The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty
Abstract
:1. Introduction
2. Evolution of Cementless TKA
2.1. Implant Material
2.2. Implant Design
3. Indication Considerations
3.1. Young Age
3.2. Obesity
3.3. Rheumatoid Arthritis
3.4. Osteoporosis
4. Outcomes
4.1. Clinical & Radiographic Outcomes
4.2. Complications & Survivability
4.3. Cost
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunston, F.H. Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement: Interim report. Clin. Orthop. Relat. Res. 1973, 128–135. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehring, T.K.; Odum, S.M.; Griffin, W.L.; Mason, J.B.; McCoy, T.H. The obesity epidemic: Its effect on total joint arthroplasty. J Arthroplast. 2007, 22, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Chiu, F.Y.; Chen, C.M.; Lin, C.F.; Lo, W.H. Cefuroxime-impregnated cement in primary total knee arthroplasty: A prospective, randomized study of three hundred and forty knees. J. Bone Joint Surg. Am. 2002, 84, 759–762. [Google Scholar] [CrossRef]
- Bourne, R.B. Prophylactic use of antibiotic bone cement: An emerging standard--in the affirmative. J. Arthroplast. 2004, 19, 69–72. [Google Scholar] [CrossRef]
- Font-Rodriguez, D.E.; Scuderi, G.R.; Insall, J.N. Survivorship of cemented total knee arthroplasty. Clin. Orthop. Relat. Res. 1997, 345, 79–86. [Google Scholar] [CrossRef]
- Ritter, M.A. Screw and cement fixation of large defects in total knee arthroplasty. J. Arthroplast. 1986, 1, 125–129. [Google Scholar] [CrossRef]
- Kutzner, I.; Hallan, G.; Høl, P.J.; Furnes, O.; Gøthesen, Ø.; Figved, W.; Ellison, P. Early aseptic loosening of a mobile-bearing total knee replacement. Acta Orthop. 2018, 89, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Arsoy, D.; Pagnano, M.W.; Lewallen, D.G.; Hanssen, A.D.; Sierra, R.J. Aseptic tibial debonding as a cause of early failure in a modern total knee arthroplasty design. Clin. Orthop. Relat. Res. 2013, 471, 94–101. [Google Scholar] [CrossRef]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why are total knee arthroplasties failing today--has anything changed after 10 years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- American Joint Replacement Registry (AJRR). Annual Report. 2020. Available online: https://www.aaos.org/globalassets/registries/2020-aaos-ajrr-annual-report-preview_final.pdf (accessed on 5 September 2022).
- Nam, D.; Lawrie, C.M.; Salih, R.; Nahhas, C.R.; Barrack, R.L.; Nunley, R.M. Cemented Versus Cementless Total Knee Arthroplasty of the Same Modern Design: A Prospective, Randomized Trial. J. Bone Jt. Surg. Am. 2019, 101, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.M.; Schwabe, M.; Pierce, A.; Nunley, R.M.; Barrack, R.L. The cost of implanting a cemented versus cementless total knee arthroplasty. Bone Jt. J. 2019, 101-B, 61–63. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakata, S.; Kondoh, Y. A follow-up study of an uncemented knee replacement. The results of 312 knees using the Kodama-Yamamoto prosthesis. J. Bone Jt. Surg. Br. 1989, 71, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Shimagaki, H.; Bechtold, J.E.; Sherman, R.E.; Gustilo, R.B. Stability of initial fixation of the tibial component in cementless total knee arthroplasty. J. Orthop. Res. 1990, 8, 64–71. [Google Scholar] [CrossRef]
- Peters, P.C.; Engh, G.A.; Dwyer, K.A.; Vinh, T.N. Osteolysis after total knee arthroplasty without cement. J. Bone Jt. Surg. Am. 1992, 74, 864–876. [Google Scholar] [CrossRef]
