The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty
Abstract
1. Introduction
2. Evolution of Cementless TKA
2.1. Implant Material
2.2. Implant Design
3. Indication Considerations
3.1. Young Age
3.2. Obesity
3.3. Rheumatoid Arthritis
3.4. Osteoporosis
4. Outcomes
4.1. Clinical & Radiographic Outcomes
4.2. Complications & Survivability
4.3. Cost
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunston, F.H. Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement: Interim report. Clin. Orthop. Relat. Res. 1973, 128–135. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Fehring, T.K.; Odum, S.M.; Griffin, W.L.; Mason, J.B.; McCoy, T.H. The obesity epidemic: Its effect on total joint arthroplasty. J Arthroplast. 2007, 22, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Chiu, F.Y.; Chen, C.M.; Lin, C.F.; Lo, W.H. Cefuroxime-impregnated cement in primary total knee arthroplasty: A prospective, randomized study of three hundred and forty knees. J. Bone Joint Surg. Am. 2002, 84, 759–762. [Google Scholar] [CrossRef]
- Bourne, R.B. Prophylactic use of antibiotic bone cement: An emerging standard--in the affirmative. J. Arthroplast. 2004, 19, 69–72. [Google Scholar] [CrossRef]
- Font-Rodriguez, D.E.; Scuderi, G.R.; Insall, J.N. Survivorship of cemented total knee arthroplasty. Clin. Orthop. Relat. Res. 1997, 345, 79–86. [Google Scholar] [CrossRef]
- Ritter, M.A. Screw and cement fixation of large defects in total knee arthroplasty. J. Arthroplast. 1986, 1, 125–129. [Google Scholar] [CrossRef]
- Kutzner, I.; Hallan, G.; Høl, P.J.; Furnes, O.; Gøthesen, Ø.; Figved, W.; Ellison, P. Early aseptic loosening of a mobile-bearing total knee replacement. Acta Orthop. 2018, 89, 77–83. [Google Scholar] [CrossRef]
- Arsoy, D.; Pagnano, M.W.; Lewallen, D.G.; Hanssen, A.D.; Sierra, R.J. Aseptic tibial debonding as a cause of early failure in a modern total knee arthroplasty design. Clin. Orthop. Relat. Res. 2013, 471, 94–101. [Google Scholar] [CrossRef]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why are total knee arthroplasties failing today--has anything changed after 10 years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- American Joint Replacement Registry (AJRR). Annual Report. 2020. Available online: https://www.aaos.org/globalassets/registries/2020-aaos-ajrr-annual-report-preview_final.pdf (accessed on 5 September 2022).
- Nam, D.; Lawrie, C.M.; Salih, R.; Nahhas, C.R.; Barrack, R.L.; Nunley, R.M. Cemented Versus Cementless Total Knee Arthroplasty of the Same Modern Design: A Prospective, Randomized Trial. J. Bone Jt. Surg. Am. 2019, 101, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.M.; Schwabe, M.; Pierce, A.; Nunley, R.M.; Barrack, R.L. The cost of implanting a cemented versus cementless total knee arthroplasty. Bone Jt. J. 2019, 101-B, 61–63. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakata, S.; Kondoh, Y. A follow-up study of an uncemented knee replacement. The results of 312 knees using the Kodama-Yamamoto prosthesis. J. Bone Jt. Surg. Br. 1989, 71, 505–508. [Google Scholar] [CrossRef]
- Shimagaki, H.; Bechtold, J.E.; Sherman, R.E.; Gustilo, R.B. Stability of initial fixation of the tibial component in cementless total knee arthroplasty. J. Orthop. Res. 1990, 8, 64–71. [Google Scholar] [CrossRef]
- Peters, P.C.; Engh, G.A.; Dwyer, K.A.; Vinh, T.N. Osteolysis after total knee arthroplasty without cement. J. Bone Jt. Surg. Am. 1992, 74, 864–876. [Google Scholar] [CrossRef]
