Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
Statistics
3. Results
3.1. Characteristics of Participants
3.2. Effects of Temperature and Physical Activity on HSI Data
3.3. Inter-Operator Variability
3.4. Data of Surgically Treated Patients
3.5. Data of Endovascularly Treated Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horstick, G.; Messner, L.; Grundmann, A.; Yalcin, S.; Weisser, G.; Espinola-Klein, C. Tissue optical perfusion pressure: A simplified, more reliable, and faster assessment of pedal microcirculation in peripheral artery disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1208–H1220. [Google Scholar] [CrossRef] [PubMed]
- Martini, R. Current opinions about the definition of critical limb ischemia: A debate still open after three decades. Clin. Hemorheol. Microcirc. 2019, 73, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, J. Angiosome~From the Standpoint of Bypass Surgery. Ann. Vasc. Dis. 2020, 13, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Byrne, J.; Clagett, G.P.; Farkouh, M.E.; Porter, J.M.; Sackett, D.L.; Strandness, D.E., Jr.; Taylor, L.M. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: A critical review. Circulation 1996, 94, 3026–3049. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debusa, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European 30 Society for Vascular Surgery (ESVS). Rev. Esp. Cardiol. 2018, 71, 111. [Google Scholar] [CrossRef]
- Krishna, S.M.; Moxon, J.V.; Golledge, J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int. J. Mol. Sci. 2015, 16, 11294–11322. [Google Scholar] [CrossRef] [Green Version]
- Lawall, H.; Huppert, P.; Espinola-Klein, C.; Zemmrich, C.S.; Ruemenapf, G. German guideline on the diagnosis and treatment of peripheral artery disease—A comprehensive update 2016. Vasa 2017, 46, 79–86. [Google Scholar] [CrossRef]
- getABI Study Group. getABI: German epidemiological trial on ankle brachial index for elderly patients in family practice to dedect peripheral arterial disease, significant marker for high mortality. Vasa 2002, 31, 241–248. [Google Scholar]
- Englund, E.K.; Langham, M.C. Quantitative and dynamic MRI measures of peripheral vascular function. Front. Physiol. 2020, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Edelman, R.R.; Sheehan, J.; Dunkle, E.; Schindler, N.; Carr, J.; Koktzoglou, I. Quiescent-interval single shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn. Reson. Med. 2010, 63, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Chou, T.H.; Stacy, M.R. Clinical applications for radiotracer imaging of lower extremity peripheral arterial disease and critical limb ischemia. Mol. Imaging Biol. 2020, 22, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R.R.; Flanagan, O.; Giri, S.; Koktzoglou, I. (Eds.) Nonenhanced Evaluation of the Peripheral Arteries Using Quiescent-Inflow Single-Shot with Arterial Spin Labelling (QISSASL) MR Angiography; ISMRM: Concord, CA, USA, 2014. [Google Scholar]
- Zuzak, K.J.; Schaeberle, M.D.; Lewis, E.N.; Levin, I.W. Visible reflectance hyperspectral imaging: Characterization of a noninvasive, in vivo system for determining tissue perfusion. Anal. Chem. 2002, 74, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Chiang, N.; Jain, J.K.; Sleigh, J.; Vasudevan, T. Evaluation of hyperspectral imaging technology in patients with peripheral vascular disease. J. Vasc. Surg. 2017, 66, 1192–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumpio, B.J.; Citoni, G.; Chin, J.A.; Sumpio, B.E. Use of hyperspectral imaging to assess endothelial dysfunction in peripheral arterial disease. J. Vasc. Surg. 2016, 64, 1066–1073. [Google Scholar] [CrossRef] [Green Version]
- Chin, J.A.; Wang, E.C.; Kibbe, M.R. Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease. J. Vasc. Surg. 2011, 54, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
- Grambow, E.; Dau, M.; Sandkühler, N.A.; Leuchter, M.; Holmer, A.; Klar, E.; Weinrich, M. Evaluation of peripheral artery disease with the TIVITA® Tissue hyperspectral imaging camera system. Clin. Hemorheol. Microcirc. 2019, 73, 3–17. [Google Scholar] [CrossRef]
- Taylor, G.I.; Palmer, J.H. The vascular territories (angiosomes) of the body: Experimental study and clinical applications. Br. J. Plast. Surg. 1987, 40, 113–141. [Google Scholar] [CrossRef]
- Kraushaar, L.E.; Dressel, A.; Maßmann, A. Vascular robustness: The missing parameter in cardiovascular risk prediction. Prev. Med. Rep. 2018, 28, 107–113. [Google Scholar] [CrossRef]
- Schmidt, W.D.; Liebold, K.; Fassler, D.; Wollina, U.W. Contact-free spectroscopy of leg ulcers: Principle, technique, and calculation of spectroscopic wound scores. J. Investig. Dermatol. 2001, 116, 531–535. [Google Scholar] [CrossRef] [Green Version]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Holmer, A.; Marotz, J.; Wahl, P.; Dau, M.; Kämmerer, P.W. Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters. Biomed. Tech. 2018, 63, 547–556. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org (accessed on 28 January 2022).