- Berger, R.A.; Lyon, J.H.; Jacobs, J.J.; Barden, R.M.; Berkson, E.M.; Sheinkop, M.B.; Rosenberg, A.G.; Galante, J.O. Problems with cementless total knee arthroplasty at 11 years followup. Clin. Orthop. Relat. Res. 2001, 392, 196–207. [Google Scholar] [CrossRef]
- Whiteside, L.A. Effect of porous-coating configuration on tibial osteolysis after total knee arthroplasty. Clin. Orthop. Relat. Res. 1995, 321, 92–97. [Google Scholar] [CrossRef]
- Furlong, R.J.; Osborn, J.F. Fixation of hip prostheses by hydroxyapatite ceramic coatings. J. Bone Jt. Surg. Br. 1991, 73, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Søballe, K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop. Scand. Suppl. 1993, 255, 1–58. [Google Scholar] [CrossRef]
- Toksvig-Larsen, S.; Jorn, L.P.; Ryd, L.; Lindstrand, A. Hydroxyapatite-enhanced tibial prosthetic fixation. Clin. Orthop. Relat. Res. 2000, 370, 192–200. [Google Scholar] [CrossRef]
- Dumbleton, J.; Manley, M.T. Hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J. Bone Jt. Surg. Am. 2004, 86, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.; Björkman, A.; Besjakov, J.; Onsten, I. Cemented tibial component fixation performs better than cementless fixation: A randomized radiostereometric study comparing porous-coated, hydroxyapatite-coated and cemented tibial components over 5 years. Acta Orthop. 2005, 76, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, L.; Abdel, M.P.; Lewallen, D.G.; Stuart, M.J.; Sanchez-Sotelo, J.; Hanssen, A.D.; Pagnano, M.W. The Mark Coventry Award: Trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: A randomized clinical trial. Clin. Orthop. Relat. Res. 2015, 473, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneghini, R.M.; de Beaubien, B.C. Early failure of cementless porous tantalum monoblock tibial components. J. Arthroplast. 2013, 28, 1505–1508. [Google Scholar] [CrossRef]
- Unger, A.S.; Duggan, J.P. Midterm results of a porous tantalum monoblock tibia component clinical and radiographic results of 108 knees. J. Arthroplast. 2011, 26, 855–860. [Google Scholar] [CrossRef]
- Waddell, D.D.; Sedacki, K.; Yang, Y.; Fitch, D.A. Early radiographic and functional outcomes of a cancellous titanium-coated tibial component for total knee arthroplasty. Musculoskelet. Surg. 2016, 100, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Ritter, M.A.; Meneghini, R.M. Twenty-year survivorship of cementless anatomic graduated component total knee arthroplasty. J. Arthroplast. 2010, 25, 507–513. [Google Scholar] [CrossRef]
- Eriksen, J.; Christensen, J.; Solgaard, S.; Schrøder, H. The cementless AGC 2000 knee prosthesis: 20-year results in a consecutive series. Acta Orthop. Belg. 2009, 75, 225–233. [Google Scholar]
- Winther, N.S.; Jensen, C.L.; Jensen, C.M.; Lind, T.; Schrøder, H.M.; Flivik, G.; Petersen, M.M. Comparison of a novel porous titanium construct (Regenerex®) to a well proven porous coated tibial surface in cementless total knee arthroplasty—A prospective randomized RSA study with two-year follow-up. Knee 2016, 23, 1002–1011. [Google Scholar] [CrossRef]
- Dyreborg, K.; Winther, N.; Lind, T.; Flivik, G.; Mørk Petersen, M. Evaluation of different coatings of the tibial tray in uncemented total knee arthroplasty. A randomized controlled trial with 5 years follow-up with RSA and DEXA. Knee 2021, 29, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Ryu, M.; Woo, S.H.; Song, I.S.; Choi, Y.J.; Lee, U.L. Bone Conduction Capacity of Highly Porous 3D-Printed Titanium Scaffolds Based on Different Pore Designs. Materials 2021, 14, 3892. [Google Scholar] [CrossRef]
