Phenotypic Disease Network-Based Multimorbidity Analysis in Idiopathic Cardiomyopathy Patients with Hospital Discharge Records
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Comorbidities and Comorbid Burden
2.3. Comorbidities Enrichment
2.4. Network Analysis
2.4.1. Multimorbidity Network Generation and Network Properties Calculation
2.4.2. Disease Statuses—Central, Hubs, or Authorities
2.4.3. Association Rules Mining Specifically for Heart Failure Occurrence in ICM
3. Results
3.1. Chronic Diseases and Comorbidities Burden
3.2. Properties of Age-Specific Multimorbidity Networks
3.3. Nodes Status in Age-Specific Network
4. Discussion
4.1. Principal Findings
4.2. Comorbidity Diseases and Disease Pairs in Patients with ICM
4.3. Age-Specific Diseases Pairs and Hub, Central, Authority Disease Defined
4.4. Limitations
4.5. Study Strength
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merkle-Storms, J.; Djordjevic, I.; Sabashnikov, A.; Eghbalzadeh, K.; Gkouziouta, A.; Fiane, A.; Stockman, B.; Montalto, A.; Bernhardt, A.; Meyns, B.; et al. Comparative analysis of LVAD patients in regard of ischaemic or idiopathic cardiomyopathy: A propensity-score analysis of EUROMACS data. Int. J. Artif. Organs 2022, 45, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Schaufelberger, M. Cardiomyopathy and pregnancy. Heart 2019, 105, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Imai-Okazaki, A.; Kishita, Y.; Kohda, M.; Mizuno, Y.; Fushimi, T.; Matsunaga, A.; Yatsuka, Y.; Hirata, T.; Harashima, H.; Takeda, A.; et al. Cardiomyopathy in children with mitochondrial disease: Prognosis and genetic background. Int. J. Cardiol. 2019, 279, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Fennira, S.; Zairi, I.; Jnifene, Z.; Lakhal, M.; Kammoun, S.; Kraiem, S. Differences between idiopathic and ischemic dilated cardiomyopathy. Tunis. Med. 2016, 94, 535–540. [Google Scholar] [PubMed]
- Chen, H.F.; Chang, Y.H.; Lo, H.J.; Isfandiari, M.A.; Martini, S.; Hou, W.H.; Li, C.-Y. Incidence of idiopathic cardiomyopathy in patients with type 2 diabetes in Taiwan: Age, sex, and urbanization status-stratified analysis. Cardiovasc. Diabetol. 2020, 19, 177. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Nakagawa, H.; Morikawa, Y.; Sasayama, S.; Matsumori, A.; Hasegawa, K.; Ohno, Y.; Tamakoshi, A.; Kawamura, T.; Inaba, Y. Epidemiology of idiopathic cardiomyopathy in Japan: Results from a nationwide survey. Heart 2002, 87, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Felker, G.M.; Hu, W.; Hare, J.M.; Hruban, R.H.; Baughman, K.L.; Kasper, E.K. The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1,278 patients. Med. Baltim. 1999, 78, 270–283. [Google Scholar] [CrossRef]
- Bertoni, A.G.; Tsai, A.; Kasper, E.K.; Brancati, F.L. Diabetes and Idiopathic Cardiomyopathy: A nationwide case-control study. Diabetes Care 2003, 26, 2791–2795. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, L.; Chao, Z.; Chen, T.; Zhou, Y. Ferroptosis Related Genes in Ischemic and Idiopathic Cardiomyopathy: Screening for Potential Pharmacological Targets. Front. Cell Dev. Biol. 2022, 10, 817819. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Cochran, T.R.; Briston, D.A.; Brown, S.R.; Sambatakos, P.J.; Miller, T.L.; Carrillo, A.; Corcia, L.; Sanchez, J.E.; Diamond, M.B.; et al. Pediatric cardiomyopathies: Causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013, 9, 817–848. [Google Scholar] [CrossRef]
- Arimura, T.; Hayashi, T.; Kimura, A. Molecular etiology of idiopathic cardiomyopathy. Acta Myol. 2007, 26, 153–158. [Google Scholar] [PubMed]