- Berger, R.A.; Lyon, J.H.; Jacobs, J.J.; Barden, R.M.; Berkson, E.M.; Sheinkop, M.B.; Rosenberg, A.G.; Galante, J.O. Problems with cementless total knee arthroplasty at 11 years followup. Clin. Orthop. Relat. Res. 2001, 392, 196–207. [Google Scholar] [CrossRef]
- Whiteside, L.A. Effect of porous-coating configuration on tibial osteolysis after total knee arthroplasty. Clin. Orthop. Relat. Res. 1995, 321, 92–97. [Google Scholar] [CrossRef]
- Furlong, R.J.; Osborn, J.F. Fixation of hip prostheses by hydroxyapatite ceramic coatings. J. Bone Jt. Surg. Br. 1991, 73, 741–745. [Google Scholar] [CrossRef]
- Søballe, K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop. Scand. Suppl. 1993, 255, 1–58. [Google Scholar] [CrossRef]
- Toksvig-Larsen, S.; Jorn, L.P.; Ryd, L.; Lindstrand, A. Hydroxyapatite-enhanced tibial prosthetic fixation. Clin. Orthop. Relat. Res. 2000, 370, 192–200. [Google Scholar] [CrossRef]
- Dumbleton, J.; Manley, M.T. Hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J. Bone Jt. Surg. Am. 2004, 86, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.; Björkman, A.; Besjakov, J.; Onsten, I. Cemented tibial component fixation performs better than cementless fixation: A randomized radiostereometric study comparing porous-coated, hydroxyapatite-coated and cemented tibial components over 5 years. Acta Orthop. 2005, 76, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Pulido, L.; Abdel, M.P.; Lewallen, D.G.; Stuart, M.J.; Sanchez-Sotelo, J.; Hanssen, A.D.; Pagnano, M.W. The Mark Coventry Award: Trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: A randomized clinical trial. Clin. Orthop. Relat. Res. 2015, 473, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, R.M.; de Beaubien, B.C. Early failure of cementless porous tantalum monoblock tibial components. J. Arthroplast. 2013, 28, 1505–1508. [Google Scholar] [CrossRef]
- Unger, A.S.; Duggan, J.P. Midterm results of a porous tantalum monoblock tibia component clinical and radiographic results of 108 knees. J. Arthroplast. 2011, 26, 855–860. [Google Scholar] [CrossRef]
- Waddell, D.D.; Sedacki, K.; Yang, Y.; Fitch, D.A. Early radiographic and functional outcomes of a cancellous titanium-coated tibial component for total knee arthroplasty. Musculoskelet. Surg. 2016, 100, 71–74. [Google Scholar] [CrossRef][Green Version]
- Ritter, M.A.; Meneghini, R.M. Twenty-year survivorship of cementless anatomic graduated component total knee arthroplasty. J. Arthroplast. 2010, 25, 507–513. [Google Scholar] [CrossRef]
- Eriksen, J.; Christensen, J.; Solgaard, S.; Schrøder, H. The cementless AGC 2000 knee prosthesis: 20-year results in a consecutive series. Acta Orthop. Belg. 2009, 75, 225–233. [Google Scholar]
- Winther, N.S.; Jensen, C.L.; Jensen, C.M.; Lind, T.; Schrøder, H.M.; Flivik, G.; Petersen, M.M. Comparison of a novel porous titanium construct (Regenerex®) to a well proven porous coated tibial surface in cementless total knee arthroplasty—A prospective randomized RSA study with two-year follow-up. Knee 2016, 23, 1002–1011. [Google Scholar] [CrossRef]
- Dyreborg, K.; Winther, N.; Lind, T.; Flivik, G.; Mørk Petersen, M. Evaluation of different coatings of the tibial tray in uncemented total knee arthroplasty. A randomized controlled trial with 5 years follow-up with RSA and DEXA. Knee 2021, 29, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Ryu, M.; Woo, S.H.; Song, I.S.; Choi, Y.J.; Lee, U.L. Bone Conduction Capacity of Highly Porous 3D-Printed Titanium Scaffolds Based on Different Pore Designs. Materials 2021, 14, 3892. [Google Scholar] [CrossRef]