- Murr, L.E.; Amato, K.N.; Li, S.J.; Tian, Y.X.; Cheng, X.Y.; Gaytan, S.M.; Martinez, E.; Shindo, P.W.; Medina, F.; Wicker, R.B. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed Mater. 2011, 4, 1396–1411. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E.; Gaytan, S.M.; Martinez, E.; Medina, F.; Wicker, R.B. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012, 2012, 245727. [Google Scholar] [CrossRef] [PubMed]
- Laende, E.K.; Richardson, C.G.; Dunbar, M.J. Predictive value of short-term migration in determining long-term stable fixation in cemented and cementless total knee arthroplasties. Bone Jt. J. 2019, 101-B, 55–60. [Google Scholar] [CrossRef]
- Sporer, S.; MacLean, L.; Burger, A.; Moric, M. Evaluation of a 3D-printed total knee arthroplasty using radiostereometric analysis: Assessment of highly porous biological fixation of the tibial baseplate and metal-backed patellar component. Bone Jt. J. 2019, 101-B, 40–47. [Google Scholar] [CrossRef]
- Hasan, S.; van Hamersveld, K.T.; Marang-van de Mheen, P.J.; Kaptein, B.L.; Nelissen, R.G.H.H.; Toksvig-Larsen, S. Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: Two-year results of a randomized controlled trial using radiostereometric analysis. Bone Jt. J. 2020, 102-B, 1016–1024. [Google Scholar] [CrossRef]
- Restrepo, S.; Smith, E.B.; Hozack, W.J. Excellent mid-term follow-up for a new 3D-printed cementless total knee arthroplasty. Bone Jt. J. 2021, 103-B, 32–37. [Google Scholar] [CrossRef]
- Bhimji, S.; Meneghini, R.M. Micromotion of cementless tibial baseplates under physiological loading conditions. J. Arthroplast. 2012, 27, 648–654. [Google Scholar] [CrossRef]
- Regnér, L.; Carlsson, L.; Kärrholm, J.; Herberts, P. Clinical and radiologic survivorship of cementless tibial components fixed with finned polyethylene pegs. J. Arthroplast. 1997, 12, 751–758. [Google Scholar] [CrossRef]
- Chockalingam, S.; Scott, G. The outcome of cemented vs. cementless fixation of a femoral component in total knee replacement (TKR) with the identification of radiological signs for the prediction of failure. Knee 2000, 7, 233–238. [Google Scholar] [CrossRef]
- Huang, C.H.; Yang, C.Y.; Cheng, C.K. Fracture of the femoral component associated with polyethylene wear and osteolysis after total knee arthroplasty. J. Arthroplast. 1999, 14, 375–379. [Google Scholar] [CrossRef]
- Rand, J.A. Supracondylar fracture of the femur associated with polyethylene wear after total knee arthroplasty. A case report. J. Bone Jt. Surg. Am. 1994, 76, 1389–1393. [Google Scholar] [CrossRef]
- Lewis, P.L.; Rorabeck, C.H.; Bourne, R.B. Screw osteolysis after cementless total knee replacement. Clin. Orthop. Relat. Res. 1995, 321, 173–177. [Google Scholar] [CrossRef]
- Hofmann, A.A. The design principles of the Natural-Knee system. Am. J. Orthop. 2010, 39, 2–4. [Google Scholar] [PubMed]
- Rand, J.A. Cement or cementless fixation in total knee arthroplasty? Clin. Orthop. Relat. Res. 1991, 273, 52–62. [Google Scholar] [CrossRef]
- Duffy, G.P.; Berry, D.J.; Rand, J.A. Cement versus cementless fixation in total knee arthroplasty. Clin. Orthop. Relat. Res. 1998, 356, 66–72. [Google Scholar] [CrossRef]
- Carlson, B.J.; Gerry, A.S.; Hassebrock, J.D.; Christopher, Z.K.; Spangehl, M.J.; Bingham, J.S. Clinical outcomes and survivorship of cementless triathlon total knee arthroplasties: A systematic review. Arthroplasty 2022, 4, 25. [Google Scholar] [CrossRef]
