Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, G.; Howard, K.; Chapman, J.R.; Chadban, S.; Cross, N.; Tong, A.; Webster, A.C.; Craig, J.C. Comparative survival and economic benefits of deceased donor kidney transplantation and dialysis in people with varying ages and co-morbidities. PLoS ONE 2012, 7, e29591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schold, J.D.; Buccini, L.D.; Goldfarb, D.A.; Flechner, S.M.; Poggio, E.D.; Sehgal, A.R. Association between Kidney Transplant Center Performance and the Survival Benefit of Transplantation Versus Dialysis. Clin. J. Am. Soc. Nephrol. 2014, 9, 1773–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pippias, M.; Stel, V.S.; Arnol, M.; Bemelman, F.; Berger, S.P.; Buturovic Ponikvar, J.B.; Kramar, R.; Magaz, Á.; Nordio, M.; Peters-Sengers, H.; et al. Temporal trends in the quality of deceased donor kidneys and kidney transplant outcomes in Europe: An analysis by the ERA-EDTA Registry. Nephrol. Dial. Transplant 2021, 37, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Israni, A.K.; Danovitch, G. Long-Term Survival after Kidney Transplantation. N. Engl. J. Med. 2021, 385, 729–743. [Google Scholar] [CrossRef]
- Legendre, C.; Canaud, G.; Martinez, F. Factors influencing long-term outcome after kidney transplantation. Transpl. Int. 2014, 27, 19–27. [Google Scholar] [CrossRef]
- Halloran, P.F. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 2004, 351, 2715–2729. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.A.; Kohli, J.; Bloom, R.D. Immunosuppression for kidney transplantation: Where are we now and where are we going? Transplant. Rev. 2017, 31, 10–17. [Google Scholar] [CrossRef]
- United States Renal Data System. 2021 USRDS Annual Data Report: Epidemiology of kidney disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2021; Available online: https://adr.usrds.org/2021 (accessed on 25 May 2022).
- Wekerle, T.; Segev, D.; Lechler, R.; Oberbauer, R. Strategies for long-term preservation of kidney graft function. Lancet 2017, 389, 2152–2162. [Google Scholar] [CrossRef]
- Australia and New Zealand Dialysis and Transplant Registry. 43rd Report: Kidney Transplantation. Research rep. 43. ANZDATA Registry, 2020; Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry: Adelaide, Australia, 2020; Chapter 7; p. 27. Available online: http://www.anzdata.org.au (accessed on 25 May 2022).
- Woodle, E.S.; First, M.R.; Pirsch, J.; Shihab, F.; Gaber, A.O.; van Veldhuisen, P. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann. Surg. 2008, 248, 564–577. [Google Scholar] [CrossRef]
- Krämer, B.K.; Klinger, M.; Vítko, Š.; Glyda, M.; Midtvedt, K.; Stefoni, S.; Citterio, F.; Pietruck, F.; Squifflet, J.-P.; Segoloni, G.; et al. Tacrolimus-based, steroid-free regimens in renal transplantation: 3-year follow-up of the ATLAS trial. Transplantation 2012, 94, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.C.; Ruster, L.P.; McGee, R.; Matheson, S.L.; Higgins, G.Y.; Willis, N.S.; Chapman, J.R.; Craig, J.C. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst. Rev. 2010, 1, CD003897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.H.; Wang, X.; Yang, K.H.; Liu, A.P.; Luo, X.F.; Zhang, J. Induction with and without antithymocyte globulin combined with cyclosporine/tacrolimus-based immunosuppression in renal transplantation: A meta-analysis of randomized controlled trials. Transplant. Proc. 2009, 41, 3671–3676. [Google Scholar] [CrossRef] [PubMed]