- Ho, N.T.; Kroner, B.; Grinspan, Z.; Fureman, B.; Farrell, K.; Zhang, J.; Buelow, J.; Hesdorffer, D.C.; McDonald, B.; Weldon, M.; et al. Comorbidities of Rare Epilepsies: Results from the Rare Epilepsy Network. J. Pediatr. 2018, 203, 249–258.e5. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, E.M.; Asif, M.; Ippolito, T.; Gillespie, M. Role of hypertension, diabetes, obesity, and race in the development of symptomatic myocardial dysfunction in a predominantly minority population with normal coronary arteries. Am. Heart J. 2000, 139, 297–304. [Google Scholar] [CrossRef] [PubMed]
- El-Menyar, A.A.; Bener, A.; Numan, M.T.; Morcos, S.; Taha, R.Y.; Al-Suwaidi, J. Epidemiology of idiopathic cardiomyopathy in Qatar during 1996–2003. Med. Princ. Pract. 2006, 15, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 1972, 30, 595–602. [Google Scholar] [CrossRef]
- Klein, H.U. Diabetes Mellitus: Merely “Comorbidity” or an Important Risk Factor? JACC Clin. Electrophysiol. 2020, 6, 559–561. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Pepe, A.; Gargani, L.; Kariki, U.; Bonou, M.; Koutsogeorgopoulou, L.; Manolopoulou, D.; Tektonidou, M.G.; Vartela, V.; Kolovou, G.; et al. Myocardial Involvement in Rheumatic Disorders. Curr. Heart Fail Rep. 2020, 17, 171–180. [Google Scholar] [CrossRef]
- Gasparyan, A.Y. Cardiovascular risk and inflammation: Pathophysiological mechanisms, drug design, and targets. Curr. Pharm. Des. 2012, 18, 1447–1449. [Google Scholar] [CrossRef]
- Dimitroulas, T.; Giannakoulas, G.; Karvounis, H.; Garyfallos, A.; Settas, L.; Kitas, G.D. Micro- and macrovascular treatment targets in scleroderma heart disease. Curr. Pharm. Des. 2014, 20, 536–544. [Google Scholar] [CrossRef]
- Hossain, M.E.; Uddin, S.; Khan, A.; Moni, M.A. A Framework to Understand the Progression of Cardiovascular Disease for Type 2 Diabetes Mellitus Patients Using a Network Approach. Int. J. Environ. Res. Public Health 2020, 17, 596. [Google Scholar] [CrossRef]
- Cruz-Ávila, H.A.; Vallejo, M.; Martínez-García, M.; Hernández-Lemus, E. Comorbidity Networks in Cardiovascular Diseases. Front. Physiol. 2020, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Jhee, J.H.; Bang, S.; Lee, D.G.; Shin, H. Comorbidity Scoring with Causal Disease Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, C.A.; Blumm, N.; Barabási, A.L.; Christakis, N.A. A dynamic network approach for the study of human phenotypes. PLoS Comput. Biol. 2009, 5, e1000353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Wang, L.; Ding, S.; Shen, M.; Qiu, H. Phenotypic Disease Network Analysis to Identify Comorbidity Patterns in Hospitalized Patients with Ischemic Heart Disease Using Large-Scale Administrative Data. Healthcare 2022, 10, 80. [Google Scholar] [CrossRef]
- Divo, M.J.; Casanova, C.; Marin, J.M.; Pinto-Plata, V.M.; de-Torres, J.P.; Zulueta, J.J.; Cabrera, C.; Zagaceta, J.; Sanchez-Salcedo, P.; Berto, J.; et al. COPD comorbidities network. Eur. Respir. J. 2015, 46, 640–650. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.M.; Wang, W.; Wu, F.Y.; Jiang, Y.Y.; Ma, L.L.; Feng, J. Comorbidity in Older Patients Hospitalized with Cancer in Northeast China based on Hospital Discharge Data. Int. J. Environ. Res. Public Health 2020, 17, 8028. [Google Scholar] [CrossRef]
- Tian, D.C.; Zhang, C.; Yuan, M.; Yang, X.; Gu, H.; Li, Z.; Wang, Y.; Shi, F.-D. Incidence of multiple sclerosis in China: A nationwide hospital-based study. Lancet Reg. Health West Pac. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Westergaard, D.; Moseley, P.; Sørup, F.K.H.; Baldi, P.; Brunak, S. Population-wide analysis of differences in disease progression patterns in men and women. Nat. Commun. 2019, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- Chronic Condition Indicator (CCI) for ICD-10-CM Beta Version. 2021. Available online: https://www.hcup-us.ahrq.gov/toolssoftware/chronic_icd10/chronic_icd10.jsp (accessed on 15 April 2021).