- Murr, L.E.; Amato, K.N.; Li, S.J.; Tian, Y.X.; Cheng, X.Y.; Gaytan, S.M.; Martinez, E.; Shindo, P.W.; Medina, F.; Wicker, R.B. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed Mater. 2011, 4, 1396–1411. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E.; Gaytan, S.M.; Martinez, E.; Medina, F.; Wicker, R.B. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012, 2012, 245727. [Google Scholar] [CrossRef] [PubMed]
- Laende, E.K.; Richardson, C.G.; Dunbar, M.J. Predictive value of short-term migration in determining long-term stable fixation in cemented and cementless total knee arthroplasties. Bone Jt. J. 2019, 101-B, 55–60. [Google Scholar] [CrossRef]
- Sporer, S.; MacLean, L.; Burger, A.; Moric, M. Evaluation of a 3D-printed total knee arthroplasty using radiostereometric analysis: Assessment of highly porous biological fixation of the tibial baseplate and metal-backed patellar component. Bone Jt. J. 2019, 101-B, 40–47. [Google Scholar] [CrossRef]
- Hasan, S.; van Hamersveld, K.T.; Marang-van de Mheen, P.J.; Kaptein, B.L.; Nelissen, R.G.H.H.; Toksvig-Larsen, S. Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: Two-year results of a randomized controlled trial using radiostereometric analysis. Bone Jt. J. 2020, 102-B, 1016–1024. [Google Scholar] [CrossRef]
- Restrepo, S.; Smith, E.B.; Hozack, W.J. Excellent mid-term follow-up for a new 3D-printed cementless total knee arthroplasty. Bone Jt. J. 2021, 103-B, 32–37. [Google Scholar] [CrossRef]
- Bhimji, S.; Meneghini, R.M. Micromotion of cementless tibial baseplates under physiological loading conditions. J. Arthroplast. 2012, 27, 648–654. [Google Scholar] [CrossRef]
- Regnér, L.; Carlsson, L.; Kärrholm, J.; Herberts, P. Clinical and radiologic survivorship of cementless tibial components fixed with finned polyethylene pegs. J. Arthroplast. 1997, 12, 751–758. [Google Scholar] [CrossRef]
- Chockalingam, S.; Scott, G. The outcome of cemented vs. cementless fixation of a femoral component in total knee replacement (TKR) with the identification of radiological signs for the prediction of failure. Knee 2000, 7, 233–238. [Google Scholar] [CrossRef]
- Huang, C.H.; Yang, C.Y.; Cheng, C.K. Fracture of the femoral component associated with polyethylene wear and osteolysis after total knee arthroplasty. J. Arthroplast. 1999, 14, 375–379. [Google Scholar] [CrossRef]
- Rand, J.A. Supracondylar fracture of the femur associated with polyethylene wear after total knee arthroplasty. A case report. J. Bone Jt. Surg. Am. 1994, 76, 1389–1393. [Google Scholar] [CrossRef]
- Lewis, P.L.; Rorabeck, C.H.; Bourne, R.B. Screw osteolysis after cementless total knee replacement. Clin. Orthop. Relat. Res. 1995, 321, 173–177. [Google Scholar] [CrossRef]
- Hofmann, A.A. The design principles of the Natural-Knee system. Am. J. Orthop. 2010, 39, 2–4. [Google Scholar] [PubMed]
- Rand, J.A. Cement or cementless fixation in total knee arthroplasty? Clin. Orthop. Relat. Res. 1991, 273, 52–62. [Google Scholar] [CrossRef]
- Duffy, G.P.; Berry, D.J.; Rand, J.A. Cement versus cementless fixation in total knee arthroplasty. Clin. Orthop. Relat. Res. 1998, 356, 66–72. [Google Scholar] [CrossRef]
- Carlson, B.J.; Gerry, A.S.; Hassebrock, J.D.; Christopher, Z.K.; Spangehl, M.J.; Bingham, J.S. Clinical outcomes and survivorship of cementless triathlon total knee arthroplasties: A systematic review. Arthroplasty 2022, 4, 25. [Google Scholar] [CrossRef]