- Szczech, L.A.; Berlin, J.A.; Feldman, H.I. The effect of antilymphocyte induction therapy on renal allograft survival. A meta-analysis of individual patient-level data. Anti-Lymphocyte Antibody Induction Therapy Study Group. Ann. Intern. Med. 1998, 128, 817–826. [Google Scholar] [CrossRef]
- Genzyme Corporation. Full Prescribing Information: THYMOGLOBULIN® (Anti-Thymocyte Globulin [Rabbit]); Genzyme Polyclonals S.A.S: Camebridge, MA, USA, 2020; p. 6. [Google Scholar]
- KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant 2009, 9 (Suppl. 3), S1–S155. [CrossRef]
- Brennan, D.C.; Schnitzler, M.A. Long-term results of rabbit antithymocyte globulin and basiliximab induction. N. Engl. J. Med. 2008, 359, 1736–1738. [Google Scholar] [CrossRef]
- Brennan, D.C.; Daller, J.A.; Lake, K.D.; Cibrik, D.; Del Castillo, D. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N. Engl. J. Med. 2006, 355, 1967–1977. [Google Scholar] [CrossRef] [Green Version]
- Noël, C.; Abramowicz, D.; Durand, D.; Mourad, G.; Lang, P.; Kessler, M.; Charpentier, B.; Touchard, G.; Berthoux, F.; Merville, P.; et al. Daclizumab versus antithymocyte globulin in high-immunological-risk renal transplant recipients. J. Am. Soc. Nephrol. 2009, 20, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Pirsch, J.D.; Miller, J.; Deierhoi, M.H.; Vincenti, F.; Filo, R.S. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 1997, 63, 977–983. [Google Scholar] [CrossRef]
- Johnson, C.; Ahsan, N.; Gonwa, T.; Halloran, P.; Stegall, M.; Hardy, M.; Metzger, R.; Shield, C.; Rocher, L.; Scandling, J.; et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation 2000, 69, 834–841. [Google Scholar] [CrossRef]
- Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vítko, S.; Nashan, B.; Gürkan, A.; Margreiter, R.; Hugo, C.; Grinyó, J.M.; Frei, U.; et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 2007, 357, 2562–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollinger, H.W. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation 1995, 60, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Keown, P.; Häyry, P.; Morris, P.; Stiller, C.; Barker, C.; Carr, L.; Landsberg, D.; Hardie, I.; Rigby, R.; Isoniemi, H. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 1996, 61, 1029–1037. [Google Scholar]
- Miller, J.; Mendez, R.; Pirsch, J.D.; Jensik, S.C. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. Transplantation 2000, 69, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Nankivell, B.J.; Borrows, R.J.; Fung, C.L.-S.; O’Connell, P.J.; Allen, R.D.M.; Chapman, J.R. The natural history of chronic allograft nephropathy. N. Engl. J. Med. 2003, 349, 2326–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perco, P.; Heinzel, A.; Leierer, J.; Schneeberger, S.; Bösmüller, C.; Oberhuber, R.; Wagner, S.; Engler, F.; Mayer, G. Validation of systems biology derived molecular markers of renal donor organ status associated with long term allograft function. Sci. Rep. 2018, 8, 6974. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [Green Version]
- Jager, K.J.; van Dijk, P.C.; Zoccali, C.; Dekker, F.W. The analysis of survival data: The Kaplan-Meier method. Kidney Int. 2008, 74, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Ekberg, H.; Bernasconi, C.; Tedesco-Silva, H.; Vítko, S.; Hugo, C.; Demirbas, A.; Acevedo, R.R.; Grinyó, J.; Frei, U.; Vanrenterghem, Y.; et al. Calcineurin inhibitor minimization in the Symphony study: Observational results 3 years after transplantation. Am. J. Transplant. 2009, 9, 1876–1885. [Google Scholar] [CrossRef]