- Ali, M.S.; Mangaleshkar, S.R. Uncemented rotating-platform total knee arthroplasty: A 4-year to 12-year follow-up. J. Arthroplast. 2006, 21, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Netravali, N.A.; Shen, F.; Park, Y.; Bargar, W.L. A perspective on robotic assistance for knee arthroplasty. Adv. Orthop. 2013, 2013, 970703. [Google Scholar] [CrossRef] [PubMed]
- Healy, W.L.; Wasilewski, S.A.; Takei, R.; Oberlander, M. Patellofemoral complications following total knee arthroplasty. Correlation with implant design and patient risk factors. J. Arthroplast. 1995, 10, 197–201. [Google Scholar] [CrossRef]
- Barrack, R.L.; Wolfe, M.W. Patellar resurfacing in total knee arthroplasty. J. Am. Acad. Orthop. Surg. 2000, 8, 75–82. [Google Scholar] [CrossRef]
- Brick, G.W.; Scott, R.D. The patellofemoral component of total knee arthroplasty. Clin. Orthop. Relat. Res. 1988, 231, 163–178. [Google Scholar] [CrossRef]
- Castro, F.P.; Chimento, G.; Munn, B.G.; Levy, R.S.; Timon, S.; Barrack, R.L. An analysis of Food and Drug Administration medical device reports relating to total joint components. J. Arthroplast. 1997, 12, 765–771. [Google Scholar] [CrossRef]
- Dennis, D.A. Removal of well-fixed cementless metal-backed patellar components. J. Arthroplast. 1992, 7, 217–220. [Google Scholar] [CrossRef]
- Kraay, M.J.; Darr, O.J.; Salata, M.J.; Goldberg, V.M. Outcome of metal-backed cementless patellar components: The effect of implant design. Clin. Orthop. Relat. Res. 2001, 392, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Buechel, F.F. Long-term followup after mobile-bearing total knee replacement. Clin. Orthop. Relat. Res. 2002, 404, 40–50. [Google Scholar] [CrossRef]
- Grau, L.C.; Ong, A.C.; Restrepo, S.; Griffiths, S.Z.; Hozack, W.J.; Smith, E.B. Survivorship, Clinical and Radiographic Outcomes of a Novel Cementless Metal-Backed Patella Design. J. Arthroplast. 2021, 36, S221–S226. [Google Scholar] [CrossRef] [PubMed]
- Julin, J.; Jämsen, E.; Puolakka, T.; Konttinen, Y.T.; Moilanen, T. Younger age increases the risk of early prosthesis failure following primary total knee replacement for osteoarthritis. A follow-up study of 32,019 total knee replacements in the Finnish Arthroplasty Register. Acta Orthop. 2010, 81, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, L.A.; Viganò, R. Young and heavy patients with a cementless TKA do as well as older and lightweight patients. Clin. Orthop. Relat. Res. 2007, 464, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Diduch, D.R.; Insall, J.N.; Scott, W.N.; Scuderi, G.R.; Font-Rodriguez, D. Total knee replacement in young, active patients. Long-term follow-up and functional outcome. J. Bone Jt. Surg. Am. 1997, 79, 575–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, A.A.; Heithoff, S.M.; Camargo, M. Cementless total knee arthroplasty in patients 50 years or younger. Clin. Orthop. Relat. Res. 2002, 404, 102–107. [Google Scholar] [CrossRef]
- Mont, M.A.; Gwam, C.; Newman, J.M.; Chughtai, M.; Khlopas, A.; Ramkumar, P.N.; Harwin, S.F. Outcomes of a newer-generation cementless total knee arthroplasty design in patients less than 50 years of age. Ann. Transl. Med. 2017, 5, S24. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, R. Cementless versus cemented total knee arthroplasty in young patients: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2019, 14, 262. [Google Scholar] [CrossRef] [Green Version]
- Abdel, M.P.; Bonadurer, G.F.; Jennings, M.T.; Hanssen, A.D. Increased Aseptic Tibial Failures in Patients With a BMI ≥35 and Well-Aligned Total Knee Arthroplasties. J. Arthroplast. 2015, 30, 2181–2184. [Google Scholar] [CrossRef] [PubMed]