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwandner, F.; Hinz, S.; Witte, M.; Philipp, M.; Schafmayer, C.; Grambow, E. Intraoperative Assessment of Gastric Sleeve Oxygenation Using Hyperspectral Imaging in Esophageal Resection: A Feasibility Study. Visc. Med. 2021, 37, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Winkeln, B.; Maktabi, M.; Takoh, J.P.; Rabe, S.M.; Barberio, M.; Köhler, H.; Neumuth, T.; Melzer, A.; Chalopin, C.; Gockel, I. Hyperspectral imaging of gastrointestinal anastomoses. Chirurg 2018, 89, 717–725. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Holfert, N.; Köhler, H.; Moulla, Y.; Takoh, J.P.; Rabe, S.M.; Mehdorn, M.; Barberio, M.; Chalopin, C.; Neumuth, T.; et al. Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI). Int. J. Colorectal Dis. 2019, 34, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Winkeln, B.; Germann, I.; Köhler, H.; Mehdorn, M.; Maktabi, M.; Sucher, R.; Barberio, M.; Chalopin, C.; Diana, M.; Moulla, Y.; et al. Comparison of hyperspectral imaging and fluorescence angiography for the determination of the transection margin in colorectal resections-a comparative study. Int. J. Colorectal Dis. 2021, 36, 283–291. [Google Scholar] [CrossRef]
- Fabelo, H.; Ortega, S.; Ravi, D.; Kiran, B.R.; Sosa, C.; Bulters, D.; Callicó, G.M.; Bulstrode, H.; Szolna, A.; Piñeiro, J.F.; et al. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operation. PLoS ONE 2018, 13, e0193721. [Google Scholar] [CrossRef] [Green Version]
- Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.F.; Sosa, C.; O’Shanahan, A.J.; Bisshopp, S.; Espino, C.; et al. Deep Learning-Based Framework for In Vivo Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain. Sensors 2019, 19, 920. [Google Scholar] [CrossRef] [Green Version]
- Leon, R.; Fabelo, H.; Ortega, S.; Piñeiro, J.F.; Szolna, A.; Hernandez, M.; Espino, C.; O’Shanahan, A.J.; Carrera, D.; Bisshopp, S.; et al. VNIR-NIR hyperspectral imaging fusion targeting intraoperative brain cancer detection. Sci. Rep. 2021, 11, 19696. [Google Scholar] [CrossRef]
- Goetze, E.; Thiem, D.G.E.; Gielisch, M.W.; Kämmerer, P.W. Identification of cutaneous perforators for microvascular surgery using hyperspectral technique—A feasibility study on the antero-lateral thigh. J. Cranio-Maxillofac. Surg. 2020, 48, 1066–1073. [Google Scholar] [CrossRef]
- Thiem, D.G.E.; Frick, R.W.; Goetze, E.; Gielisch, M.; Al-Nawas, B.; Kämmerer, P.W. Hyperspectral analysis for perioperative perfusion monitoring-a clinical feasibility study on free and pedicled flaps. Clin. Oral Investig. 2021, 25, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Thiem, D.G.E.; Römer, P.; Blatt, S.; Al-Nawas, B.; Kämmerer, P.W. New Approach to the Old Challenge of Free Flap Monitoring-Hyperspectral Imaging Outperforms Clinical Assessment by Earlier Detection of Perfusion Failure. J. Pers. Med. 2021, 11, 1101. [Google Scholar] [CrossRef] [PubMed]