- Boenink, R.; Astley, M.E.; Huijben, J.A.; Stel, V.S.; Kerschbaum, J.; Ots-Rosenberg, M.; Åsberg, A.A.; Lopot, F.; Golan, E.; La Castro de Nuez, P.; et al. The ERA Registry Annual Report 2019: Summary and age comparisons. Clin. Kidney J. 2022, 15, 452–472. [Google Scholar] [CrossRef]
- Gago, M.; Cornell, L.D.; Kremers, W.K.; Stegall, M.D.; Cosio, F.G. Kidney allograft inflammation and fibrosis, causes and consequences. Am. J. Transplant. 2012, 12, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Jalalzadeh, M.; Mousavinasab, N.; Peyrovi, S.; Ghadiani, M.H. The Impact of Acute Rejection in Kidney Transplantation on Long-Term Allograft and Patient Outcome. Nephrourol. Mon. 2015, 7, e24439. [Google Scholar] [CrossRef] [Green Version]
- Clayton, P.A.; McDonald, S.P.; Russ, G.R.; Chadban, S.J. Long-Term Outcomes after Acute Rejection in Kidney Transplant Recipients: An ANZDATA Analysis. J. Am. Soc. Nephrol. 2019, 30, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.; Rush, D.N.; Nevins, T.E.; Birk, P.E.; Blydt-Hansen, T.; Gibson, I.W.; Goldberg, A.; Ho, J.; Karpinski, M.; Pochinco, D.; et al. Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to Prevent Donor-Specific Antibody Development. J. Am. Soc. Nephrol. 2017, 28, 3353–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.; Gralla, J.; Klem, P.; Tong, S.; Wedermyer, G.; Freed, B.; Wiseman, A.; Cooper, J.E. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am. J. Transplant. 2018, 18, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Gatault, P.; Kamar, N.; Büchler, M.; Colosio, C.; Bertrand, D.; Durrbach, A.; Albano, L.; Rivalan, J.; Le Meur, Y.; Essig, M.; et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. Am. J. Transplant. 2017, 17, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- Brunet, M.; van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
- de Keyzer, K.; van Laecke, S.; Peeters, P.; Vanholder, R. Human cytomegalovirus and kidney transplantation: A clinician’s update. Am. J. Kidney Dis. 2011, 58, 118–126. [Google Scholar] [CrossRef]
- Ponticelli, C.; Favi, E.; Ferraresso, M. New-Onset Diabetes after Kidney Transplantation. Medicina 2021, 57, 250. [Google Scholar] [CrossRef]
- Hjelmesaeth, J.; Hartmann, A.; Leivestad, T.; Holdaas, H.; Sagedal, S.; Olstad, M.; Jenssen, T. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int. 2006, 69, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Kasiske, B.L.; Guijarro, C.; Massy, Z.A.; Wiederkehr, M.R.; Ma, J.Z. Cardiovascular disease after renal transplantation. J. Am. Soc. Nephrol. 1996, 7, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Aakhus, S.; Dahl, K.; Widerøe, T.E. Cardiovascular disease in stable renal transplant patients in Norway: Morbidity and mortality during a 5-yr follow-up. Clin. Transpl. 2004, 18, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, T.; Hartmann, A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat. Rev. Endocrinol. 2019, 15, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Hjelmesaeth, J.; Hartmann, A.; Kofstad, J.; Stenstrøm, J.; Leivestad, T.; Egeland, T.; Fauchald, P. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation 1997, 64, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef]
- Kamar, N.; Mariat, C.; Delahousse, M.; Dantal, J.; Al Najjar, A.; Cassuto, E.; Lefrançois, N.; Cointault, O.; Touchard, G.; Villemain, F.; et al. Diabetes mellitus after kidney transplantation: A French multicentre observational study. Nephrol. Dial. Transplant. 2007, 22, 1986–1993. [Google Scholar] [CrossRef] [Green Version]