- Boyce, L.; Prasad, A.; Barrett, M.; Dawson-Bowling, S.; Millington, S.; Hanna, S.A.; Achan, P. The outcomes of total knee arthroplasty in morbidly obese patients: A systematic review of the literature. Arch. Orthop. Trauma. Surg. 2019, 139, 553–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spicer, D.D.; Pomeroy, D.L.; Badenhausen, W.E.; Schaper, L.A.; Curry, J.I.; Suthers, K.E.; Smith, M.W. Body mass index as a predictor of outcome in total knee replacement. Int. Orthop. 2001, 25, 246–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerkhoffs, G.M.; Servien, E.; Dunn, W.; Dahm, D.; Bramer, J.A.; Haverkamp, D. The influence of obesity on the complication rate and outcome of total knee arthroplasty: A meta-analysis and systematic literature review. J. Bone Jt. Surg. Am. 2012, 94, 1839–1844. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, R.; Gaillard, T.; Denjean, S.; Lustig, S. No influence of obesity on survival of cementless, posterior-stabilised, rotating-platform implants. Arch. Orthop. Trauma. Surg. 2017, 137, 1743–1750. [Google Scholar] [CrossRef]
- Boyle, K.K.; Nodzo, S.R.; Ferraro, J.T.; Augenblick, D.J.; Pavlesen, S.; Phillips, M.J. Uncemented vs Cemented Cruciate Retaining Total Knee Arthroplasty in Patients With Body Mass Index Greater Than 30. J. Arthroplast. 2018, 33, 1082–1088. [Google Scholar] [CrossRef]
- Goh, G.S.; Fillingham, Y.A.; Sutton, R.M.; Small, I.; Courtney, P.M.; Hozack, W.J. Cemented Versus Cementless Total Knee Arthroplasty in Obese Patients With Body Mass Index ≥ 35 kg/m. J. Arthroplast. 2022, 37, 688–693. [Google Scholar] [CrossRef]
- Bagsby, D.T.; Issa, K.; Smith, L.S.; Elmallah, R.K.; Mast, L.E.; Harwin, S.F.; Mont, M.A.; Bhimani, S.J.; Malkani, A.L. Cemented vs Cementless Total Knee Arthroplasty in Morbidly Obese Patients. J. Arthroplast. 2016, 31, 1727–1731. [Google Scholar] [CrossRef]
- Sinicrope, B.J.; Feher, A.W.; Bhimani, S.J.; Smith, L.S.; Harwin, S.F.; Yakkanti, M.R.; Malkani, A.L. Increased Survivorship of Cementless versus Cemented TKA in the Morbidly Obese. A Minimum 5-Year Follow-Up. J. Arthroplast. 2019, 34, 309–314. [Google Scholar] [CrossRef]
- Ostrowska, M.; Maśliński, W.; Prochorec-Sobieszek, M.; Nieciecki, M.; Sudoł-Szopińska, I. Cartilage and bone damage in rheumatoid arthritis. Reumatologia 2018, 56, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.L.; Vander Griend, R.A.; Wronski, T.J.; Miller, G.J.; Keith, E.E.; Graves, J.E. The short- and long-term effects of methotrexate on the rat skeleton. Bone 1995, 16, 215–221. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Whiteside, L.A. Results of cementless total knee arthroplasty in an older rheumatoid arthritis population. J. Arthroplast. 1991, 6, 357–362. [Google Scholar] [CrossRef]
- Patel, N.; Gwam, C.U.; Khlopas, A.; Sodhi, N.; Sultan, A.A.; Navarro, S.M.; Ramkumar, P.N.; Harwin, S.F.; Mont, M.A. Outcomes of Cementless Total Knee Arthroplasty in Patients With Rheumatoid Arthritis. Orthopedics 2018, 41, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Hotfiel, T.; Carl, H.D.; Eibenberger, T.; Gelse, K.; Weiß, J.; Jendrissek, A.; Swoboda, B. Cementless femoral components in bicondylar hybrid knee arthroplasty in patients with rheumatoid arthritis: A 10-year survivorship analysis. J. Orthop. Surg. 2017, 25, 2309499017716252. [Google Scholar] [CrossRef]
- Woo, Y.K.; Kim, K.W.; Chung, J.W.; Lee, H.S. Average 10.1-year follow-up of cementless total knee arthroplasty in patients with rheumatoid arthritis. Can. J. Surg. 2011, 54, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingard, E.A.; Mitchell, S.Y.; Francis, R.M.; Rawlings, D.; Peaston, R.; Birrell, F.N.; McCaskie, A.W. The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 2010, 39, 234–239. [Google Scholar] [CrossRef]