- Jin, L.; Guo, X.; Dou, J.; Liu, B.; Wang, J.; Li, J.; Sun, M.; Sun, C.; Yu, Y.; Yao, Y. Multimorbidity Analysis According to Sex and Age towards Cardiovascular Diseases of Adults in Northeast China. Sci. Rep. 2018, 8, 8607. [Google Scholar] [CrossRef]
- Saczynski, J.S.; Go, A.S.; Magid, D.J.; Smith, D.H.; McManus, D.D.; Allen, L.; Ogarek, J.; Goldberg, R.J.; Gurwitz, J.H. Patterns of comorbidity in older adults with heart failure: The Cardiovascular Research Network PRESERVE study. J. Am. Geriatr. Soc. 2013, 61, 26–33. [Google Scholar] [CrossRef]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlgren, P.; Jarneving, B.; Rousseau, R. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Jasist 2003, 54, 550–560. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Luo, L.; Zhou, L. Age- and Sex-Specific Differences in Multimorbidity Patterns and Temporal Trends on Assessing Hospital Discharge Records in Southwest China: Network-Based Study. J. Med. Internet Res. 2022, 24, e27146. [Google Scholar] [CrossRef] [PubMed]
- Linton, C.F. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Brin, S. The Anatomy of a Large-Scale Hypertextual Web Search Engine. In Proceedings of the 7th World Wide Web Conference, Brisbane, Australia, 14–18 April 1998. [Google Scholar]
- Martin, T.; Zhang, X.; Newman, M.E. Localization and centrality in networks. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2014, 90, 052808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.C.; Hauser, E.R.; Redding, T.S.t.; Sims, K.J.; Gellad, Z.F.; O’Leary, M.C.; Hyslop, T.; Madison, A.N.; Qin, X.; Weiss, D.; et al. Characterizing chronological accumulation of comorbidities in healthy veterans: A computational approach. Sci. Rep. 2021, 11, 8104. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International Conference Very Large Data Bases VLDB, Cairo, Egypt, 10–14 September 2000; p. 1215. [Google Scholar]
- Tran, J.; Norton, R.; Conrad, N.; Rahimian, F.; Canoy, D.; Nazarzadeh, M.; Rahimi, K. Patterns and temporal trends of comorbidity among adult patients with incident cardiovascular disease in the UK between 2000 and 2014: A population-based cohort study. PLoS Med. 2018, 15, e1002513. [Google Scholar] [CrossRef]
- Tini, G.; Autore, C.; Musumeci, B. The Many Faces of Arterial Hypertension in Hypertrophic Cardiomyopathy and Its Phenocopies: Bystander, Consequence, Modifier. High Blood Press Cardiovasc. Prev. 2021, 28, 327–329. [Google Scholar] [CrossRef]
- Yoneda, Z.T.; Anderson, K.C.; Quintana, J.A.; O’Neill, M.J.; Sims, R.A.; Glazer, A.M.; Shaffer, C.M.; Crawford, D.M.; Stricker, T.; Ye, F.; et al. Early-Onset Atrial Fibrillation and the Prevalence of Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiol. 2021, 6, 1371–1379. [Google Scholar] [CrossRef]
- Sekulic, M.; Zacharias, M.; Medalion, B. Ischemic Cardiomyopathy and Heart Failure. Circ. Heart Fail. 2019, 12, e006006. [Google Scholar] [CrossRef]