- Vincenti, F.; Friman, S.; Scheuermann, E.; Rostaing, L.; Jenssen, T.; Campistol, J.M.; Uchida, K.; Pescovitz, M.D.; Marchetti, P.; Tuncer, M.; et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am. J. Transplant. 2007, 7, 1506–1514. [Google Scholar] [CrossRef]
- Santos, A.H.; Chen, C.; Casey, M.J.; Womer, K.L.; Wen, X. New-onset diabetes after kidney transplantation: Can the risk be modified by choosing immunosuppression regimen based on pretransplant viral serology? Nephrol. Dial. Transplant. 2018, 33, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Gomes, V.; Ferreira, F.; Guerra, J.; Bugalho, M.J. New-onset diabetes after kidney transplantation: Incidence and associated factors. World J. Diabetes 2018, 9, 132–137. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Steiger, J. Evolution and etiology of cardiovascular diseases in renal transplant recipients. Transplantation 2000, 70, SS41–SS45. [Google Scholar]
- Stoumpos, S.; Jardine, A.G.; Mark, P.B. Cardiovascular morbidity and mortality after kidney transplantation. Transpl. Int. 2015, 28, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalten, J.; Hoogeveen, E.K.; Roodnat, J.I.; Weimar, W.; Borm, G.F.; de Fijter, J.W.; Hoitsma, A.J. Associations between pre-kidney-transplant risk factors and post-transplant cardiovascular events and death. Transpl. Int. 2008, 21, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Kerschbaum, J. Österreichisches Dialyse-und Transplantationsregister, ÖDTR, Jahresberichte 2018 und 2019 der Österreichischen Gesellschaft für Nephrologie; Österreichische Gesellschaft für Nephrologie: Innsbruck, Austria, 2021. [Google Scholar]
- Carrero, J.J.; Hecking, M.; Chesnaye, N.C.; Jager, K.J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 151–164. [Google Scholar] [CrossRef]
- Hödlmoser, S.; Gehrig, T.; Antlanger, M.; Kurnikowski, A.; Lewandowski, M.; Krenn, S.; Zee, J.; Pecoits-Filho, R.; Kramar, R.; Carrero, J.J.; et al. Sex Differences in Kidney Transplantation: Austria and the United States, 1978-2018. Front. Med. 2021, 8, 800933. [Google Scholar] [CrossRef] [PubMed]
- Oto, O.A.; Ozturk, S.; Turgutalp, K.; Arici, M.; Alpay, N.; Merhametsiz, O.; Sipahi, S.; Ogutmen, M.B.; Yelken, B.; Altiparmak, M.R.; et al. Predicting the outcome of COVID-19 infection in kidney transplant recipients. BMC Nephrol. 2021, 22, 100. [Google Scholar] [CrossRef]
- Mahalingasivam, V.; Craik, A.; Tomlinson, L.A.; Ge, L.; Hou, L.; Wang, Q.; Yang, K.; Fogarty, D.G.; Keenan, C. A Systematic Review of COVID-19 and Kidney Transplantation. Kidney Int. Rep. 2020, 6, 24–45. [Google Scholar] [CrossRef]
- Toapanta, N.; Torres, I.B.; Sellarés, J.; Chamoun, B.; Serón, D.; Moreso, F. Kidney transplantation and COVID-19 renal and patient prognosis. Clin. Kidney J. 2021, 14, i21–i29. [Google Scholar] [CrossRef]
- Bestard, O.; Meneghini, M.; Crespo, E.; Bemelman, F.; Koch, M.; Volk, H.D.; Viklicky, O.; Giral, M.; Banas, B.; Ruiz, J.C.; et al. Preformed T cell alloimmunity and HLA eplet mismatch to guide immunosuppression minimization with tacrolimus monotherapy in kidney transplantation: Results of the CELLIMIN trial. Am. J. Transplant. 2021, 21, 2833–2845. [Google Scholar] [CrossRef]
