Association between Duration of Deep Hypothermic Circulatory Arrest and Surgical Outcome in Patients with Acute Type A Aortic Dissection: A Large Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Operative Technique
2.3. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics of the Study Population
3.2. Intraoperative Data
3.3. Postoperative Data and Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- TTaylor, K.M. Brain damage during open-heart surgery. Thorax 1982, 37, 873–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griepp, R.B.; Stinson, E.B.; Hollingsworth, J.F.; Buehler, D. Prosthetic replacement of the aortic arch. J. Thorac. Cardiovasc. Surg. 1975, 70, 1051–1063. [Google Scholar] [CrossRef]
- Tian, D.H.; Wan, B.; Bannon, P.G.; Misfeld, M.; LeMaire, S.A.; Kazui, T.; Kouchoukos, N.T.; Elefteriades, J.A.; Bavaria, J.E.; Coselli, J.S.; et al. A meta-analysis of deep hypothermic circulatory arrest alone versus with adjunctive selective antegrade cerebral perfusion. Ann. Cardiothorac. Surg. 2013, 2, 261–270. [Google Scholar] [PubMed]
- O’Hara, D.; McLarty, A.; Sun, E.; Itagaki, S.; Tannous, H.; Chu, D.; Egorova, N.; Chikwe, J. Type-A aortic dissection and cerebral perfusion: The society of thoracic surgeons database analysis. Ann. Thorac. Surg. 2020, 110, 1461–1467. [Google Scholar] [CrossRef]
- Cao, L.; Guo, X.; Jia, Y.; Yang, L.; Wang, H.; Yuan, S. Effect of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest in aortic arch surgery on postoperative renal function: A systematic review and meta-analysis. J. Am. Heart Assoc. 2020, 9, e017939. [Google Scholar] [CrossRef]
- Okita, Y.; Takamoto, S.; Ando, M.; Morota, T.; Matsukawa, R.; Kawashima, Y. Mortality and cerebral outcome in patients who underwent aortic arch operations using deep hypothermic circulatory arrest with retrograde cerebral perfusion: No relation of early death, stroke, and delirium to the duration of circulatory arrest. J. Thorac. Cardiovasc. Surg. 1998, 115, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Kumral, E.; Yüksel, M.; Büket, S.; Yagdi, T.; Atay, Y.; Güzelant, A. Neurologic complications after deep hypothermic circulatory arrest: Types, predictors, and timing. Tex. Heart Inst. J. 2001, 28, 83–88. [Google Scholar] [PubMed]
- Schoeneich, F.; Rahimi-Barfeh, A.; Grothusen, C.; Cremer, J. Transatrial left-ventricular cannulation in acute aortic dissection type A: A novel cannulation technique. Eur. J. Cardio. Surg. 2015, 48, e51–e52. [Google Scholar] [CrossRef] [Green Version]
- Ravesh, M.S.; Salem, M.; Lutter, G.; Friedrich, C.; Walter, V.; Puehler, T.; Cremer, J.; Haneya, A. Comparison of outcomes in DeBakey type I versus DeBakey type II aortic dissection: A 17-year single center experience. J. Thorac. Dis. 2021, 13, 6769. [Google Scholar] [CrossRef]
- Salehi Ravesh, M.; Rusch, R.; Friedrich, C.; Teickner, C.; Berndt, R.; Haneya, A.; Cremer, J.; Pühler, T. Impact of patients’ age on short and long-term outcome after carotid endarterectomy and simultaneous coronary artery bypass grafting. J. Cardiothorac. Surg. 2019, 14, 109. [Google Scholar] [CrossRef]