- Ali, M.S.; Mangaleshkar, S.R. Uncemented rotating-platform total knee arthroplasty: A 4-year to 12-year follow-up. J. Arthroplast. 2006, 21, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Netravali, N.A.; Shen, F.; Park, Y.; Bargar, W.L. A perspective on robotic assistance for knee arthroplasty. Adv. Orthop. 2013, 2013, 970703. [Google Scholar] [CrossRef] [PubMed]
- Healy, W.L.; Wasilewski, S.A.; Takei, R.; Oberlander, M. Patellofemoral complications following total knee arthroplasty. Correlation with implant design and patient risk factors. J. Arthroplast. 1995, 10, 197–201. [Google Scholar] [CrossRef]
- Barrack, R.L.; Wolfe, M.W. Patellar resurfacing in total knee arthroplasty. J. Am. Acad. Orthop. Surg. 2000, 8, 75–82. [Google Scholar] [CrossRef]
- Brick, G.W.; Scott, R.D. The patellofemoral component of total knee arthroplasty. Clin. Orthop. Relat. Res. 1988, 231, 163–178. [Google Scholar] [CrossRef]
- Castro, F.P.; Chimento, G.; Munn, B.G.; Levy, R.S.; Timon, S.; Barrack, R.L. An analysis of Food and Drug Administration medical device reports relating to total joint components. J. Arthroplast. 1997, 12, 765–771. [Google Scholar] [CrossRef]
- Dennis, D.A. Removal of well-fixed cementless metal-backed patellar components. J. Arthroplast. 1992, 7, 217–220. [Google Scholar] [CrossRef]
- Kraay, M.J.; Darr, O.J.; Salata, M.J.; Goldberg, V.M. Outcome of metal-backed cementless patellar components: The effect of implant design. Clin. Orthop. Relat. Res. 2001, 392, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Buechel, F.F. Long-term followup after mobile-bearing total knee replacement. Clin. Orthop. Relat. Res. 2002, 404, 40–50. [Google Scholar] [CrossRef]
- Grau, L.C.; Ong, A.C.; Restrepo, S.; Griffiths, S.Z.; Hozack, W.J.; Smith, E.B. Survivorship, Clinical and Radiographic Outcomes of a Novel Cementless Metal-Backed Patella Design. J. Arthroplast. 2021, 36, S221–S226. [Google Scholar] [CrossRef] [PubMed]
- Julin, J.; Jämsen, E.; Puolakka, T.; Konttinen, Y.T.; Moilanen, T. Younger age increases the risk of early prosthesis failure following primary total knee replacement for osteoarthritis. A follow-up study of 32,019 total knee replacements in the Finnish Arthroplasty Register. Acta Orthop. 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Whiteside, L.A.; Viganò, R. Young and heavy patients with a cementless TKA do as well as older and lightweight patients. Clin. Orthop. Relat. Res. 2007, 464, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Diduch, D.R.; Insall, J.N.; Scott, W.N.; Scuderi, G.R.; Font-Rodriguez, D. Total knee replacement in young, active patients. Long-term follow-up and functional outcome. J. Bone Jt. Surg. Am. 1997, 79, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.A.; Heithoff, S.M.; Camargo, M. Cementless total knee arthroplasty in patients 50 years or younger. Clin. Orthop. Relat. Res. 2002, 404, 102–107. [Google Scholar] [CrossRef]
- Mont, M.A.; Gwam, C.; Newman, J.M.; Chughtai, M.; Khlopas, A.; Ramkumar, P.N.; Harwin, S.F. Outcomes of a newer-generation cementless total knee arthroplasty design in patients less than 50 years of age. Ann. Transl. Med. 2017, 5, S24. [Google Scholar] [CrossRef]
- Chen, C.; Li, R. Cementless versus cemented total knee arthroplasty in young patients: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2019, 14, 262. [Google Scholar] [CrossRef]
- Abdel, M.P.; Bonadurer, G.F.; Jennings, M.T.; Hanssen, A.D. Increased Aseptic Tibial Failures in Patients With a BMI ≥35 and Well-Aligned Total Knee Arthroplasties. J. Arthroplast. 2015, 30, 2181–2184. [Google Scholar] [CrossRef] [PubMed]
