Changes in Stress-Strain Index and Corneal Biomechanics in Granular Corneal Dystrophy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourges, J.-L. Corneal dystrophies. J. Fr. D’ophtalmol. 2017, 40, e177–e192. [Google Scholar] [CrossRef] [PubMed]
- Poulaki, V.; Colby, K. (Eds.) Genetics of Anterior and Stromal Corneal Dystrophies, Seminars in Ophthalmology; Taylor & Francis: Abingdon, UK, 2008. [Google Scholar]
- Santos, L.N.; Fernandes, B.F.; de Moura, L.R.; Cheema, D.P.; Maloney, S.; Logan, P.; Burnier, M.N., Jr. Histopathologic study of corneal stromal dystrophies: A 10-year experience. Cornea 2007, 26, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.K.; Naumann, G. The frequency of corneal dystrophies requiring keratoplasty in Europe and the USA. Cornea 1987, 6, 209–211. [Google Scholar] [CrossRef]
- Musch, D.C.; Niziol, L.M.; Stein, J.D.; Kamyar, R.M.; Sugar, A. Prevalence of corneal dystrophies in the United States: Estimates from claims data. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6959–6963. [Google Scholar] [CrossRef] [PubMed]
- Feizi, S.; Pakravan, M.; Baradaran-Rafiee, A.-R.; Yazdani, S. Granular corneal dystrophy manifesting after radial keratotomy. Cornea 2007, 26, 1267–1269. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Gaster, R.N.; Pratt, M.V. Unusual superficial confluent form of granular corneal dystrophy. Ophthalmology 1983, 90, 1507–1511. [Google Scholar] [CrossRef]
- Haddad, R.; Font, R.L.; Fine, B. Unusual superficial variant of granular dystrophy of the cornea. Am. J. Ophthalmol. 1977, 83, 213–218. [Google Scholar] [CrossRef]
- Kamiya, K.; Shimizu, K.; Ohmoto, F. The changes in corneal biomechanical parameters after phototherapeutic keratectomy in eyes with granular corneal dystrophy. Eye 2009, 23, 1790–1795. [Google Scholar] [CrossRef][Green Version]
- del Buey, M.A.; Cristóbal, J.A.; Ascaso, F.J.; Lavilla, L.; Lanchares, E. Biomechanical properties of the cornea in Fuchs’ corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3199–3202. [Google Scholar] [CrossRef]
- Feizi, S.; Karjou, Z.; Abbasi, H.; Javadi, M.A.; Azari, A.A. Characterization of in vivo biomechanical properties in macular corneal dystrophy. Am. J. Ophthalmol. 2020, 215, 8–13. [Google Scholar] [CrossRef]
- Piñero, D.P.; Alcón, N. In vivo characterization of corneal biomechanics. J. Cataract Refract. Surg. 2014, 40, 870–887. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J. Concepts and misconceptions in corneal biomechanics. J. Cataract Refract. Surg. 2014, 40, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.Q.; Patel, D.V.; McGhee, C.N. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3651–3659. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Langenbucher, A.; Seitz, B. Excimer Laser Phototherapeutic Keratectomy for Granular and Lattice Corneal Dystrophy: A Comparative Study; Slack Incorporated Thorofare: San Francisco, CA, USA, 2005. [Google Scholar]
- Fagerholm, P. Phototherapeutic keratectomy: 12 years of experience. Acta Ophthalmol. Scand. 2003, 81, 19–32. [Google Scholar] [CrossRef]
- Stasi, K.; Chuck, R.S. Update on phototherapeutic keratectomy. Curr. Opin. Ophthalmol. 2009, 20, 272–275. [Google Scholar] [CrossRef]
- Rathi, V.M.; Vyas, S.P.; Sangwan, V.S. Phototherapeutic keratectomy. Indian J. Ophthalmol. 2012, 60, 5. [Google Scholar] [CrossRef]
- Szentmáry, N.; Seitz, B.; Langenbucher, A.; Schlötzer-Schrehardt, U.; Hofmann-Rummelt, C.; Naumann, G.O. Histologic and ultrastructural changes in corneas with granular and macular dystrophy after excimer laser phototherapeutic keratectomy. Cornea 2006, 25, 257–263. [Google Scholar] [CrossRef]