- Ziganshin, B.A.; Elefteriades, J.A. Deep hypothermic circulatory arrest. Ann. Cardiothorac. Surg. 2013, 2, 303–315. [Google Scholar] [PubMed]
- Mazzeffi, M.; Marotta, M.; Lin, H.-M.; Fischer, G. Duration of deep hypothermia during aortic surgery and the risk of perioperative blood transfusion. Ann. Card. Anaesth. 2012, 15, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Moeller, E.; Nores, M.; Stamou, S.C. Repair of acute Type-A aortic dissection in the present era: Outcomes and controversies. Aorta 2019, 7, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immer, F.F.; Lippeck, C.; Barmettler, H.; Berdat, P.A.; Eckstein, F.S.; Kipfer, B.; Saner, H.; Schmidli, J.; Carrel, T.P. Improvement of quality of life after surgery on the thoracic aorta: Effect of antegrade cerebral perfusion and short duration of deep hypothermic circulatory arrest. Circulation 2004, 110, II250–II255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Harky, A.; Jahangeer, S.; Adams, B.; Bashir, M. Varying evidence on deep hypothermic circulatory arrest in thoracic aortic aneurysm surgery. Tex. Heart Inst. J. 2018, 45, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Ergin, M.A.; Uysal, S.; Reich, D.L.; Apaydin, A.; Lansman, S.L.; McCullough, J.N.; Griepp, R.B. Temporary neurological dysfunction after deep hypothermic circulatory arrest: A clinical marker of long-term functional deficit. Ann. Thorac. Surg. 1999, 67, 1887–1890; discussion 1891–1894. [Google Scholar] [CrossRef]
- Elefteriades, J.A. What is the best method for brain protection in surgery of the aortic arch? Straight DHCA. Cardiol. Clin. 2010, 28, 381–387. [Google Scholar] [CrossRef]
- Svensson, L.G.; Crawford, E.S.; Hess, K.R.; Coselli, J.S.; Raskin, S.; Shenaq, S.A.; Safi, H.J. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J. Thorac. Cardiovasc. Surg. 1993, 106, 19–28; discussion 28–31. [Google Scholar] [CrossRef]
- Ergin, M.A.; Galla, J.D.; Lansman, S.L.; Quintana, C.; Bodian, C.; Griepp, R.B. Hypothermic circulatory arrest in operations on the thoracic aorta. Determinants of operative mortality and neurologic outcome. J. Thorac. Cardiovasc. Surg. 1994, 107, 788–797; discussion 797–799. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.A.; Duarte, I.G.; Thourani, V.H.; Nakamura, M.; Wang, N.-P.; Brown, W.; Gott, J.P.; Vinten-Johansen, J.; Guyton, R.A. Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis. Ann. Thorac. Surg. 2000, 69, 696–702. [Google Scholar] [CrossRef]
- Harrington, D.K.; Lilley, J.P.; Rooney, S.J.; Bonser, R.S. Nonneurologic morbidity and profound hypothermia in aortic surgery. Ann. Thorac. Surg. 2004, 78, 596–601. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | Cardiac Arrest <60 min | Cardiac Arrest ≥60 min | p-Value |
---|---|---|---|---|
Number of surgical procedures, n (%) | 410 (100%) | 337 (82.2%) | 73 (17.8%) | ---- |
Age, mean ±standard deviation years | 62.3 ± 13.0 | 63.2 ± 12.8 | 58.0 ± 12.9 | 0.001 |
63.0 (53.0; 72.3) | 65 (54.5; 73.0) | 57 (49.5; 66.5) | ||