- Boyce, L.; Prasad, A.; Barrett, M.; Dawson-Bowling, S.; Millington, S.; Hanna, S.A.; Achan, P. The outcomes of total knee arthroplasty in morbidly obese patients: A systematic review of the literature. Arch. Orthop. Trauma. Surg. 2019, 139, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Spicer, D.D.; Pomeroy, D.L.; Badenhausen, W.E.; Schaper, L.A.; Curry, J.I.; Suthers, K.E.; Smith, M.W. Body mass index as a predictor of outcome in total knee replacement. Int. Orthop. 2001, 25, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoffs, G.M.; Servien, E.; Dunn, W.; Dahm, D.; Bramer, J.A.; Haverkamp, D. The influence of obesity on the complication rate and outcome of total knee arthroplasty: A meta-analysis and systematic literature review. J. Bone Jt. Surg. Am. 2012, 94, 1839–1844. [Google Scholar] [CrossRef]
- Gaillard, R.; Gaillard, T.; Denjean, S.; Lustig, S. No influence of obesity on survival of cementless, posterior-stabilised, rotating-platform implants. Arch. Orthop. Trauma. Surg. 2017, 137, 1743–1750. [Google Scholar] [CrossRef]
- Boyle, K.K.; Nodzo, S.R.; Ferraro, J.T.; Augenblick, D.J.; Pavlesen, S.; Phillips, M.J. Uncemented vs Cemented Cruciate Retaining Total Knee Arthroplasty in Patients With Body Mass Index Greater Than 30. J. Arthroplast. 2018, 33, 1082–1088. [Google Scholar] [CrossRef]
- Goh, G.S.; Fillingham, Y.A.; Sutton, R.M.; Small, I.; Courtney, P.M.; Hozack, W.J. Cemented Versus Cementless Total Knee Arthroplasty in Obese Patients With Body Mass Index ≥ 35 kg/m. J. Arthroplast. 2022, 37, 688–693. [Google Scholar] [CrossRef]
- Bagsby, D.T.; Issa, K.; Smith, L.S.; Elmallah, R.K.; Mast, L.E.; Harwin, S.F.; Mont, M.A.; Bhimani, S.J.; Malkani, A.L. Cemented vs Cementless Total Knee Arthroplasty in Morbidly Obese Patients. J. Arthroplast. 2016, 31, 1727–1731. [Google Scholar] [CrossRef]
- Sinicrope, B.J.; Feher, A.W.; Bhimani, S.J.; Smith, L.S.; Harwin, S.F.; Yakkanti, M.R.; Malkani, A.L. Increased Survivorship of Cementless versus Cemented TKA in the Morbidly Obese. A Minimum 5-Year Follow-Up. J. Arthroplast. 2019, 34, 309–314. [Google Scholar] [CrossRef]
- Ostrowska, M.; Maśliński, W.; Prochorec-Sobieszek, M.; Nieciecki, M.; Sudoł-Szopińska, I. Cartilage and bone damage in rheumatoid arthritis. Reumatologia 2018, 56, 111–120. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Vander Griend, R.A.; Wronski, T.J.; Miller, G.J.; Keith, E.E.; Graves, J.E. The short- and long-term effects of methotrexate on the rat skeleton. Bone 1995, 16, 215–221. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Whiteside, L.A. Results of cementless total knee arthroplasty in an older rheumatoid arthritis population. J. Arthroplast. 1991, 6, 357–362. [Google Scholar] [CrossRef]
- Patel, N.; Gwam, C.U.; Khlopas, A.; Sodhi, N.; Sultan, A.A.; Navarro, S.M.; Ramkumar, P.N.; Harwin, S.F.; Mont, M.A. Outcomes of Cementless Total Knee Arthroplasty in Patients With Rheumatoid Arthritis. Orthopedics 2018, 41, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Hotfiel, T.; Carl, H.D.; Eibenberger, T.; Gelse, K.; Weiß, J.; Jendrissek, A.; Swoboda, B. Cementless femoral components in bicondylar hybrid knee arthroplasty in patients with rheumatoid arthritis: A 10-year survivorship analysis. J. Orthop. Surg. 2017, 25, 2309499017716252. [Google Scholar] [CrossRef]
- Woo, Y.K.; Kim, K.W.; Chung, J.W.; Lee, H.S. Average 10.1-year follow-up of cementless total knee arthroplasty in patients with rheumatoid arthritis. Can. J. Surg. 2011, 54, 179–184. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lingard, E.A.; Mitchell, S.Y.; Francis, R.M.; Rawlings, D.; Peaston, R.; Birrell, F.N.; McCaskie, A.W. The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 2010, 39, 234–239. [Google Scholar] [CrossRef]