- Seitz, B.; Behrens, A.; Fischer, M.; Langenbucher, A.; Naumann, G.O. Morphometric analysis of deposits in granular and lattice corneal dystrophy: Histopathologic implications for phototherapeutic keratectomy. Cornea 2004, 23, 380–385. [Google Scholar] [CrossRef]
- Dogru, M.; Katakami, C.; Nishida, T.; Yamanaka, A. Alteration of the ocular surface with recurrence of granular/avellino corneal dystrophy after phototherapeutic keratectomy: Report of five cases and literature review. Ophthalmology 2001, 108, 810–817. [Google Scholar] [CrossRef]
- Miyata, K.; Takahashi, T.; Tomidokoro, A.; Ono, K.; Oshika, T. Iatrogenic keratectasia after phototherapeutic keratectomy. Br. J. Ophthalmol. 2001, 85, 238. [Google Scholar] [CrossRef]
- Moshirfar, M.; Motlagh, M.N.; Murri, M.S.; Momeni-Moghaddam, H.; Ronquillo, Y.C.; Hoopes, P.C. Advances in biomechanical parameters for screening of refractive surgery candidates: A review of the literature, part III. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 219. [Google Scholar] [PubMed]
- McMonnies, C.W. Assessing corneal hysteresis using the ocular response analyzer. Optom. Vis. Sci. 2012, 89, E343–E349. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-Z.; Lam, A.K. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: A pilot study. Curr. Eye Res. 2015, 40, 282–289. [Google Scholar] [CrossRef]
- Huseynova, T.; Waring IV, G.O.; Roberts, C.; Krueger, R.R.; Tomita, M. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am. J. Ophthalmol. 2014, 157, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Miki, A.; Maeda, N.; Ikuno, Y.; Asai, T.; Hara, C.; Nishida, K. Factors associated with corneal deformation responses measured with a dynamic Scheimpflug analyzer. Investig. Ophthalmol. Vis. Sci. 2017, 58, 538–544. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Ambrósio, R., Jr.; Heidari, H.R.; Maddah, N.; Danesh, Z.; Sabzi, F. Diagnostic Ability of Corneal Shape and Biomechanical Parameters for Detecting Frank Keratoconus. Cornea 2018, 37, 1025–1034. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Roberts, C.J.; Maddah, N.; Ambrósio, R., Jr.; Hosseini, S.R. Corneal biomechanical parameters in keratoconus eyes with abnormal elevation on the back corneal surface only versus both back and front surfaces. Sci. Rep. 2021, 11, 11971. [Google Scholar] [CrossRef]
- Eliasy, A.; Chen, K.J.; Vinciguerra, R.; Lopes, B.T.; Abass, A.; Vinciguerra, P.; Ambrósio, R., Jr.; Roberts, C.J.; Elsheikh, A. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Front. Bioeng. Biotechnol. 2019, 7, 105. [Google Scholar] [CrossRef]
- Elsheikh, A.; Wang, D.; Brown, M.; Rama, P.; Campanelli, M.; Pye, D. Assessment of corneal biomechanical properties and their variation with age. Curr. Eye Res. 2007, 32, 11–19. [Google Scholar] [CrossRef]
- Ethier, C.R.; Johnson, M.; Ruberti, J. Ocular biomechanics and biotransport. Annu. Rev. Biomed. Eng. 2004, 6, 249–273. [Google Scholar] [CrossRef]
- Valbon, B.F.; Ambrósio, R., Jr.; Fontes, B.M.; Luz, A.; Roberts, C.J.; Alves, M.R. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients. J. Refract. Surg. 2014, 30, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.; Wang, D.; Pye, D. Determination of the modulus of elasticity of the human cornea. J. Refract. Surg. 2007, 23, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, R.; Nakakura, S.; Tabuchi, H.; Murata, H.; Nakao, Y.; Ihara, N.; Rimayanti, U.; Aihara, M.; Kiuchi, Y. The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature. PLoS ONE 2015, 10, e0140385. [Google Scholar] [CrossRef] [PubMed]