Female, n (%) | 144 (35.1%) | 127 (37.7%) | 17 (23.3%) | 0.019 |
EuroSCORE II | 6.0 (3.8; 13.1) | 6.2 (4.0; 13.4) | 5.9 (3.1; 9.9) | 0.065 |
Body mass index (kg/m2) | 26.2 (23.9; 29.0) | 26.2 (23.9; 28.9) | 25.8 (23.9; 29.3) | 0.902 |
DeBakey 1, 6.1% missing, n (%) | 301 (78.2%) | 233 (74.0%) | 68 (97.1%) | <0.001 |
Arterial hypertension, n (%) | 278 (67.8%) | 228 (67.7%) | 50 (68.5%) | 0.890 |
Pulmonary hypertension, n (%) | 7 (1.7%) | 6 (1.8%) | 1 (1.4%) | 1.000 |
Type 2 Diabetes mellitus, n (%) | 20 (4.9%) | 19 (5.6%) | 1 (1.4%) | 0.225 |
Insulin dependent, n (%) | 6 (1.5%) | 6 (1.8%) | 0 (0.0%) | 0.596 |
Hyperlipoproteinaemia, n (%) | 46 (11.2%) | 39 (11.6%) | 7 (9.6%) | 0.621 |
Neurological deficits, n (%) | 77 (18.8%) | 64 (19.0%) | 13 (17.8%) | 0.815 |
Chronic renal failure/insufficiency, n (%) | 48 (11.7%) | 39 (11.6%) | 9 (12.3%) | 0.855 |
Renal replacement therapy, n (%) | 7 (1.7%) | 5 (1.5%) | 2 (2.7%) | 0.613 |
COPD, n (%) | 29 (7.1%) | 24 (7.1%) | 5 (6.8%) | 0.934 |
Coronary heart disease, n (%) | 69 (16.8%) | 58 (17.2%) | 11 (15.1%) | 0.657 |
Heart rhythm, n (%) | ||||
Atrial fibrillation, n (%) | 55 (13.4%) | 47 (13.9%) | 8 (11.0%) | 0.497 |
Previous PCI, n (%) | 26 (6.4%) | 20 (6.0%) | 6 (8.2%) | 0.435 |
Previous cardiac surgery, n (%) | 35 (8.5%) | 27 (8.0%) | 8 (11.0%) | 0.414 |
Peripheral vascular disease, n (%) | 14 (3.4%) | 12 (3.6%) | 2 (2.7%) | 1.000 |
LVEF (%) | 60 (55;70) | 60 (55;70) | 66 (55;70) | 0.342 |
Diagnostic imaging using | ||||
Computed tomography, n (%) | 359 (88.0%) | 297 (88.7%) | 62 (84.9%) | 0.375 |
Coronary angiography, n (%) | 128 (31.3%) | 108 (32.1%) | 20 (27.4%) | 0.428 |
Magnetic resonance imaging, n (%) | 6 (1.5%) | 5 (1.5%) | 1 (1.4%) | 1.000 |
Marfan syndrome, n (%) | 9 (2.2%) | 6 (1.8%) | 3 (4.1%) | 0.205 |
Diameter of aorta (mm) | 50 (46;60) | 50 (46;60) | 50 (42;60) | 0.508 |
Calcific aortic disease, n (%) | 8 (2.0%) | 8 (2.4%) | 0 (0.0%) | 0.360 |
Bicuspid aortic valve, n (%) | 20 (5.0%) | 18 (5.5%) | 2 (2.8%) | 0.549 |
Aortic valve vitium, n (%) | 159 (40.2%) | 141 (43.1%) | 18 (26.1%) | 0.009 |
Aortic valve stenosis, n (%) | 11 (2.8%) | 10 (3.1%) | 1 (1.4%) | 0.698 |
Aortic valve insufficiency, n (%) | 141 (35.6%) | 126 (38.5%) | 15 (21.7%) | 0.008 |
Combined Aortic valve vitium at Aortic valve replacement, n (%) | 7 (1.8%) | 5 (1.5%) | 2 (2.9%) | 0.352 |
Clinical presentation | ||||
Acute myocardial infarction (48 h), n (%) | 14 (3.4%) | 12 (3.6%) | 2 (2.7%) | 1.000 |
Cardiogenic shock, n (%) | 30 (7.3%) | 26 (7.7%) | 4 (5.5%) | 0.502 |
CPR, n (%) | 31 (7.6%) | 27 (8.0%) | 4 (5.5%) | 0.458 |
Transfer from intensive care unit, n (%) | 47 (11.5%) | 40 (11.9%) | 7 (9.6%) | 0.579 |
Intubated, n (%) | 43 (10.5%) | 37 (11.0%) | 6 (8.2%) | 0.481 |
Variable | Total | Cardiac Arrest <60 min | Cardiac Arrest ≥60 min | p-Value |
---|---|---|---|---|
Duration of surgery, min | 277 (229; 340) | 255 (220; 311) | 358 (304; 421) | <0.001 |
Cardiopulmonary bypass time, min | 166 (136; 210) | 154 (131; 190) | 245 (206; 296) | <0.001 |