- Gaikwad, A.B.; Sayyed, S.G.; Lichtnekert, J.; Tikoo, K.; Anders, H.J. Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. Am. J. Pathol. 2010, 176, 1079–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banno, K.; Shiomi, T.; Sasanabe, R.; Otake, K.; Hasegawa, R.; Maekawa, M.; Ito, T. Sleep-disordered breathing in patients with idiopathic cardiomyopathy. Circ. J. 2004, 68, 338–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.V.H.; Kroll, P.C.; Kroll, R.T.M.; Carvalho, V.N. Cirrhotic cardiomyopathy: The liver affects the heart. Braz. J. Med. Biol. Res. 2019, 52, e7809. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.R.; Paillasseur, J.L.; Caillaud, D.; Tillie-Leblond, I.; Chanez, P.; Escamilla, R.; Court-Fortune, I.; Perez, T.; Carre, P.; Roche, N.; et al. Clinical COPD phenotypes: A novel approach using principal component and cluster analyses. Eur. Respir. J. 2010, 36, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef]
- Bozcali, E.; Ucpunar, H.; Sevencan, A.; Balioglu, M.B.; Albayrak, A.; Polat, V. A Retrospective Study of Congenital Cardiac Abnormality Associated with Scoliosis. Asian Spine J. 2016, 10, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Tsilafakis, K.; Chen, L.; Lekkos, K.; Kostavasili, I.; Varela, A.; Cokkinos, D.V.; Davos, C.H.; Sun, X.; Song, J.; et al. Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2021, 11, 5939–5954. [Google Scholar] [CrossRef]
- Barbar, T.; Mahmood, S.S.; Liu, J.E. Cardiomyopathy Prevention in Cancer Patients. Cardiol. Clin. 2019, 37, 441–447. [Google Scholar] [CrossRef]
- Jensen, A.B.; Moseley, P.L.; Oprea, T.I.; Ellesøe, S.G.; Eriksson, R.; Schmock, H.; Jensen, P.B.; Jensen, L.J.; Brunak, S. Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat. Commun. 2014, 5, 4022. [Google Scholar] [CrossRef] [Green Version]
- Haug, N.; Deischinger, C.; Gyimesi, M.; Kautzky-Willer, A.; Thurner, S.; Klimek, P. High-risk multimorbidity patterns on the road to cardiovascular mortality. BMC Med. 2020, 18, 44. [Google Scholar] [CrossRef]
- Villadsen, P.R.; Horváth-Puhó, E.; Sørensen, H.T.; Schmidt, M. The Interaction Effect of Cardiac and Noncardiac Co-morbidities on Mortality Rates in Patients With Heart Failure. Am. J. Cardiol. 2022, 179, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Jong, P.; Vowinckel, E.; Liu, P.P.; Gong, Y.; Tu, J.V. Prognosis and determinants of survival in patients newly hospitalized for heart failure: A population-based study. Arch. Intern. Med. 2002, 162, 1689–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushton, C.A.; Satchithananda, D.K.; Jones, P.W.; Kadam, U.T. Non-cardiovascular comorbidity, severity and prognosis in non-selected heart failure populations: A systematic review and meta-analysis. Int. J. Cardiol. 2015, 196, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Laiglesia, F.J.; Sánchez-Marteles, M.; Pérez-Calvo, J.I.; Formiga, F.; Bartolomé-Satué, J.A.; Armengou-Arxé, A.; Lopez-Quiros, R.; Perez-Silvestre, J.; Serrado-Iglesias, A.; Montero-Perez-Barquero, M. Comorbidity in heart failure. Results of the Spanish RICA Registry. QJM 2014, 107, 989–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorio, A.; Senni, M.; Barbati, G.; Greene, S.J.; Poli, S.; Zambon, E.; Di Nora, C.; Cioffi, G.; Tarantini, L.; Gavazzi, A.; et al. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: A community-based study. Eur. J. Heart Fail. 2018, 20, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining comorbidity: Implications for understanding health and health services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef]
