, 19, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Health Care. Am. J. Med. 2019, 132, 795–801. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouri-Vaskeh, M.; Khalili, N.; Sadighi, A.; Yazdani, Y.; Zand, R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. J. Clin. Med. 2022, 11, 1046. https://doi.org/10.3390/jcm11041046
Nouri-Vaskeh M, Khalili N, Sadighi A, Yazdani Y, Zand R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. Journal of Clinical Medicine. 2022; 11(4):1046. https://doi.org/10.3390/jcm11041046
Chicago/Turabian StyleNouri-Vaskeh, Masoud, Neda Khalili, Alireza Sadighi, Yalda Yazdani, and Ramin Zand. 2022. "Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons" Journal of Clinical Medicine 11, no. 4: 1046. https://doi.org/10.3390/jcm11041046
APA StyleNouri-Vaskeh, M., Khalili, N., Sadighi, A., Yazdani, Y., & Zand, R. (2022). Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. Journal of Clinical Medicine, 11(4), 1046. https://doi.org/10.3390/jcm11041046