- Meneghini, R.M.; Daluga, A.; Soliman, M. Mechanical stability of cementless tibial components in normal and osteoporotic bone. J. Knee Surg. 2011, 24, 191–196. [Google Scholar] [CrossRef]
- Andersen, M.R.; Winther, N.S.; Lind, T.; Schrøder, H.M.; Flivik, G.; Petersen, M.M. Low Preoperative BMD Is Related to High Migration of Tibia Components in Uncemented TKA-92 Patients in a Combined DEXA and RSA Study With 2-Year Follow-Up. J. Arthroplast. 2017, 32, 2141–2146. [Google Scholar] [CrossRef]
- Petersen, M.M.; Nielsen, P.T.; Lebech, A.; Toksvig-Larsen, S.; Lund, B. Preoperative bone mineral density of the proximal tibia and migration of the tibial component after uncemented total knee arthroplasty. J. Arthroplast. 1999, 14, 77–81. [Google Scholar] [CrossRef]
- Linde, K.N.; Madsen, F.; Puhakka, K.B.; Langdahl, B.L.; Søballe, K.; Krog-Mikkelsen, I.; Stilling, M. Preoperative Systemic Bone Quality Does Not Affect Tibial Component Migration in Knee Arthroplasty: A 2-Year Radiostereometric Analysis of a Hundred Consecutive Patients. J. Arthroplast. 2019, 34, 2351–2359. [Google Scholar] [CrossRef]
- Sultan, A.A.; Khlopas, A.; Sodhi, N.; Denzine, M.L.; Ramkumar, P.N.; Harwin, S.F.; Mont, M.A. Cementless Total Knee Arthroplasty in Knee Osteonecrosis Demonstrated Excellent Survivorship and Outcomes at Three-Year Minimum Follow-Up. J. Arthroplast. 2018, 33, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Linde, K.N.; Rytter, S.; Søballe, K.; Madsen, F.; Langdahl, B.; Stilling, M. Component migration, bone mineral density changes, and bone turnover markers in cementless and cemented total knee arthroplasty: A prospective randomized RSA study in 53 patients with 2-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3100–3113. [Google Scholar] [CrossRef]
- Van Ooij, B.; Sierevelt, I.N.; van der Vis, H.M.; Hoornenborg, D.; Haverkamp, D. What is the role of cemented fixation in total knee arthroplasty? The two-year results of a randomized RSA controlled trial. Bone Jt. J. 2021, 103-B, 98–104. [Google Scholar] [CrossRef]
- Fricka, K.B.; McAsey, C.J.; Sritulanondha, S. To Cement or Not? Five-Year Results of a Prospective, Randomized Study Comparing Cemented vs Cementless Total Knee Arthroplasty. J. Arthroplast. 2019, 34, S183–S187. [Google Scholar] [CrossRef] [PubMed]
- Van Hamersveld, K.T.; Marang-van de Mheen, P.J.; Tsonaka, R.; Valstar, E.R.; Toksvig-Larsen, S. Fixation and clinical outcome of uncemented peri-apatite-coated. Bone Jt. J. 2017, 99-B, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Choy, W.S.; Yang, D.S.; Lee, K.W.; Lee, S.K.; Kim, K.J.; Chang, S.H. Cemented versus cementless fixation of a tibial component in LCS mobile-bearing total knee arthroplasty performed by a single surgeon. J. Arthroplast. 2014, 29, 2397–2401. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, J.W.; Lim, H.M.; Park, E.S. Cementless and cemented total knee arthroplasty in patients younger than fifty five years. Which is better? Int. Orthop. 2014, 38, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Baker, P.N.; Khaw, F.M.; Kirk, L.M.; Esler, C.N.; Gregg, P.J. A randomised controlled trial of cemented versus cementless press-fit condylar total knee replacement: 15-year survival analysis. J. Bone Jt. Surg. Br. 2007, 89, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Beaupré, L.A.; al-Yamani, M.; Huckell, J.R.; Johnston, D.W. Hydroxyapatite-coated tibial implants compared with cemented tibial fixation in primary total knee arthroplasty. A randomized trial of outcomes at five years. J. Bone Jt. Surg. Am. 2007, 89, 2204–2211. [Google Scholar] [CrossRef]