Cross-clamp time, min | 92 (71; 130) | 83 (67; 109) | 145 (120; 202) | <0.001 |
Circulatory arrest, min | 33 (26; 49) | 30 (24; 38) | 88 (70; 129) | <0.001 |
Number of packed red blood cells, units | 2 (0; 6) | 2 (0; 5) | 4 (0; 7.5) | 0.019 |
Number of fresh frozen plasma, units | 0 (0; 6) | 0 (0; 4) | 4 (0; 6) | 0.023 |
Number of platelet concentrate, units | 2 (1; 2) | 2 (1; 2) | 2 (1; 2) | 0.005 |
Surgical procedure | ||||
Supracoronary replacement n (%) | 194 (47.3%) | 187 (55.5%) | 7 (9.6%) | <0.001 |
Partial arch replacement n (%) | 79 (23.7%) | 79 (23.5%) | 18 (24.7%) | 0.835 |
Total arch replacement n (%) | 59 (14.4%) | 12 (3.6%) | 47 (64.4%) | <0.001 |
Conduit/Bentall operation n (%) | 82 (20.0%) | 64 (19.0%) | 18 (24.7%) | 0.273 |
David operation n (%) | 22 (5.4%) | 18 (5.3%) | 4 (5.5%) | 1.000 |
Elephant-trunk n (%) | 9 (2.2%) | 0 (0.0%) | 9 (12.3%) | <0.001 |
Additional CABG n (%) | 31 (7.6%) | 29 (8.6%) | 2 (2.7%) | 0.086 |
Additional aortic valve replacement n (%) | 77 (18.8%) | 62 (18.4%) | 15 (20.5%) | 0.670 |
Interventional procedure | ||||
TEVAR (EVAR), n (%) | 27 (6.6%) | 17 (5.0%) | 10 (13.7%) | 0.015 |
Arterial cannulation | ||||
Femoral artery, n (%) | 73 (17.8%) | 67 (19.9%) | 6 (8.2%) | 0.018 |
Ascending aorta, n (%) | 90 (22.0%) | 71 (21.1%) | 19 (16.0%) | 0.353 |
Aortic arch, n (%) | 11 (2.7%) | 11 (3.3%) | 0 (0.0%) | 0.225 |
Subclavian artery, n (%) | 1 (0.2%) | 0 (0.0%) | 1 (1.4%) | 0.178 |
Apex, n (%) | 5 (1.2%) | 4 (1.2%) | 1 (1.4%) | 1.000 |
Pulmonary vein, n (%) | 230 (56.1%) | 184 (54.6%) | 46 (63.0%) | 0.189 |
Venous cannulation | ||||
Right atrium, n (%) | 399 (97.3%) | 329 (97.6%) | 70 (95.9%) | 0.421 |
Bicaval, n (%) | 4 (1.0%) | 1 (0.3%) | 3 (4.1%) | 0.019 |
Femoral vein, n (%) | 7 (1.7%) | 7 (2.1%) | 0 (0.0%) | 0.361 |
Variable | Total | Cardiac Arrest <60 min | Cardiac Arrest ≥60 min | p-Value |
---|---|---|---|---|
New-onset of Hemodialysis, n (%) | 89 (21.8%) | 70 (20.8%) | 19 (26.0%) | 0.330 |
48 h drainage loss, mL | 900 (500; 1500) | 850 (450; 1425) | 1000 (650; 1825) | 0.024 |
Rethoracotomy, n (%) | 76 (18.5%) | 58 (17.2%) | 18 (24.7%) | 0.138 |
Postoperative blood transfusion, n (%) | 297 (74.1%) | 240 (72.9%) | 57 (79.2%) | 0.276 |
Total number of packed red blood cells, units | 4 (0; 8) | 3 (0; 7) | 6 (2; 16) | 0.001 |
Total number of fresh frozen plasma, units | 2 (0; 6) | 0 (0; 6) | 4 (0; 12) | 0.002 |
Total number of platelet concentrate, units | 0 (0; 2) | 0 (0; 2) | 2 (0; 3) | <0.001 |
Postoperative status | 0.156 | |||
Stable, n (%) | 92 (23.1%) | 73 (22.3%) | 19 (26.8%) | ---- |
Stable with low dose catecholamines, n (%) | 244 (61.3%) | 206 (63.0%) | 38 (53.5%) | ---- |
Stable with high dose catecholamines, n (%) | 51 (12.8%) | 41 (12.5%) | 10 (14.1%) | ---- |
IABP/ECLS with catecholamines, n (%) | 10 (2.5%) | 7 (2.1%) | 3 (4.2%) | ---- |
IABP without catecholamines, n (%) | 1 (0.3%) | 0 (0.0%) | 1 (1.4%) | ---- |
Reintubation, n (%) | 71 (17.3%) | 52 (15.4%) | 19 (26.0%) | 0.030 |
Tracheotomy, n (%) | 100 (24.4%) | 68 (20.2%) | 32 (43.8%) | <0.001 |