- Volk, H.-D.; Banas, B.; Bemelman, F.; Bestard, O.; Brouard, S.; Cuturi, C.; Grinyó, J.M.; Hernandez-Fuentes, M.; Koch, M.; Nashan, B.; et al. Strategy to achieve biomarker-driven immunosuppression after solid organ transplantation by an academic-industry partnership within the European BIO-DrIM consortium. Adv. Precis. Med. 2016, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Guo, K.; Heilman, R.L.; Poggio, E.D.; Taber, D.J.; Marsh, C.L.; Kurian, S.M.; Kleiboeker, S.; Weems, J.; Holman, J.; et al. Combining Blood Gene Expression and Cellfree DNA to Diagnose Subclinical Rejection in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2021, 16, 1539–1551. [Google Scholar] [CrossRef]
- Bestard, O.; Cravedi, P. Monitoring alloimmune response in kidney transplantation. J. Nephrol. 2017, 30, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Strassl, R.; Schiemann, M.; Doberer, K.; Görzer, I.; Puchhammer-Stöckl, E.; Eskandary, F.; Kikić, Ž.; Gualdoni, G.A.; Vossen, M.G.; Rasoul-Rockenschaub, S.; et al. Quantification of Torque Teno Virus Viremia as a Prospective Biomarker for Infectious Disease in Kidney Allograft Recipients. J. Infect. Dis. 2018, 218, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Strassl, R.; Doberer, K.; Rasoul-Rockenschaub, S.; Herkner, H.; Görzer, I.; Kläger, J.P.; Schmidt, R.; Haslacher, H.; Schiemann, M.; Eskandary, F.A.; et al. Torque Teno Virus for Risk Stratification of Acute Biopsy-Proven Alloreactivity in Kidney Transplant Recipients. J. Infect. Dis. 2019, 219, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Doberer, K.; Schiemann, M.; Strassl, R.; Haupenthal, F.; Dermuth, F.; Görzer, I.; Eskandary, F.; Reindl-Schwaighofer, R.; Kikić, Ž.; Puchhammer-Stöckl, E.; et al. Torque teno virus for risk stratification of graft rejection and infection in kidney transplant recipients-A prospective observational trial. Am. J. Transplant. 2020, 20, 2081–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doberer, K.; Haupenthal, F.; Nackenhorst, M.; Bauernfeind, F.; Dermuth, F.; Eigenschink, M.; Schiemann, M.; Kläger, J.; Görzer, I.; Eskandary, F.; et al. Torque Teno Virus Load Is Associated with Subclinical Alloreactivity in Kidney Transplant Recipients: A Prospective Observational Trial. Transplantation 2021, 105, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Görzer, I.; Gelas, F.; Haupenthal, F.; Kulifaj, D.; Puchhammer-Stöckl, E.; Bond, G. FC 106: Validation of the Optimal Torque Teno Virus Range for Risk Stratification of Graft Rejection and Infection in Kidney Transplant Recipients by TTV R-GENE®. Nephrol. Dial. Transplant. 2022, 37, S3. [Google Scholar] [CrossRef]
- O’Connell, P.J.; Zhang, W.; Menon, M.C.; Yi, Z.; Schröppel, B.; Gallon, L.; Luan, Y.; Rosales, I.A.; Ge, Y.; Losic, B.; et al. Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: A multicentre, prospective study. Lancet 2016, 388, 983–993. [Google Scholar] [CrossRef] [Green Version]
- Bontha, S.V.; Maluf, D.G.; Mueller, T.F.; Mas, V.R. Systems Biology in Kidney Transplantation: The Application of Multi-Omics to a Complex Model. Am. J. Transplant. 2017, 17, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yi, Z.; Wei, C.; Keung, K.L.; Sun, Z.; Xi, C.; Woytovich, C.; Farouk, S.; Gallon, L.; Menon, M.C.; et al. Pretransplant transcriptomic signature in peripheral blood predicts early acute rejection. JCI Insight 2019, 4, e127543. [Google Scholar] [CrossRef] [Green Version]
- Filippone, E.J.; Gulati, R.; Farber, J.L. Noninvasive Assessment of the Alloimmune Response in Kidney Transplantation. Adv. Chronic Kidney Dis. 2021, 28, 548–560. [Google Scholar] [CrossRef]
- Cao, Y.; Alexander, S.I.; Chapman, J.R.; Craig, J.C.; Wong, G.; Yang, J.Y.H. Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients. Transplantation 2021, 105, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