- Fricka, K.B.; Sritulanondha, S.; McAsey, C.J. To Cement or Not? Two-Year Results of a Prospective, Randomized Study Comparing Cemented Vs. Cementless Total Knee Arthroplasty (TKA). J. Arthroplast. 2015, 30, 55–58. [Google Scholar] [CrossRef]
- Mercurio, M.; Gasparini, G.; Sanzo, V.; Familiari, F.; Castioni, D.; Galasso, O. Cemented Total Knee Arthroplasty Shows Less Blood Loss but a Higher Rate of Aseptic Loosening Compared With Cementless Fixation: An Updated Meta-Analysis of Comparative Studies. J. Arthroplast. 2022, 37, 1879–1887.e1874. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Y.; Wu, Y.; Li, M.; Xie, H.; Shen, B. A comprehensive comparison between cementless and cemented fixation in the total knee arthroplasty: An updated systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, R.M.; Hanssen, A.D. Cementless fixation in total knee arthroplasty: Past, present, and future. J. Knee Surg. 2008, 21, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Mont, M.A.; Pivec, R.; Issa, K.; Kapadia, B.H.; Maheshwari, A.; Harwin, S.F. Long-term implant survivorship of cementless total knee arthroplasty: A systematic review of the literature and meta-analysis. J. Knee Surg. 2014, 27, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Nugent, M.; Wyatt, M.C.; Frampton, C.M.; Hooper, G.J. Despite Improved Survivorship of Uncemented Fixation in Total Knee Arthroplasty for Osteoarthritis, Cemented Fixation Remains the Gold Standard: An Analysis of a National Joint Registry. J. Arthroplast. 2019, 34, 1626–1633. [Google Scholar] [CrossRef] [PubMed]
- Yayac, M.; Harrer, S.; Hozack, W.J.; Parvizi, J.; Courtney, P.M. The Use of Cementless Components Does Not Significantly Increase Procedural Costs in Total Knee Arthroplasty. J. Arthroplast. 2020, 35, 407–412. [Google Scholar] [CrossRef]
- Rassir, R.; Nolte, P.A.; van der Lugt, J.C.T.; Nelissen, R.G.H.H.; Sierevelt, I.N.; Verra, W.C. No differences in cost-effectiveness and short-term functional outcomes between cemented and uncemented total knee arthroplasty. BMC Musculoskelet. Disord. 2020, 21, 448. [Google Scholar] [CrossRef]
Study | Year | Mean Age Year (SD) | Gender (Male %) | Mean BMI kg/m2 (SD) | Final Number of TKA in Analysis | Implant | Follow-Up (Months) | Main Findings |
---|---|---|---|---|---|---|---|---|
Linde et al. [88] | 2022 | 65.8 (5.4) vs. 67.2 (5.9) | 50 vs. 50 | 28.3 (4.0) vs. 30.1 (5.7) | 25 vs. 26 | Vanguard vs. Regenerex (Zimmer Biomet) | 24 | -No significant difference in PROMs -Cementless had higher mean subsidence and greater variation at 1 year; had more radiolucent lines along the medial tibia at 6 months (p < 0.001) but decreased at 2 years (0.02) |
van Ooij et al. [89] | 2020 | 70.9 (6.6) vs. 64.6 (7.7) | 34 vs. 52 | 29.6 (3.6) vs. 29.2 (3.4) | 29 vs. 29 | Advanced Coated System (Implantcast GmbH) | 24 | -No significant difference in PROMs -No significant difference in MTPM between 12–24 months -No significant difference in MTPM of the femoral component at 6 months but significantly more motion of the tibial component in the cementless group -2 cementless TKA required early revision due to septic loosening |
Hasan et al. [39] | 2020 | 66 (6.3) vs. 65 (6.7) | 53 vs. 51 | 30 (3.1) vs. 28 (3.1) | 34 vs. 35 | Triathlon vs. 3D printed Tritanium (Stryker) | 24 | -No significant difference in PROMs -1 revision in cementless group due to tibial migration -Cementless TKA had higher MTPM, most substantial within the first 3 months |
