Could Short Stems THA Be a Good Bone-Saving Option Even in Obese Patients?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- D’Errico, M.; Pavlova, M.; Spandonaro, F. The economic burden of obesity in Italy: A cost-of-illness study. Eur. J. Health Econ. 2022, 23, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018, 44, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Stihsen, C.; Radl, R.; Keshmiri, A.; Rehak, P.; Windhager, R. Subsidence of a cementless femoral component influenced by body 339 weight and body mass index. Int. Orthop. 2012, 36, 941–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderl, C.; Steinmair, M.; Hochreiter, J. Bone Preservation in Total Hip Arthroplasty. J. Arthroplast. 2022, 37, 1118–1123. [Google Scholar] [CrossRef]
- Logroscino, G.; Ciriello, V.; D’Antonio, E.; De, T.V.; Piciocco, P.; Magliocchetti, L.G.; Santori, F.S.; Albanese, C.V. Bone integration of new stemless hip implants (proxima vs. nanos). A DXA study: Preliminary results. Int. J. Immunopathol. Pharmacol. 2011, 24, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Rometsch, E.; Bos, P.K.; Koes, B.W. Survival of short hip stems with a “modern”, trochanter-sparing design—A systematic literature review. Hip Int. 2012, 22, 344–354. [Google Scholar] [CrossRef]
- Banerjee, S.; Pivec, R.; Issa, K.; Harwin, S.F.; Mont, M.A.; Khanuja, H.S. Outcomes of short stems in total hip arthroplasty. Orthopedics 2013, 36, 700–707. [Google Scholar] [CrossRef]
- Chammaï, Y.; Brax, M. Medium-term comparison of results in obese patients and non-obese hip prostheses 345 with Metha® short stem. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 503–508. [Google Scholar] [CrossRef]
- Hungerford, M.W.; Schuh, R.; O’Reilly, M.P.; Jones, L.C. Outcome of minimally invasive hip replacement in obese, 347 overweight, and nonobese patients. J. Surg. Orthop. Adv. 2014, 23, 68–74. [Google Scholar] [CrossRef]
- Feyen, H.; Shimmin, A.J. Is the length of the femoral component important in primary total hip replacement? Bone Jt. J. 2014, 96, 442–448. [Google Scholar] [CrossRef]
- Harris, W.H. Traumatic arthritis of the hip after dislocation and acetabular fractures: Treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J. Bone Jt. Surg. Am. 1969, 51, 737–755. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar] [PubMed]
- Busija, L.; Pausenberger, E.; Haines, T.P.; Haymes, S.; Buchbinder, R.; Osborne, R.H. Adult measures of general health and health-related quality of life: Medical Outcomes Study Short Form 36-Item (SF-36) and Short Form 12-Item (SF-12) Health Surveys, Nottingham Health Profile (NHP), Sickness Impact Profile (SIP), Medical Outcomes Study Short Form 6D (SF-6D), Health Utilities Index Mark 3 (HUI3), Quality of Well-Being Scale (QWB), and Assessment of Quality of Life (AQoL). Arthritis Care Res. 2011, 63 (Suppl. 11), S383–S412. [Google Scholar] [CrossRef] [Green Version]
- Engh, C.A.; Massin, P.; Suthers, K.E. Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin. Orthop. Relat. Res. 1990, 257, 107–128. [Google Scholar] [CrossRef]
- Gruen, T.; McNeice, G.; Amstutz, H.C. “Model of failure” of cemented stem-type femoral components. A radiographic analysis of loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar]
- Albanese, C.V.; Santori, F.S.; Pavan, L.; Learmonth, I.D.; Passariello, R. Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop. 2009, 80, 291–297. [Google Scholar] [CrossRef]
- Logroscino, G.; Donati, F.; Campana, V.; Saracco, M. Stemless hip arthroplasty versus traditional implants: A comparative observational study at 30 months follow-up. Hip Int. 2018, 28 (Suppl. 2), 21–27. [Google Scholar] [CrossRef]