- Sugrue, D.D.; Rodeheffer, R.J.; Codd, M.B.; Ballard, D.J.; Fuster, V.; Gersh, B.J. The clinical course of idiopathic dilated cardiomyopathy. A population-based study. Ann. Intern. Med. 1992, 117, 117–123. [Google Scholar] [CrossRef]
- Lowry, P.J. Prediction of outcome in dilated cardiomyopathy. Br. Heart J. 1988, 60, 176. [Google Scholar] [CrossRef]
ICD Matched Name of Diseases | ICD-10-Code | Prevalence in ICM | Prevalence in Control | OR (95%CI) |
---|---|---|---|---|
Heart failure | I50 | 77.51 (74.84, 80.02) | 20.56 (18.14, 23.15) | 13.32 (10.8, 16.42) * |
Nonrheumatic mitral valve disorders | I34 | 18.92 (16.58, 21.44) | 2.32 (1.49, 3.43) | 9.84 (6.38, 15.18) * |
Nonrheumatic tricuspid valve disorders | I36 | 10.14 (8.36, 12.14) | 1.45 (0.81, 2.38) | 7.68 (4.44, 13.28) * |
Other pulmonary heart diseases | I27 | 15.64 (13.48, 17.99) | 2.8 (1.88, 4) | 6.44 (4.29, 9.65) * |
Hyperfunction of pituitary | E22 | 4.15 (3.02, 5.55) | 0.68 (0.27, 1.39) | 6.37 (2.85, 14.22) * |
Atrioventricular and left bundle-branch block | I44 | 13.8 (11.76, 16.05) | 2.61 (1.72, 3.77) | 5.98 (3.93, 9.12) * |
Complications and ill-defined descriptions of heart disease | I51 | 38.61 (35.63, 41.65) | 10.33 (8.54, 12.34) | 5.46 (4.31, 6.91) * |
Atrial fibrillation and flutter | I48 | 27.9 (25.18, 30.74) | 10.14 (8.36, 12.14) | 3.43 (2.69, 4.37) * |
Other cardiac arrhythmias | I49 | 21.62 (19.15, 24.26) | 9.65 (7.92, 11.62) | 2.58 (2, 3.33) * |
Chronic renal failure | N18 | 13.61 (11.58, 15.85) | 5.89 (4.53, 7.5) | 2.52 (1.84, 3.45) * |
Sleep disorders | G47 | 8.11 (6.52, 9.94) | 3.57 (2.53, 4.89) | 2.38 (1.6, 3.54) * |
Paroxysmal tachycardia | I47 | 0.14 (0.12, 0.16) | 0.1 (0.09, 0.12) | 1.44 (1.1, 1.87) * |
Other diseases of liver | K76 | 0.16 (0.14, 0.19) | 0.13 (0.11, 0.16) | 1.27 (0.99, 1.61) |
Non-insulin-dependent diabetes mellitus | E11 | 0.22 (0.19, 0.24) | 0.21 (0.19, 0.24) | 1.04 (0.84, 1.28) |
Atherosclerosis | I70 | 0.13 (0.11, 0.15) | 0.13 (0.11, 0.15) | 1.04 (0.8, 1.34) |
Essential (primary) hypertension | I10 | 28.67 (25.93, 31.53) | 40.93 (37.91, 43.99) | 0.58 (0.48, 0.7) * |
Disorder of lipoprotein metabolism and other lipidaemias | E78 | 21.33 (18.87, 23.95) | 34.65 (31.75, 37.64) | 0.51 (0.42, 0.62) * |
Chronic ischaemic heart disease | I25 | 19.59 (17.22, 22.14) | 32.53 (29.68, 35.48) | 0.51 (0.41, 0.62) * |
Acute myocardial infarction | I21 | 0.77 (0.33, 1.52) | 11 (9.16, 13.07) | 0.06 (0.03, 0.13) * |
Angina pectoralis | I20 | 0.29 (0.06, 0.84) | 13.9 (11.85, 16.16) | 0.02 (0.01, 0.06) * |