Nam et al. [13] | 2019 | 63 (7.6) vs. 61.3 (7.0) | 48 vs. 52 | 31.3 (4.7) vs. 31.1 (5.2) | 65 vs. 76 | Triathlon (Stryker) | 24 | -No significant difference in PROMs -1 revision in cemented group due to infection -No radiographic evidence of subsidence or loosening in either group -Cementless lower operative time (82.1 ± 16.6 compared with 93.7 ± 16.7 min, p = 0.001) |
Fricka et al. [90] | 2019 | 58.4 vs. 59.8 | 30 vs. 37 | 31.9 vs. 31.4 | 44 vs. 41 | NexGen (Zimmer Biomet) | 60 | -No significant difference in PROMs and 95% both groups were satisfied -Equivalent survivorship (95.9% CI 90.3–100 and 95.3% CI 88.9–100, p = 0.98) w/2 revisions in the cemented group (infection, traumatic dislocation) and the cementless group (aseptic loosening, periprosthetic fracture) -At 5 years, no significant difference in radiolucency between groups |
Van Hamersveld et al. [91] | 2017 | 65.7 (6.3) vs. 66.8 (9.1) | 57 vs. 37 | 28.6 (3.6) vs. 28.0 (3.3) | 28 vs. 26 | Triathlon (Stryker)—peri-apatite coated cemetless | 60 | -1 cemented revision due to ligament instability -MTPM significantly greater in cementless group at 5 years but cemented group had greater MTPM between 3 months and 5 years |
Choy et al. [92] | 2014 | 69 (6.8) vs. 65 (5) | 8 vs. 8 | 29 (4) vs. 30 (6) | 86 vs. 82 | Low Contact Stress Rotating Platform (Depuy) | 97 | -No significant difference in PROMS, ROM, or radiographic measures -Radiolucent line noticed in 8% cemented and 13% cementless group -100% survival at minimum of 8 year follow-up |
Kim et al. [93] | 2014 | 54.3 vs. 54.3 (all less than 55 yo) | 21 vs. 21 | 27.8 vs. 27.8 | 80 vs. 80 (simultaneous bilateral knees, one cemented and one cementless) | NexGen (Zimmer Biomet) | 192 | -No significant difference in PROMS, ROM, or satisfaction -No osteolysis in either group -1 infection in each group -Significantly more blood loss in cementless group -Survivorship 100% cemented vs. 98.7% cementless |
Baker et al. [94] | 2007 | 70 vs. 71 | 45 vs. 42 | NA | 277 vs. 224 | Press-Fit Condylar (Johnson & Johnson) | 180 | -Survival ascertained at mean follow-up of 8.9 years and at 15 years, survival rate was 80.7% in cemented and 75.3% in cementless -Total of 54 (10.8%) required further surgery, 9.7% in the cemented group 12.1% in the cementless group -26 revisions were due to aseptic loosening (5 cemented, 8 cementless) |
Beaupré et al. [95] | 2007 | 63.9 (5.8) vs. 62.9 (6.4) | 37 vs. 39 | NA | 37 vs. 33 | Scorpio Tibia component (Stryker) | 60 | -No significant difference in PROMS, ROM, or radiographic measures -1 cemented and 2 cementless required manipulation under anesthesia for loss of flexion -No patient required revision surgery for tibia component in either group |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwabe, M.T.; Hannon, C.P. The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty. J. Clin. Med. 2022, 11, 6608. https://doi.org/10.3390/jcm11226608
Schwabe MT, Hannon CP. The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty. Journal of Clinical Medicine. 2022; 11(22):6608. https://doi.org/10.3390/jcm11226608
Chicago/Turabian StyleSchwabe, Maria T., and Charles P. Hannon. 2022. "The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty" Journal of Clinical Medicine 11, no. 22: 6608. https://doi.org/10.3390/jcm11226608
APA StyleSchwabe, M. T., & Hannon, C. P. (2022). The Evolution, Current Indications and Outcomes of Cementless Total Knee Arthroplasty. Journal of Clinical Medicine, 11(22), 6608. https://doi.org/10.3390/jcm11226608