Diabetes and the Prostate: Elevated Fasting Glucose, Insulin Resistance and Higher Levels of Adrenal Steroids in Prostate Cancer
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kasper, J.S.; Liu, Y.; Giovannucci, E. Diabetes mellitus and risk of prostate cancer in the health professionals follow-up study. Int. J. Cancer 2009, 124, 1398–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonovas, S.; Filioussi, K.; Tsantes, A. Diabetes mellitus and risk of prostate cancer: A meta-analysis. Diabetologia 2004, 47, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, F.; Saito, E.; Lin, Y.; Song, M.; Luu, H.N.; Gupta, P.C.; Sawada, N.; Tamakoshi, A.; Shu, X.O.; et al. Association between type 2 diabetes and risk of cancer mortality: A pooled analysis of over 771,000 individuals in the Asia Cohort Consortium. Diabetologia 2017, 60, 1022–1032. [Google Scholar] [CrossRef] [Green Version]
- Arthur, R.; Moller, H.; Garmo, H.; Holmberg, L.; Stattin, P.; Malmstrom, H.; Lambe, M.; Hammar, N.; Walldius, G.; Robinson, D.; et al. Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories. Cancer Med. 2016, 5, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Presti, J.C., Jr.; Aronson, W.J.; Terris, M.K.; Kane, C.J.; Amling, C.L.; Freedland, S.J. Glycemic control and prostate cancer progression: Results from the SEARCH database. Prostate 2010, 70, 1540–1546. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.L.; Plymate, S.R.; Porter, M.P.; Gore, J.L.; Lin, D.W.; Hu, E.; Zeliadt, S.B. Hyperglycemia and prostate cancer recurrence in men treated for localized prostate cancer. Prostate Cancer Prostatic Dis. 2013, 16, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Biernacka, K.M.; Uzoh, C.C.; Zeng, L.; Persad, R.A.; Bahl, A.; Gillatt, D.; Perks, C.M.; Holly, J.M. Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr. Relat. Cancer 2013, 20, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, E.J.; Gianatti, E.; Strauss, B.J.; Wentworth, J.; Lim-Joon, D.; Bolton, D.; Zajac, J.D.; Grossmann, M. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin. Endocrinol. 2011, 74, 377–383. [Google Scholar] [CrossRef]
- Lutz, S.Z.; Todenhofer, T.; Wagner, R.; Hennenlotter, J.; Ferchl, J.M.; Scharpf, M.O.; Martus, P.; Staiger, H.; Fritsche, A.; Stenzl, A.; et al. Higher prevalence of lymph node metastasis in prostate cancer in patients with diabetes. Endocr. Relat. Cancer 2018, 25, L19–L22. [Google Scholar] [CrossRef] [Green Version]
- Lutz, S.Z.; Hennenlotter, J.; Scharpf, M.O.; Sailer, C.; Fritsche, L.; Schmid, V.; Kantartzis, K.; Wagner, R.; Lehmann, R.; Berti, L.; et al. Androgen receptor overexpression in prostate cancer in type 2 diabetes. Mol. Metab. 2018, 8, 158–166. [Google Scholar] [CrossRef]
- Wagner, R.; Heni, M.; Tabák, A.G.; Machann, J.; Schick, F.; Randrianarisoa, E.; de Angelis, M.H.; Birkenfeld, A.L.; Stefan, N.; Peter, A.; et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 2021, 27, 49–57. [Google Scholar] [CrossRef]
- Ahrén, B.; Pacini, G. Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies. Eur. J. Endocrinol. 2004, 150, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murtola, T.J.; Vihervuori, V.J.; Lahtela, J.; Talala, K.; Taari, K.; Tammela, T.L.; Auvinen, A. Fasting blood glucose, glycaemic control and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Br. J. Cancer 2018, 118, 1248–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlini, R.; Berti, L.; Darr, J.; Lassi, M.; Brandmaier, S.; Fritsche, L.; Scheid, F.; Bohm, A.; Konigsrainer, A.; Grallert, H.; et al. Glucose tolerance and insulin sensitivity define adipocyte transcriptional programs in human obesity. Mol. Metab. 2018, 18, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Zadra, G.; Photopoulos, C.; Loda, M. The fat side of prostate cancer. Biochim. Biophys. Acta 2013, 1831, 1518–1532. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.; MacKenzie, S.M.; Alvarez-Madrazo, S.; Diver, L.A.; Lin, J.; Stewart, P.M.; Fraser, R.; Connell, J.M.; Davies, E. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 2013, 62, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.S.C.; Olkhov-Mitsel, E.; Jeyapala, R.; Zhao, F.; Commisso, K.; Klotz, L.; Loblaw, A.; Liu, S.K.; Vesprini, D.; Fleshner, N.E.; et al. Assessment of Serum microRNA Biomarkers to Predict Reclassification of Prostate Cancer in Patients on Active Surveillance. J. Urol. 2018, 199, 1475–1481. [Google Scholar] [CrossRef]