- Saiko, G.; Lombardi, P.; Au, Y.; Queen, D.; Armstrong, D.; Harding, K. Hyperspectral imaging in wound care: A systematic review. Int. Wound J. 2020, 17, 1840–1856. [Google Scholar] [CrossRef] [PubMed]
- Khaodhiar, L.; Dinh, T.; Schomacker, K.T. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care 2007, 30, 903–910. [Google Scholar] [CrossRef] [Green Version]
- Nouvong, A.; Hoogwerf, B.; Mohler, E.; Davis, B.; Tajaddini, A.; Medenilla, E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care 2009, 32, 2056–2061. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.J.; Walters, E.; Kennedy, C.J.; Beitollahi, A.; Evans, K.K.; Attinger, C.E.; Kim, P.J. Quantitative Results of Perfusion Utilising Hyperspectral Imaging on Non-diabetics and Diabetics: A Pilot Study. Int. Wound J. 2020, 17, 1809–1816. [Google Scholar] [CrossRef]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Hinchliffe, R.J.; Lipsky, B.A.; IWGDF Editorial Board. Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3266. [Google Scholar] [CrossRef] [Green Version]
- Ollenschläger, G.; Kopp, I.; Thole, H.; Lelgemann, M. Expertenkreis NVL Typ-2-Diabetes—Fusskomplikationen beim AZQ. The German Program for Disease Management Guidelines Type 2 Diabetes—Diabetic Foot Guideline 2006. Short review. Med. Klein. (Munich) 2007, 102, 250–254. [Google Scholar] [CrossRef]
- Söderström, M.; Albäck, A.; Biancari, F.; Lappalainen, K.; Lepäntalo, M.; Venermo, M. Angiosome-targeted infrapopliteal endovascular revascularization for treatment of diabetic foot ulcers. J. Vasc. Surg. 2013, 57, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Normahani, P.; Khosravi, S.; Sounderajah, V.; Aslam, M.; Standfield, N.J.; Jaffer, U. The Effect of Lower Limb Revascularization on Flow, Perfusion, and Systemic Endothelial Function: A Systematic Review. Angiology 2021, 72, 210–220. [Google Scholar] [CrossRef]
- Widgerow, A.D. Ischemia-reperfusion injury: Influencing the microcirculatory and cellular environment. Ann. Plast. Surg. 2014, 72, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Neville, R.; Gupta, S. Establishment of normative perfusion values using Hyperspectral tissue oxygenation mapping technology. Vasc. Dis. Manag. 2009, 6, 156–161. [Google Scholar]
- Bowen, R.E.; Treadwell, G.R.N.; Goodwin, M.R.R.T. Correlation of near infrared spectroscopy measurements of tissue oxygen saturation with transcutaneous pO2 in patients with chronic wounds. SM Vasc. Med. 2016, 1, 1006. [Google Scholar]
Control Group (n = 25) | PAD Patients (n = 37) | |