Group | Sample Size | Diameter | Density | Average Path Length | Average Closeness | Average Neighbour Degree | Average between | Average Degree | Minimum SCI Value |
---|---|---|---|---|---|---|---|---|---|
ICM | |||||||||
All | 1036 | 5 | 0.13 | 2.26 | 0.02 | 13.28 | 24.21 | 7.11 | 0.03 |
0~19 | 45 | 4 | 0.05 | 1.65 | 0.33 | 3.36 * | 1.93 | 3.1 * | 0.15 |
20~29 | 84 | 4 | 0.1 | 1.97 | 0.14 | 5.53 * | 6.3 | 5.04 | 0.06 |
30~39 | 123 | 6 | 0.08 | 2.16 | 0.07 | 6.39 | 10.5 | 5.16 | 0.04 |
40~49 | 181 | 6 | 0.11 | 2.34 | 0.04 | 7.05 | 13.4 | 5.55 | 0.06 |
50~59 | 256 | 5 | 0.14 | 1.97 | 0.04 | 8.61 * | 10.14 | 6.86 * | 0.09 |
60~69 | 218 | 7 | 0.11 | 2.56 | 0.01 | 9.73 * | 34.69 | 8.08 * | 0.03 |
>=70 | 129 | 6 | 0.07 | 2.24 | 0.04 | 7.03 | 13.34 | 5.7 | 0.07 |
Control | |||||||||
All | 1036 | 7 | 0.14 | 2.25 | 0.02 | 11.97 | 25.69 | 8.53 | 0.02 |
0~19 | 39 | 5 | 0.11 | 1.73 | 0.13 | 5 | 3.3 | 4.24 | 0.35 |
20~29 | 87 | 6 | 0.13 | 1.92 | 0.13 | 7.2 | 6.76 | 5.7 | 0.25 |
30~39 | 122 | 6 | 0.12 | 1.94 | 0.09 | 6.94 | 6.91 | 5.7 | 0.04 |
40~49 | 181 | 5 | 0.12 | 2.12 | 0.08 | 7.39 | 11.63 | 6.3 | 0.03 |
50~59 | 259 | 6 | 0.1 | 2.37 | 0.04 | 6.62 | 14.93 | 5.42 | 0.02 |
60~69 | 219 | 10 | 0.11 | 2.75 | 0.02 | 6.85 | 23.05 | 5.85 | 0.03 |
>=70 | 129 | 6 | 0.09 | 2.16 | 0.06 | 7.37 | 12.86 | 6.4 | 0.2 |
Antecedents ICD Matched Disease Name | Antecedents ICD-Code | Consequents ICD-Code | Antecedent Support | Support | Confidence | Lift | Leverage | Conviction |
---|---|---|---|---|---|---|---|---|
{Complications and ill-defined descriptions of heart disease; Other pulmonary heart disease} | {‘I51′, ‘I27′} | {‘I50′} | 0.09 | 0.085 | 0.946 | 1.221 | 0.015 | 4.183 |
{Other pulmonary heart disease} | {‘I27′} | {‘I50′} | 0.156 | 0.146 | 0.932 | 1.203 | 0.025 | 3.312 |
{Nonrheumatic mitral valve disorders} | {‘I34′} | {‘I50′} | 0.189 | 0.174 | 0.918 | 1.185 | 0.027 | 2.755 |
{Nonrheumatic mitral valve disorders; Complications and ill-defined descriptions of heart disease} | {‘I34′, ‘I51′} | {‘I50′} | 0.151 | 0.138 | 0.917 | 1.183 | 0.021 | 2.699 |
{Complications and ill-defined descriptions of heart disease; Atrial fibrillation and flutter} | {‘I51′, ‘I48′} | {‘I50′} | 0.116 | 0.106 | 0.917 | 1.183 | 0.016 | 2.699 |
{Complications and ill-defined descriptions of heart disease; Nonrheumatic tricuspid valve disorder} | {‘I51′, ‘I36′} | {‘I50′} | 0.084 | 0.076 | 0.908 | 1.172 | 0.011 | 2.446 |
{Sleep disorders} | {‘G47′} | {‘I50′} | 0.081 | 0.073 | 0.905 | 1.167 | 0.011 | 2.361 |
{Nonrheumatic tricuspid valve disorder} | {‘I36′} | {‘I50′} | 0.101 | 0.091 | 0.895 | 1.155 | 0.012 | 2.147 |
{Nonrheumatic mitral valve disorders; Nonrheumatic tricuspid valve disorder} | {‘I34′, ‘I36′} | {‘I50′} | 0.092 | 0.082 | 0.895 | 1.154 | 0.011 | 2.137 |
{Complications and ill-defined descriptions of heart disease; Chronic ischaemic heart disease} | {‘I51′, ‘I25′} | {‘I50′} | 0.091 | 0.081 | 0.894 | 1.153 | 0.011 | 2.114 |
{Essential (primary) hypertension; Chronic ischaemic heart disease} | {‘I10′, ‘I25′} | {‘I50′} | 0.094 | 0.083 | 0.887 | 1.144 | 0.01 | 1.983 |