- Endogenous, H.; Prostate Cancer Collaborative Group. Endogenous sex hormones and prostate cancer: A collaborative analysis of 18 prospective studies. J. Natl. Cancer Inst. 2008, 100, 170–183. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, M.; Gianatti, E.J.; Zajac, J.D. Testosterone and type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 247–256. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef]
- Duff, J.; McEwan, I.J. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol. Endocrinol. 2005, 19, 2943–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosman, H.; Fabre, B.; Mesch, V.; Lopez, M.A.; Schreier, L.; Mazza, O.; Berg, G. Lipoproteins, sex hormones and inflammatory markers in association with prostate cancer. Aging Male 2010, 13, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.P.; Hofland, J.; Foster, P.A. In touch with your feminine side: How oestrogen metabolism impacts prostate cancer. Endocr. Relat. Cancer 2016, 23, R249–R266. [Google Scholar] [CrossRef] [Green Version]
- Mostaghel, E.A. Beyond T and DHT—Novel steroid derivatives capable of wild type androgen receptor activation. Int. J. Biol. Sci. 2014, 10, 602–613. [Google Scholar] [CrossRef] [PubMed]
Control | Prostate Cancer | |||||
---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | p | p* | |
Age (y) | 63.68 | 0.77 | 63.47 | 0.78 | 0.94 | - |
BMI (kg/m2) | 26.88 | 0.33 | 26.73 | 0.34 | 0.76 | - |
Insulin, fasting (pmol/L) | 78.09 | 4.8 | 90.84 | 4.89 | 0.004 | 0.0004 |
C-peptide, fasting (pmol/L) | 529.07 | 22.17 | 552.5 | 22.6 | 0.28 | 0.13 |
C-peptide, 120 min (pmol/L) | 2528.69 | 102.23 | 2366.45 | 103.71 | 0.41 | 0.45 |
Non-esterified fatty acid (µmol/L) | 579.1 | 25.32 | 566.44 | 25.57 | 0.34 | 0.35 |
Triglyceride (mg/dL) | 130.59 | 5.79 | 95.41 | 5.93 | <0.0001 | <0.0001 |
Cholesterol (mg/dL) | 205.55 | 3.68 | 195.36 | 3.97 | 0.07 | 0.06 |
HDL-cholesterol (md/dL) | 51.72 | 1.14 | 52.41 | 1.23 | 0.74 | 0.84 |
LDL-cholesterol (ml/dL) | 123.32 | 3.29 | 118.36 | 3.55 | 0.37 | 0.36 |
C-reactive protein (mg/dL) | 0.14 | 0.1 | 0.32 | 0.14 | 0.45 | 0.36 |
Intrahepatic lipids (%) | 6.14 | 0.88 | 5.95 | 0.72 | 0.15 | 0.21 |
AUC C-peptide 0–120/AUC glucose 0–120 | 261.97 | 8.05 | 267.75 | 8.25 | 0.42 | 0.66 |
AUC C-peptide 0–30/AUC glucose 0–30 | 153.11 | 5.39 | 156.67 | 5.49 | 0.47 | 0.47 |
Testosterone (nmol/L) | 13.06 | 0.46 | 13.28 | 0.46 | 0.98 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutz, S.Z.; Hennenlotter, J.; Franko, A.; Dannecker, C.; Fritsche, L.; Kantartzis, K.; Wagner, R.; Peter, A.; Stefan, N.; Fritsche, A.; et al. Diabetes and the Prostate: Elevated Fasting Glucose, Insulin Resistance and Higher Levels of Adrenal Steroids in Prostate Cancer. J. Clin. Med. 2022, 11, 6762. https://doi.org/10.3390/jcm11226762
Lutz SZ, Hennenlotter J, Franko A, Dannecker C, Fritsche L, Kantartzis K, Wagner R, Peter A, Stefan N, Fritsche A, et al. Diabetes and the Prostate: Elevated Fasting Glucose, Insulin Resistance and Higher Levels of Adrenal Steroids in Prostate Cancer. Journal of Clinical Medicine. 2022; 11(22):6762. https://doi.org/10.3390/jcm11226762
Chicago/Turabian StyleLutz, Stefan Zoltán, Jörg Hennenlotter, Andras Franko, Corinna Dannecker, Louise Fritsche, Konstantinos Kantartzis, Róbert Wagner, Andreas Peter, Norbert Stefan, Andreas Fritsche, and et al. 2022. "Diabetes and the Prostate: Elevated Fasting Glucose, Insulin Resistance and Higher Levels of Adrenal Steroids in Prostate Cancer" Journal of Clinical Medicine 11, no. 22: 6762. https://doi.org/10.3390/jcm11226762