- Hodgkinson, J.P.; Shelley, P.; Wroblewski, B.M. The correlation between the roentgenographic appearance and operative findings at the bone-cement junction of the socket in Chanley lower friction arthroplasties. Clin. Orthop. Relat. Res. 1988, 228, 105–109. [Google Scholar] [CrossRef]
- DeLee, J.G.; Charnley, J. Radiological demarcation of cemented sockets in total hip replacement. Clin. Orthop. Relat. Res. 1976, 121, 20–32. [Google Scholar] [CrossRef]
- Brooker, A.F.; Bowerman, J.W. Ectopic ossification following total hip replacement. J. Bone Jt. Surg. Am. 1973, 55, 1629–1632. [Google Scholar] [CrossRef]
- Lementowski, P.W.; Zelicof, S.B. Obesity and osteoarthritis. Am. J. Orthop. 2008, 37, 148–151. [Google Scholar] [PubMed]
- Wendelboe, A.M.; Hegmann, K.T.; Biggs, J.J.; Cox, C.M.; Portmann, A.J.; Gildea, J.H.; Gren, L.H.; Lyon, J.L. Relationships between body mass indices and surgical replacements of knee and hip joints. Am. J. Prev. Med. 2003, 25, 290–295. [Google Scholar] [PubMed]
- Muehleman, C.; Margulis, A.; Bae, W.C.; Masuda, K. Relationship between knee and ankle degeneration in a population of organ donors. BMC Med. 2010, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horan, F. Obesity and joint replacement. J. Bone Jt. Surg. 2006, 88, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.R.; Lee, K.R. The outcome of total hip replacement in obese and nonobese patients at 10- to 18-years. J. Bone Jt. Surg. 2006, 88, 1286–1292. [Google Scholar] [CrossRef] [Green Version]
- Jiganti, J.J.; Goldstein, W.M.; Williams, C.S. A comparison of the perioperative morbidity in total joint arthroplasty in the obese and nonobese patient. Clin. Orthop. 1993, 289, 175–179. [Google Scholar] [CrossRef]
- Jackson, M.P.; Sexton, S.A.; Yeung, E.; Walter, W.L.; Walter, W.K.; Zicat, B.A. The effect of obesity on the mid-term survival and clinical outcome of cementless total hip replacement. J. Bone Jt. Surg. Br. 2009, 91, 1296–1300. [Google Scholar] [CrossRef] [Green Version]
- Michalka, P.K.; Khan, R.J.; Scaddan, M.C.; Haebich, S.; Chirodian, N.; Wimhurst, J.A. The influence of obesity on early outcomes in primary hip arthroplasty. J. Arthroplast. 2012, 27, 391–396. [Google Scholar]
- Kim, Y.; Morshed, S.; Joseph, T.; Bozic, K.; Ries, M.D. Clinical impact of obesity on stability following revision total hip arthroplasty. Clin. Orthop. 2006, 453, 142–146. [Google Scholar] [CrossRef]
- Pipino, F.; Keller, A. Tissue-sparing surgery: 25 years experience with femoral neck preserving hip arthroplasty. J. Orthop. Traumatol. 2006, 7, 36–41. [Google Scholar] [CrossRef]
- Lübbeke, A.; Stern, R.; Garavaglia, G.; Zurcher, L.; Hoffmeyer, P. Differences in outcomes of obese women and men undergoing primary total hip arthroplasty. Arthritis Rheum 2007, 57, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, T.; Hobson, S.; Beiri, A.; Esler, C.N. No influence of body mass index on early outcome following total hip arthroplasty. Int. Orthop. 2005, 29, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Pirard, E.; De Lint, J.A. Anteversion of the acetabular component in obese patients. Hip Int. 2007, 17, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Todkar, M. Obesity does not necessarily affect the accuracy of acetabular cup implantation in total hip replacement. Acta Orthop. Belg. 2008, 74, 206–209. [Google Scholar] [PubMed]
- Bosker, B.H.; Verheyen, C.C.P.M.; Horstmann, W.G.; Tulp, N.J.A. Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch. Orthop. Trauma Surg. 2007, 127, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callanan, M.C.; Jarrett, B.; Bragdon, C.R.; Zurakowski, D.; Rubash, H.E.; Freiberg, A.A.; Malchau, H. The John Charnley Award: Risk factors for cup malpositioning: Quality improvement through a joint registry at a tertiary hospital. Clin. Orthop. Relat. Res. 2011, 469, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Elson, L.C.; Barr, C.J.; Chandran, S.E.; Hansen, V.J.; Malchau, H.; Kwon, Y.M. Are morbidly obese patients undergoing total hip arthroplasty at an increased risk for component malpositioning? J. Arthroplast. 2013, 28, 41–44. [Google Scholar] [CrossRef]