- Niel, O.; Bastard, P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am. J. Kidney Dis. 2019, 74, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Coorey, C.P.; Sharma, A.; Muller, S.; Yang, J.Y.H. Prediction modeling-part 2: Using machine learning strategies to improve transplantation outcomes. Kidney Int. 2021, 99, 817–823. [Google Scholar] [CrossRef]
- Denic, A.; Morales, M.C.; Park, W.D.; Smith, B.H.; Kremers, W.K.; Alexander, M.P.; Cosio, F.G.; Rule, A.D.; Stegall, M.D. Using computer-assisted morphometrics of 5-year biopsies to identify biomarkers of late renal allograft loss. Am. J. Transplant. 2019, 19, 2846–2854. [Google Scholar] [CrossRef]
- Yi, Z.; Salem, F.; Menon, M.C.; Keung, K.; Xi, C.; Hultin, S.; Haroon Al Rasheed, M.R.; Li, L.; Su, F.; Sun, Z.; et al. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies. Kidney Int. 2022, 101, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Weissenbacher, A.; Oberhuber, R.; Hermann, M.; Soleiman, A.; Ulmer, H.; Mayer, G.; Margreiter, C.; Maglione, M.; Bösmüller, C.; Messner, F.; et al. Live Confocal Tissue Assessment With SYTO16/PI and WGA Staining Visualizes Acute Organ Damage and Predicts Delayed Graft Function in Kidney Transplantation. Ann. Surg. 2019, 270, 915–922. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Age (years ± sd) | 55.88 ± 12.97 |
Sex transplant recipient (% female) | 29.46 |
Height (cm ± sd) | 172.08 ± 10.14 |
Weight (kg ± sd) | 80.02 ± 17.47 |
BMI (kg/m2 ± sd) | 26.79 ± 4.43 |
First kidney transplant (N, %) | 204, 84.65 |
Positive CMV status (N, %) | 164, 68.05 |
Need for dialysis post transplant (N, %) | 90, 37.34 |
Primary non function (N, %) | 8, 3.32 |
Induction therapy performed with: | |
IL2 receptor antagonist (N, %) | 210, 87.14 |
ATG (N, %) | 30, 12.44 |
Plasmapheresis (N, %) | 1, 0.41 |
Other (N, %) | 2, 0.83 |
Medical history positive for: | |
Hypertension (N, %) | 223, 92.92 |
Cardiovascular disease (N, %) | 102, 45.50 |
Diabetes mellitus (N, %) | 50, 20.75 |
Malignancy (N, %) | 22, 9.13 |
Characteristic | Value (N, %) |
---|---|
Glomerulonephritis | 49, 20.33 |
Hypertensive kidney disease | 27, 11.20 |
Hereditary kidney disease | 20, 8.30 |
Type 2 Diabetic kidney disease | 29, 12.03 |
Type 1 Diabetic kidney disease | 6, 2.49 |
Systemic autoimmune disease | 5, 2.07 |
Other disease | 89, 36.93 |
Unknown | 16, 6.64 |
Characteristic | Value |
---|---|
Donor age at transplantation (years ± sd) | 55.37 ± 16.60 |
Sex donor (% female) | 44.40 |
Dependent on vasopressants (N, %) | 167, 69.29 |
Non-heart-beating (N, %) | 20, 8.30 |
Serum creatinine at transplantation (mg/dL ± sd) | 1.06 ± 0.76 |
Cold ischemia time (hours ± sd) | 14.10 ± 5.48 |
Warm ischemia time (minutes ± sd) | 30.09 ± 8.32 |
Positive CMV status (N, %) | 165, 68.46 |
Medical history in donor positive for: | |
Hypertension (N, %) | 54, 22.41 |
Diabetes mellitus (N, %) | 16, 6.64 |
Cause of donor death: | |
Cerebrovascular (N, %) | 200, 82.99 |
Other (N, %) | 40, 16.60 |
Unknown (N, %) | 1, 0.41 |
Characteristic | Value | |||
---|---|---|---|---|
Follow-Up | ||||
Discharge | 3 Months | 12 Months | 24 Months | |
Patients on corticosteroids (N, %) | 227, 99.56 | 207, 97.64 | 173, 90.58 | 143, 86.67 |
Prednisone dose (mg, median, IQR) | 20, 5 | 10, 3.5 | 5, 0 | 5, 0 |
Patients on Tacrolimus & MMF (N, %) | 182, 79.82 | 173, 81.60 | 160, 83.77 | 126, 76.36 |
Patients on Tacrolimus (N, %) | 205, 89.91 | 187, 88.21 | 173, 90.58 | 143, 86.67 |