- Meneghini, R.M.; Daluga, A.; Soliman, M. Mechanical stability of cementless tibial components in normal and osteoporotic bone. J. Knee Surg. 2011, 24, 191–196. [Google Scholar] [CrossRef]
- Andersen, M.R.; Winther, N.S.; Lind, T.; Schrøder, H.M.; Flivik, G.; Petersen, M.M. Low Preoperative BMD Is Related to High Migration of Tibia Components in Uncemented TKA-92 Patients in a Combined DEXA and RSA Study With 2-Year Follow-Up. J. Arthroplast. 2017, 32, 2141–2146. [Google Scholar] [CrossRef]
- Petersen, M.M.; Nielsen, P.T.; Lebech, A.; Toksvig-Larsen, S.; Lund, B. Preoperative bone mineral density of the proximal tibia and migration of the tibial component after uncemented total knee arthroplasty. J. Arthroplast. 1999, 14, 77–81. [Google Scholar] [CrossRef]
- Linde, K.N.; Madsen, F.; Puhakka, K.B.; Langdahl, B.L.; Søballe, K.; Krog-Mikkelsen, I.; Stilling, M. Preoperative Systemic Bone Quality Does Not Affect Tibial Component Migration in Knee Arthroplasty: A 2-Year Radiostereometric Analysis of a Hundred Consecutive Patients. J. Arthroplast. 2019, 34, 2351–2359. [Google Scholar] [CrossRef]
- Sultan, A.A.; Khlopas, A.; Sodhi, N.; Denzine, M.L.; Ramkumar, P.N.; Harwin, S.F.; Mont, M.A. Cementless Total Knee Arthroplasty in Knee Osteonecrosis Demonstrated Excellent Survivorship and Outcomes at Three-Year Minimum Follow-Up. J. Arthroplast. 2018, 33, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Linde, K.N.; Rytter, S.; Søballe, K.; Madsen, F.; Langdahl, B.; Stilling, M. Component migration, bone mineral density changes, and bone turnover markers in cementless and cemented total knee arthroplasty: A prospective randomized RSA study in 53 patients with 2-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3100–3113. [Google Scholar] [CrossRef]
- Van Ooij, B.; Sierevelt, I.N.; van der Vis, H.M.; Hoornenborg, D.; Haverkamp, D. What is the role of cemented fixation in total knee arthroplasty? The two-year results of a randomized RSA controlled trial. Bone Jt. J. 2021, 103-B, 98–104. [Google Scholar] [CrossRef]
- Fricka, K.B.; McAsey, C.J.; Sritulanondha, S. To Cement or Not? Five-Year Results of a Prospective, Randomized Study Comparing Cemented vs Cementless Total Knee Arthroplasty. J. Arthroplast. 2019, 34, S183–S187. [Google Scholar] [CrossRef] [PubMed]
- Van Hamersveld, K.T.; Marang-van de Mheen, P.J.; Tsonaka, R.; Valstar, E.R.; Toksvig-Larsen, S. Fixation and clinical outcome of uncemented peri-apatite-coated. Bone Jt. J. 2017, 99-B, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Choy, W.S.; Yang, D.S.; Lee, K.W.; Lee, S.K.; Kim, K.J.; Chang, S.H. Cemented versus cementless fixation of a tibial component in LCS mobile-bearing total knee arthroplasty performed by a single surgeon. J. Arthroplast. 2014, 29, 2397–2401. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, J.W.; Lim, H.M.; Park, E.S. Cementless and cemented total knee arthroplasty in patients younger than fifty five years. Which is better? Int. Orthop. 2014, 38, 297–303. [Google Scholar] [CrossRef]
- Baker, P.N.; Khaw, F.M.; Kirk, L.M.; Esler, C.N.; Gregg, P.J. A randomised controlled trial of cemented versus cementless press-fit condylar total knee replacement: 15-year survival analysis. J. Bone Jt. Surg. Br. 2007, 89, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Beaupré, L.A.; al-Yamani, M.; Huckell, J.R.; Johnston, D.W. Hydroxyapatite-coated tibial implants compared with cemented tibial fixation in primary total knee arthroplasty. A randomized trial of outcomes at five years. J. Bone Jt. Surg. Am. 2007, 89, 2204–2211. [Google Scholar] [CrossRef]