{Atrioventricular and left bundle-branch block} | {‘I44′} | {‘I50′} | 0.138 | 0.122 | 0.881 | 1.137 | 0.015 | 1.892 |
{Essential (primary) hypertension; Disorders of lipoprotein metabolism and other lipidaemias} | {‘I10′, ‘E78′} | {‘I50′} | 0.1 | 0.088 | 0.875 | 1.129 | 0.01 | 1.799 |
{Atherosclerosis} | {‘I70′} | {‘I50′} | 0.13 | 0.114 | 0.874 | 1.128 | 0.013 | 1.786 |
{Complications and ill-defined descriptions of heart disease; Essential (primary) hypertension} | {‘I51′, ‘I10′} | {‘I50′} | 0.105 | 0.092 | 0.872 | 1.124 | 0.01 | 1.751 |
{Complications and ill-defined descriptions of heart disease} | {‘I51′} | {‘I50′} | 0.386 | 0.334 | 0.865 | 1.116 | 0.035 | 1.666 |
{Chronic ischaemic heart disease} | {‘I25′} | {‘I50′} | 0.196 | 0.169 | 0.862 | 1.112 | 0.017 | 1.631 |
{Atrial fibrillation and flutter} | {‘I48′} | {‘I50′} | 0.279 | 0.24 | 0.862 | 1.112 | 0.024 | 1.625 |
{Disorders of lipoprotein metabolism and other lipidaemias} | {‘E78′} | {‘I50′} | 0.213 | 0.183 | 0.86 | 1.109 | 0.018 | 1.603 |
{Complications and ill-defined descriptions of heart disease; Disorders of lipoprotein metabolism and other lipidaemias} | {‘I51′, ‘E78′} | {‘I50′} | 0.093 | 0.079 | 0.854 | 1.102 | 0.007 | 1.542 |
{Chronic renal failure} | {‘N18′} | {‘I50′} | 0.136 | 0.116 | 0.851 | 1.098 | 0.01 | 1.51 |
{Non-insulin-dependent diabetes mellitus} | {‘E11′} | {‘I50′} | 0.218 | 0.185 | 0.85 | 1.096 | 0.016 | 1.495 |
{Paroxysmal tachycardia} | {‘I47′} | {‘I50′} | 0.142 | 0.12 | 0.844 | 1.088 | 0.01 | 1.437 |
{Complications and ill-defined descriptions of heart disease; Other cardiac arrhythmias} | {‘I51′, ‘I49′} | {‘I50′} | 0.111 | 0.094 | 0.843 | 1.088 | 0.008 | 1.437 |
{Non-insulin-dependent diabetes mellitus; Essential (primary) hypertension} | {‘I10′, ‘E11′} | {‘I50′} | 0.092 | 0.077 | 0.842 | 1.086 | 0.006 | 1.424 |
{Other diseases of liver} | {‘K76′} | {‘I50′} | 0.164 | 0.137 | 0.835 | 1.078 | 0.01 | 1.365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Jin, Y.; Zhou, J.; Pang, C.; Wang, Y.; Zhang, S. Phenotypic Disease Network-Based Multimorbidity Analysis in Idiopathic Cardiomyopathy Patients with Hospital Discharge Records. J. Clin. Med. 2022, 11, 6965. https://doi.org/10.3390/jcm11236965
Wang L, Jin Y, Zhou J, Pang C, Wang Y, Zhang S. Phenotypic Disease Network-Based Multimorbidity Analysis in Idiopathic Cardiomyopathy Patients with Hospital Discharge Records. Journal of Clinical Medicine. 2022; 11(23):6965. https://doi.org/10.3390/jcm11236965
Chicago/Turabian StyleWang, Lei, Ye Jin, Jingya Zhou, Cheng Pang, Yi Wang, and Shuyang Zhang. 2022. "Phenotypic Disease Network-Based Multimorbidity Analysis in Idiopathic Cardiomyopathy Patients with Hospital Discharge Records" Journal of Clinical Medicine 11, no. 23: 6965. https://doi.org/10.3390/jcm11236965
APA StyleWang, L., Jin, Y., Zhou, J., Pang, C., Wang, Y., & Zhang, S. (2022). Phenotypic Disease Network-Based Multimorbidity Analysis in Idiopathic Cardiomyopathy Patients with Hospital Discharge Records. Journal of Clinical Medicine, 11(23), 6965. https://doi.org/10.3390/jcm11236965