- Tai, S.M.; Imbuldeniya, A.M.; Munir, S.; Walter, W.L.; Walter, W.K.; Zicat, B.A. The effect of obesity on the clinical, functional and radiological outcome of cementless total hip replacement: A case-matched study with a minimum 10-year follow-up. J. Arthroplast. 2014, 29, 1758–1762. [Google Scholar] [CrossRef]
- Brodt, S.; Jacob, B.; Windisch, C.; Seeger, J.; Matziolis, G. Morbidly Obese Patients Undergoing Reduced Cup Anteversion Through a Direct LateralApproach. J. Bone Jt. Surg. Am. 2016, 98, 729–734. [Google Scholar] [CrossRef] [Green Version]
- Culliford, D.; Maskell, J.; Judge, A.; Arden, N.K.; COAST Study Group. A population-based survival analysis describing the association of body mass Index on time to revision for total hip and knee replacements: Results from the UK general practice research database. BMJ Open 2013, 3, e003614. [Google Scholar] [CrossRef]
- Braud, P.; Freeman, M.A. The effect of retention of the femoral neck and of cement upon the stability of proximal femoral prosthesis. J. Arthroplast. 1990, 5, S5–S10. [Google Scholar] [CrossRef] [PubMed]
- Freitag, T.; Kappe, T.; Fuchs, M.; Jung, S.; Reichel, H.; Bieger, R. Migration pattern of a femoral short-stem prosthesis: A 2-year ERBA-FCA-study. Arch. Orthop. Trauma Surg. 2014, 134, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.G.; Palan, J.; Kurup, H.V.; Gibson, P.; Murray, D.W.; Beard, D.J. Obesity in total hip replacement. J. Bone Jt. Surg. Br. 2008, 90, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattanakit, K.; Lutsey, P.L.; Bell, E.J.; Gornik, H.; Cushman, M.; Heckbert, S.R.; Heckbert, S.R.; Folsom, A.R. Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analysis. Thromb. Haemost. 2012, 108, 508–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, R.J.; Hess, S.; Berkowitz, S.D.; Homering, M. Complication rates after hip or knee arthroplasty in morbidly obese patients. Clin. Orthop. Relat. Res. 2013, 471, 3358–3366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidanza, A.; Schettini, I.; Palozzi, G.; Mitrousias, V.; Logroscino, G.; Romanini, E.; Calvisi, V. What Is the Inpatient Cost of Hip Replacement? A Time-Driven Activity Based Costing Pilot Study in an Italian Public Hospital. J. Clin. Med. 2022, 11, 6928. [Google Scholar] [CrossRef]
- Nadzadi, M.E.; Pedersen, D.R.; Yack, H.J.; Callaghan, J.J.; Brown, T.D. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J. Biomech. 2003, 36, 577–591. [Google Scholar] [CrossRef]
- Liu, W.; Wahafu, T.; Cheng, M.; Cheng, T.; Zhang, Y.; Zhang, X. The influence of obesity on primary total hip arthroplasty outcomes: A meta-analysis of prospective cohort studies. Orthop. Traumatol. Surg. Res. 2015, 101, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Elkins, J.M.; Stroud, N.J.; Rudert, M.J.; Tochigi, Y.; Pedersen, D.R.; Ellis, B.J.; Callaghan, J.J.; Weiss, J.A.; Brown, T.D. The capsule’s contribution to total hip construct stability: A finite element analysis. J. Orthop. Res. 2011, 29, 1642–1648. [Google Scholar] [CrossRef] [Green Version]