- Fricka, K.B.; Sritulanondha, S.; McAsey, C.J. To Cement or Not? Two-Year Results of a Prospective, Randomized Study Comparing Cemented Vs. Cementless Total Knee Arthroplasty (TKA). J. Arthroplast. 2015, 30, 55–58. [Google Scholar] [CrossRef]
- Mercurio, M.; Gasparini, G.; Sanzo, V.; Familiari, F.; Castioni, D.; Galasso, O. Cemented Total Knee Arthroplasty Shows Less Blood Loss but a Higher Rate of Aseptic Loosening Compared With Cementless Fixation: An Updated Meta-Analysis of Comparative Studies. J. Arthroplast. 2022, 37, 1879–1887.e1874. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Y.; Wu, Y.; Li, M.; Xie, H.; Shen, B. A comprehensive comparison between cementless and cemented fixation in the total knee arthroplasty: An updated systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, R.M.; Hanssen, A.D. Cementless fixation in total knee arthroplasty: Past, present, and future. J. Knee Surg. 2008, 21, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Mont, M.A.; Pivec, R.; Issa, K.; Kapadia, B.H.; Maheshwari, A.; Harwin, S.F. Long-term implant survivorship of cementless total knee arthroplasty: A systematic review of the literature and meta-analysis. J. Knee Surg. 2014, 27, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Nugent, M.; Wyatt, M.C.; Frampton, C.M.; Hooper, G.J. Despite Improved Survivorship of Uncemented Fixation in Total Knee Arthroplasty for Osteoarthritis, Cemented Fixation Remains the Gold Standard: An Analysis of a National Joint Registry. J. Arthroplast. 2019, 34, 1626–1633. [Google Scholar] [CrossRef] [PubMed]
- Yayac, M.; Harrer, S.; Hozack, W.J.; Parvizi, J.; Courtney, P.M. The Use of Cementless Components Does Not Significantly Increase Procedural Costs in Total Knee Arthroplasty. J. Arthroplast. 2020, 35, 407–412. [Google Scholar] [CrossRef]
- Rassir, R.; Nolte, P.A.; van der Lugt, J.C.T.; Nelissen, R.G.H.H.; Sierevelt, I.N.; Verra, W.C. No differences in cost-effectiveness and short-term functional outcomes between cemented and uncemented total knee arthroplasty. BMC Musculoskelet. Disord. 2020, 21, 448. [Google Scholar] [CrossRef]
Study | Year | Mean Age Year (SD) | Gender (Male %) | Mean BMI kg/m2 (SD) | Final Number of TKA in Analysis | Implant | Follow-Up (Months) | Main Findings |
---|---|---|---|---|---|---|---|---|
Linde et al. [88] | 2022 | 65.8 (5.4) vs. 67.2 (5.9) | 50 vs. 50 | 28.3 (4.0) vs. 30.1 (5.7) | 25 vs. 26 | Vanguard vs. Regenerex (Zimmer Biomet) | 24 | -No significant difference in PROMs -Cementless had higher mean subsidence and greater variation at 1 year; had more radiolucent lines along the medial tibia at 6 months (p < 0.001) but decreased at 2 years (0.02) |
van Ooij et al. [89] | 2020 | 70.9 (6.6) vs. 64.6 (7.7) | 34 vs. 52 | 29.6 (3.6) vs. 29.2 (3.4) | 29 vs. 29 | Advanced Coated System (Implantcast GmbH) | 24 | -No significant difference in PROMs -No significant difference in MTPM between 12–24 months -No significant difference in MTPM of the femoral component at 6 months but significantly more motion of the tibial component in the cementless group -2 cementless TKA required early revision due to septic loosening |
Hasan et al. [39] | 2020 | 66 (6.3) vs. 65 (6.7) | 53 vs. 51 | 30 (3.1) vs. 28 (3.1) | 34 vs. 35 | Triathlon vs. 3D printed Tritanium (Stryker) | 24 | -No significant difference in PROMs -1 revision in cementless group due to tibial migration -Cementless TKA had higher MTPM, most substantial within the first 3 months |