---|---|---|
Sex (male/female) | 21/4 | 30/7 |
Mean age (years) | 26.4 | 64.9 |
Active smoking (%) | 5 (20%) | 23 (62%) |
Arterial hypertension (%) | 0% | 27 (73%) |
Diabetes mellitus (%) | 0% | 14 (38%) |
Fontaine stadium | ||
IIa | / | 5 (14%) |
IIb | / | 19 (51%) |
III | / | 6 (16%) |
IV | / | 7 (19%) |
Angiosome | NIR Perfusion Index | StO2 | TWI | ||||||
---|---|---|---|---|---|---|---|---|---|
Day 0 | Day 1 | Day 3 | Day 0 | Day 1 | Day 3 | Day 0 | Day 1 | Day 3 | |
ATA | 41 ± 7 | 42 ± 7 | 49 ± 9 * | 44 ± 9 | 39 ± 7 | 42 ± 9 | 47 ± 5 | 48 ± 6 | 55 ± 9 * |
PTA | 42 ± 5 | 40 ± 10 | 47 ± 10 | 44 ± 7 | 38 ± 7 * | 41 ± 8 | 46 ± 6 | 51 ± 10 | 56 ± 10 * |
SA | 41 ± 6 | 41 ± 7 | 44 ± 8 | 46 ± 7 | 39 ± 7 * | 40 ± 8 | 46 ± 4 | 49 ± 8 | 53 ± 8 |
PA | 41 ± 6 | 43 ± 8 | 47 ± 8 * | 44 ± 7 | 40 ± 8 | 39 ± 8 | 50 ± 7 | 50 ± 8 | 56 ± 7 * |
DPA | 37 ± 7 | 43 ± 8 * | 44 ± 9 * | 36 ± 7 | 45 ± 11 | 40 ± 12 | 48 ± 9 | 49 ± 8 | 54 ± 8 * |
MPA | 51 ± 11 | 52 ± 9 | 57 ± 8 * | 50 ± 14 | 57 ± 10 | 56 ± 12 | 51 ± 7 | 66 ± 10 * | 61 ± 9 * |
LPA | 49 ± 11 | 53 ± 10 | 57 ± 9 * | 52 ± 12 | 59 ± 11 | 59 ± 12 | 55 ± 7 | 66 ± 7 * | 62 ± 7 * |
Angiosome | NIR Perfusion Index | StO2 | TWI | |||
---|---|---|---|---|---|---|
Day 0 | Day 1 | Day 0 | Day 1 | Day 0 | Day 1 | |
ATA | 38 ± 10 | 37 ± 11 | 40 ± 5 | 40 ± 8 | 48 ± 7 | 45 ± 5 * |
PTA | 39 ± 6 | 42 ± 8 | 40 ± 6 | 39 ± 7 | 46 ± 9 | 44 ± 6 |
SA | 39 ± 7 | 40 ± 8 | 42 ± 7 | 42 ± 6 | 47 ± 9 | 44 ± 6 |
PA | 41 ± 7 | 43 ± 8 * | 41 ± 6 | 43 ± 9 | 50 ± 1 | 47 ± 8 |
DPA | 36 ± 9 | 41 ± 11 * | 36 ± 7 | 43 ± 12 | 47 ± 6 | 45 ± 5 |
MPA | 50 ± 10 | 54 ± 8 | 46 ± 11 | 54 ± 1 * | 52 ± 6 | 53 ± 7 |
LPA | 50 ± 11 | 54 ± 7 | 49 ± 1 | 56 ± 1 * | 55 ± 5 | 56 ± 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grambow, E.; Sandkühler, N.A.; Groß, J.; Thiem, D.G.E.; Dau, M.; Leuchter, M.; Weinrich, M. Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease. J. Clin. Med. 2022, 11, 758. https://doi.org/10.3390/jcm11030758
Grambow E, Sandkühler NA, Groß J, Thiem DGE, Dau M, Leuchter M, Weinrich M. Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease. Journal of Clinical Medicine. 2022; 11(3):758. https://doi.org/10.3390/jcm11030758
Chicago/Turabian StyleGrambow, Eberhard, Niels Arne Sandkühler, Justus Groß, Daniel G. E. Thiem, Michael Dau, Matthias Leuchter, and Malte Weinrich. 2022. "Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease" Journal of Clinical Medicine 11, no. 3: 758. https://doi.org/10.3390/jcm11030758
APA StyleGrambow, E., Sandkühler, N. A., Groß, J., Thiem, D. G. E., Dau, M., Leuchter, M., & Weinrich, M. (2022). Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease. Journal of Clinical Medicine, 11(3), 758. https://doi.org/10.3390/jcm11030758