Re-admission to the ICU, n (%) | 39 (9.5%) | 32 (9.5%) | 7 (9.6%) | 0.986 |
Re-admission postoperative days, d | 5 (2;8) | 5 (2;8) | 3.5 (1.3;13) | 0.878 |
Postoperative delirium, n (%) | 75 (18.3%) | 57 (17.0%) | 18 (24.7%) | 0.124 |
Postoperative myocardial infarction, n (%) | 6 (1.5%) | 4 (1.2%) | 2 (2.7%) | 0.290 |
TIA/Stroke (CT-proofed), n (%) | 95 (23.2%) | 72 (21.4%) | 23 (31.5%) | 0.063 |
CPR, n (%) | 26 (6.3%) | 22 (6.5%) | 4 (5.5%) | 1.000 |
Bronchopulmonary infection, n (%) | 58 (14.1%) | 41 (12.2%) | 17 (23.3%) | 0.013 |
Bacteriaemia/sepsis, n (%) | 19 (4.6%) | 17 (5.0%) | 2 (2.7%) | 0.547 |
Sternal wound infection, n (%) | 6 (1.5%) | 4 (1.2%) | 2 (2.8%) | 0.283 |
Atrial fibrillation, n (%) | 44 (10.8%) | 38 (11.3%) | 6 (8.2%) | 0.436 |
Ventilation time, h | 64 (19;195) | 50 (18;162) | 134 (29;359) | <0.001 |
ICU time, d | 6 (2;12) | 5 (2;10) | 9 (4;19) | <0.001 |
Postoperative days, d | 10 (7;19) | 10 (7;18) | 12 (7;20) | 0.241 |
7 d Mortality, n (%) | 43 (10.5%) | 37 (11.0%) | 6 (8.2%) | 0.485 |
30 d Mortality, n (%) | 67 (16.3%) | 56 (16.6%) | 11 (15.1%) | 0.746 |
Hospital Mortality | 62 (15.1%) | 51 (15.1%) | 11 (15.1%) | 0.288 |
Cardiac death, n (%) | 32 (51.6%) | 25 (49.0%) | 7 (63.6%) | ----- |
Cerebral death, n (%) | 6 (9.7%) | 5 (9.8%) | 1 (9.1%) | ----- |
Sepsis, n (%) | 2 (3.2%) | 1 (2.0%) | 1 (9.1%) | ----- |
MOF, n (%) | 22 (35.5%) | 20 (39.2%) | 2 (18.2%) | ----- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi Ravesh, M.; Friedrich, C.; Schoettler, J.; Hummitzsch, L.; Elke, G.; Salem, M.; Lutter, G.; Puehler, T.; Cremer, J.; Haneya, A. Association between Duration of Deep Hypothermic Circulatory Arrest and Surgical Outcome in Patients with Acute Type A Aortic Dissection: A Large Retrospective Cohort Study. J. Clin. Med. 2022, 11, 644. https://doi.org/10.3390/jcm11030644
Salehi Ravesh M, Friedrich C, Schoettler J, Hummitzsch L, Elke G, Salem M, Lutter G, Puehler T, Cremer J, Haneya A. Association between Duration of Deep Hypothermic Circulatory Arrest and Surgical Outcome in Patients with Acute Type A Aortic Dissection: A Large Retrospective Cohort Study. Journal of Clinical Medicine. 2022; 11(3):644. https://doi.org/10.3390/jcm11030644
Chicago/Turabian StyleSalehi Ravesh, Mona, Christine Friedrich, Jan Schoettler, Lars Hummitzsch, Gunnar Elke, Mohamed Salem, Georg Lutter, Thomas Puehler, Jochen Cremer, and Assad Haneya. 2022. "Association between Duration of Deep Hypothermic Circulatory Arrest and Surgical Outcome in Patients with Acute Type A Aortic Dissection: A Large Retrospective Cohort Study" Journal of Clinical Medicine 11, no. 3: 644. https://doi.org/10.3390/jcm11030644
APA StyleSalehi Ravesh, M., Friedrich, C., Schoettler, J., Hummitzsch, L., Elke, G., Salem, M., Lutter, G., Puehler, T., Cremer, J., & Haneya, A. (2022). Association between Duration of Deep Hypothermic Circulatory Arrest and Surgical Outcome in Patients with Acute Type A Aortic Dissection: A Large Retrospective Cohort Study. Journal of Clinical Medicine, 11(3), 644. https://doi.org/10.3390/jcm11030644