Nam et al. [13] | 2019 | 63 (7.6) vs. 61.3 (7.0) | 48 vs. 52 | 31.3 (4.7) vs. 31.1 (5.2) | 65 vs. 76 | Triathlon (Stryker) | 24 | -No significant difference in PROMs -1 revision in cemented group due to infection -No radiographic evidence of subsidence or loosening in either group -Cementless lower operative time (82.1 ± 16.6 compared with 93.7 ± 16.7 min, p = 0.001) |
Fricka et al. [90] | 2019 | 58.4 vs. 59.8 | 30 vs. 37 | 31.9 vs. 31.4 | 44 vs. 41 | NexGen (Zimmer Biomet) | 60 | -No significant difference in PROMs and 95% both groups were satisfied -Equivalent survivorship (95.9% CI 90.3–100 and 95.3% CI 88.9–100, p = 0.98) w/2 revisions in the cemented group (infection, traumatic dislocation) and the cementless group (aseptic loosening, periprosthetic fracture) -At 5 years, no significant difference in radiolucency between groups |
Van Hamersveld et al. [91] | 2017 | 65.7 (6.3) vs. 66.8 (9.1) | 57 vs. 37 | 28.6 (3.6) vs. 28.0 (3.3) | 28 vs. 26 | Triathlon (Stryker)—peri-apatite coated cemetless | 60 | -1 cemented revision due to ligament instability -MTPM significantly greater in cementless group at 5 years but cemented group had greater MTPM between 3 months and 5 years |
Choy et al. [92] | 2014 | 69 (6.8) vs. 65 (5) | 8 vs. 8 | 29 (4) vs. 30 (6) | 86 vs. 82 | Low Contact Stress Rotating Platform (Depuy) | 97 | -No significant difference in PROMS, ROM, or radiographic measures -Radiolucent line noticed in 8% cemented and 13% cementless group -100% survival at minimum of 8 year follow-up |
Kim et al. [93] | 2014 | 54.3 vs. 54.3 (all less than 55 yo) | 21 vs. 21 | 27.8 vs. 27.8 | 80 vs. 80 (simultaneous bilateral knees, one cemented and one cementless) | NexGen (Zimmer Biomet) | 192 | -No significant difference in PROMS, ROM, or satisfaction -No osteolysis in either group -1 infection in each group -Significantly more blood loss in cementless group -Survivorship 100% cemented vs. 98.7% cementless |
Baker et al. [94] | 2007 | 70 vs. 71 | 45 vs. 42 | NA | 277 vs. 224 | Press-Fit Condylar (Johnson & Johnson) | 180 | -Survival ascertained at mean follow-up of 8.9 years and at 15 years, survival rate was 80.7% in cemented and 75.3% in cementless -Total of 54 (10.8%) required further surgery, 9.7% in the cemented group 12.1% in the cementless group -26 revisions were due to aseptic loosening (5 cemented, 8 cementless) |
Beaupré et al. [95] | 2007 | 63.9 (5.8) vs. 62.9 (6.4) | 37 vs. 39 | NA | 37 vs. 33 | Scorpio Tibia component (Stryker) | 60 | -No significant difference in PROMS, ROM, or radiographic measures -1 cemented and 2 cementless required manipulation under anesthesia for loss of flexion -No patient required revision surgery for tibia component in either group |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwabe, M.T.; Hannon, C.P. The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty. J. Clin. Med. 2022, 11, 6608. https://doi.org/10.3390/jcm11226608
Schwabe MT, Hannon CP. The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty. Journal of Clinical Medicine. 2022; 11(22):6608. https://doi.org/10.3390/jcm11226608
Chicago/Turabian StyleSchwabe, Maria T., and Charles P. Hannon. 2022. "The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty" Journal of Clinical Medicine 11, no. 22: 6608. https://doi.org/10.3390/jcm11226608
APA StyleSchwabe, M. T., & Hannon, C. P. (2022). The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty. Journal of Clinical Medicine, 11(22), 6608. https://doi.org/10.3390/jcm11226608