Tacrolimus through level (µg/L ± sd) | 9.36 ± 3.21 | 8.95 ± 3.41 | 7.32 ± 2.48 | 6.54 ± 2.15 |
Patients on MMF (N, %) | 219, 96.05 | 197, 92.92 | 174, 91.10 | 145, 87.88 |
MMF dose (mg, median, IQR) | 2000, 375 | 2000, 940 | 1440, 1000 | 1000, 1000 |
Patients on Cyclosporine A (N, %) | 16, 7.02 | 15, 7.08 | 16, 8.38 | 14, 8.48 |
Patients on Azathioprine (N, %) | 5, 2.19 | 8, 3.77 | 8, 4.19 | 8, 4.84 |
Patients on Belatacept (N, %) | 7, 3.07 | 8, 3.77 | 10, 5.24 | 10, 6.06 |
Active patients at time of (N) | 228 | 212 | 191 | 165 |
Characteristic | Value | |||
---|---|---|---|---|
Follow-Up | ||||
Discharge | 3 Months | 12 Months | 24 Months | |
Treatment for rejection (N, %) | 31, 12.86 | 34, 14.11 | 42, 17.43 | 44, 18.26 |
Biopsy proven rejection 1 (N, %) | 12, 4.98 | 13, 5.39 | 17, 7.05 | 19, 7.88 |
Surgical complications (N, %) | 30, 12.45 | 48, 19.92 | 62, 25.73 | 64, 26.56 |
CMV infection 2 (N, %) | 16, 6.64 | 47, 19.50 | 57, 23.65 | 14, 5.81 |
BK-Virus infection 2 (N, %) | 2, 0.83 | 22, 9.13 | 54, 22.41 | 35, 14.52 |
PTDM (N, %) | 13, 5.39 | 33, 13.69 | 51, 21.16 | 60, 24.90 |
MACE (N, %) | 4, 1.66 | 7, 2.9 | 9, 3.73 | 13, 5.39 |
Malignancy (N, %) | 0, 0 | 2, 0.83 | 8, 3.32 | 15, 6.22 |
Graft loss (N, %) | 9, 3.73 | 9, 3.73 | 11, 4.56 | 16, 6.64 |
Death (N, %) | 4, 1.66 | 5, 2.07 | 8, 3.32 | 12, 4.98 |
Loss to follow-up (N, %) | 1, 0.41 | 16, 6.64 | 32, 13.28 | 50, 20.75 |
Active patients at time of (N, %) | 228, 94.6 | 212, 87.7 | 191, 79.3 | 165, 68.5 |
Characteristic | Value (Mean ± SD) | |||
---|---|---|---|---|
Follow-Up | ||||
Discharge | 3 Months | 12 Months | 24 Months | |
Systolic blood pressure (mmHg) | NA | 135.75 ± 14.50 | 134.91 ± 14.55 | 133.86 ± 13.42 |
Diastolic blood pressure (mmHg) | NA | 79.96 ± 9.70 | 79.00 ± 9.42 | 78.37 ± 8.90 |
Hemoglobin (g/dL) | 9.66 ± 1.37 | 12.01 ± 1.83 | 13.28 ± 2.05 | 13.57 ± 1.90 |
Serum creatinine (mg/dL) | 2.08 ± 1.18 | 1.69 ± 0.64 | 1.61 ± 0.69 | 1.57 ± 0.56 |
Serum urea (mg/dL) eGFR (mL/min/1.73 m2) | 53.02 ± 34.94 37.14 ± 14.07 | 42.52 ± 25.33 42.02 ± 13.86 | 43.39 ± 25.14 44.05 ± 14.04 | 43.08 ± 27.22 45.01 ± 14.53 |
Fasting glucose (mg/dL) | 105.00 ± 32.24 | 122.60 ± 58.89 | 115.76 ± 41.11 | 118.99 ± 50.81 |
HbA1c (%) | 5.89 ± 1.01 | 6.12 ± 1.21 | 5.91 ± 0.98 | 6.04 ± 1.26 |
Urine proteine/creatinine ratio (mg/g, median, IQR) | 285.5, 298.0 | 181.0, 224.25 | 138.5, 175.25 | 122.0, 176.0 |
Urine albumine/creatinine ratio (mg/g, median, IQR) | 106.25, 169.75 | 48.00, 110.50 | 35.50, 80.50 | 29.00, 126.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallaberger, S.; Buchwinkler, L.; Eder, S.; Schneeberger, S.; Mayer, G.; Pirklbauer, M. Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS). J. Clin. Med. 2022, 11, 7421. https://doi.org/10.3390/jcm11247421
Sallaberger S, Buchwinkler L, Eder S, Schneeberger S, Mayer G, Pirklbauer M. Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS). Journal of Clinical Medicine. 2022; 11(24):7421. https://doi.org/10.3390/jcm11247421
Chicago/Turabian StyleSallaberger, Sebastian, Lukas Buchwinkler, Susanne Eder, Stefan Schneeberger, Gert Mayer, and Markus Pirklbauer. 2022. "Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS)" Journal of Clinical Medicine 11, no. 24: 7421. https://doi.org/10.3390/jcm11247421
APA StyleSallaberger, S., Buchwinkler, L., Eder, S., Schneeberger, S., Mayer, G., & Pirklbauer, M. (2022). Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS). Journal of Clinical Medicine, 11(24), 7421. https://doi.org/10.3390/jcm11247421