- Pulido, L.; Ghanem, E.; Joshi, A.; Purtill, J.J.; Parvizi, J. Periprosthetic joint infection: The incidence, timing, and predisposing factors. Clin. Orthop. Relat. Res. 2008, 466, 1710–1715. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, F.; Prati, P.; Fidanza, A.; Iorio, R.; Ferretti, A.; Pèrez Prieto, D.; Kort, N.; Violante, B.; Pipino, G.; Schiavone Panni, A.; et al. Prevention of Periprosthetic Joint Infection (PJI): A Clinical Practice Protocol in High-Risk Patients. Trop. Med. Infect. Dis. 2020, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.; Walmsley, P.; Gray, A.; Brenkel, I.J. Does body mass index affect the early outcome of primary total hip arthroplasty? J. Arthroplast. 2005, 20, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Dowsey, M.M.; Choong, P.F. Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty. Clin. Orthop. Relat Res. 2008, 466, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zmistowski, B.; Tetreault, M.W.; Alijanipour, P.; Chen, A.F.; Della Valle, C.J.; Parvizi, J. Recurrent periprosthetic joint infection: Persistent or new infection? J. Arthroplast. 2013, 28, 1486–1489. [Google Scholar] [CrossRef]
- Patel, V.P.; Walsh, M.; Sehgal, B.; Preston, C.; DeWal, H.; Di Cesare, P.E. Factors associated with prolonged wound drainage after primary total hip and knee arthroplasty. J. Bone Jt. Surg. 2007, 89, 33–38. [Google Scholar] [CrossRef]
- Cordero-Ampuero, J.; De Dios, M. What are the risk factors for infection in hemiarthroplasties and total hip arthroplasties? Clin. Orthop. Relat. Res. 2010, 468, 3268–3277. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.H. Identification and preoperative optimization of risk factors to prevent periprosthetic joint infection. World J. Orthop. 2014, 5, 362–367. [Google Scholar] [CrossRef]
- Belmont, P.J., Jr.; Goodman, G.P.; Hamilton, W.; Waterman, B.R.; Bader, J.O.; Schoenfeld, A.J. Morbidity and mortality in the thirty-day period following total hip arthroplasty: Risk factors and incidence. J. Arthroplast. 2014, 29, 2025–2030. [Google Scholar] [CrossRef]
- Watts, C.D.; Houdek, M.T.; Wagner, E.R.; Sculco, P.K.; Chalmers, B.P.; Taunton, M.J. High Risk of Wound Complications Following Direct Anterior Total Hip Arthroplasty in Obese Patients. J. Arthroplast. 2015, 30, 2296–2298. [Google Scholar] [CrossRef]
Short Stems (SS) | Traditional Stems (TS) | |
---|---|---|
AGE, years | 63 (43–84) ± 10.05 | 67 (50–88) ± 10.03 |
BMI, Kg/m2 | 33.5 (30.1–41.3) ± 3.07 | 34.7 (29.8–44.5) ± 4.68 |
WEIGHT, Kg | 92.3 (75–113) ± 10.39 | 95.9 (67–130) ± 17.89 |
FOLLOW-UP, months | 38 (3–120) ± 25.98 | 47.3 (12–168) ± 43.15 |
PARVA, Adler | 20 (40%) | - |
PROXIMA, DePuy-J&J | 7 (16%) | - |
MINIMA, Lima | 7 (16%) | - |
FITMORE, Zimmer Biomet | 4 (10%) | - |
PULCHRA, Adler | 3 (6%) | - |
SMF, S&N | 3 (6%) | - |
GTS, Zimmer Biomet | 2 (3%) | - |
NANOS, S&N | 2 (3%) | - |
ABG, Stryker | - | 9 (59%) |
SYNERGY, S&N | - | 6 (17%) |
MERCURIUS, Adler | - | 5 (12%) |
HYDRA, Adler | - | 4 (6%) |
CORAIL, DePuy-J&J | - | 4 (6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saracco, M.; Fidanza, A.; Necozione, S.; Maccauro, G.; Logroscino, G. Could Short Stems THA Be a Good Bone-Saving Option Even in Obese Patients? J. Clin. Med. 2022, 11, 7114. https://doi.org/10.3390/jcm11237114
Saracco M, Fidanza A, Necozione S, Maccauro G, Logroscino G. Could Short Stems THA Be a Good Bone-Saving Option Even in Obese Patients? Journal of Clinical Medicine. 2022; 11(23):7114. https://doi.org/10.3390/jcm11237114
Chicago/Turabian StyleSaracco, Michela, Andrea Fidanza, Stefano Necozione, Giulio Maccauro, and Giandomenico Logroscino. 2022. "Could Short Stems THA Be a Good Bone-Saving Option Even in Obese Patients?" Journal of Clinical Medicine 11, no. 23: 7114. https://doi.org/10.3390/jcm11237114
APA StyleSaracco, M., Fidanza, A., Necozione, S., Maccauro, G., & Logroscino, G. (2022). Could Short Stems THA Be a Good Bone-Saving Option Even in Obese Patients? Journal of Clinical Medicine, 11(23), 7114. https://doi.org/10.3390/jcm11237114