- Kenia, V.P.; Kenia, R.V.; Pirdankar, O.H. Short term changes in corneal stress-strain index and other corneal biomechanical parameters post-laser in situ keratomileusis. Indian J. Ophthalmol. 2021, 69, 2650–2656. [Google Scholar]
- Vinciguerra, R.; Ambrósio, R., Jr.; Roberts, C.J.; Azzolini, C.; Vinciguerra, P. Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. J. Refract. Surg. 2017, 33, 399–407. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Heravian, J.; Ansari, A.; Shayanfar, H.; Moshirfar, M. Detection ability of corneal biomechanical parameters for early diagnosis of ectasia. Eye 2022. [Google Scholar] [CrossRef]
- Tanikawa, A.; Soma, T.; Miki, A.; Koh, S.; Kitaguchi, Y.; Maeda, N.; Oie, Y.; Kawasaki, S.; Nishida, K. Assessment of the corneal biomechanical features of granular corneal dystrophy type 2 using dynamic ultra-high-speed Scheimpflug imaging. Graefes Arch Clin. Exp. Ophthalmol. 2022. [Google Scholar] [CrossRef]
- Wu, M.; Han, J.; Wang, X.; Shao, T.; Wang, Y. The alterations of corneal biomechanics in adult patients with corneal dystrophy. Eye 2022. [Google Scholar] [CrossRef]
- Dawson, D.G.; Grossniklaus, H.E. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: Is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J. Refract. Surg. 2008, 24, S90. [Google Scholar]
- Igarashi, S.; Makita, Y.; Hikichi, T.; Mori, F.; Hanada, K.; Yoshida, A. Association of keratoconus and Avellino corneal dystrophy. Br. J. Ophthalmol. 2003, 87, 367–368. [Google Scholar] [CrossRef]
- Mitsui, M.; Sakimoto, T.; Sawa, M.; Katami, M. Familial case of keratoconus with corneal granular dystrophy. Jpn. J. Ophthalmol. 1998, 42, 385–388. [Google Scholar] [CrossRef]
- Wollensak, G.; Green, W.R.; Temprano, J. Keratoconus associated with corneal granular dystrophy in a patient of Italian origin. Cornea 2002, 21, 121–122. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.M.; D’Ath, P.J.; Parmar, D.N.; Sykakis, E. Keratoconus and granular dystrophy. Case Rep. 2014, 2014, bcr2014205584. [Google Scholar] [CrossRef] [PubMed]
- Jadidi, K.; Mosavi, S.A.; Morovvati, S. Familial case of keratoconus with corneal granular dystrophy in a family of Iranian origin. J. Clin. Exp. Ophthalmol. 2014, 5, 2. [Google Scholar]
- Vinciguerra, R.; Ambrósio Jr, R.; Elsheikh, A.; Roberts, C.J.; Lopes, B.; Morenghi, E.; Azzolini, C.; Vinciguerra, P. Detection of keratoconus with a new biomechanical index. J. Refract. Surg. 2016, 32, 803–810. [Google Scholar] [CrossRef] [PubMed]
Abbreviation (Unit) | Complete Name | Description of Specific Corvis ST Parameters |
---|---|---|
AL1 (mm) | Applanation length at the first flattening | Cord diameter of the flattened cornea at the first applanation |
AL2 (mm) | Applanation length at the second flattening | Cord diameter of the flattened cornea at the second applanation |
A1V (m/s) | First applanation velocity | Inward velocity of the cornea at the first applanation |
A2V (m/s) | Second applanation velocity | Outward velocity of the cornea at the second applanation |
A1T (ms) | Time at the first applanation | Time from initiation of air puff until the first applanation |
A2T (ms) | Time at the second applanation | Time from initiation of air puff until the second applanation |
A1DA (mm) | Deformation amplitude at the first applanation | Corneal displacement from the natural state until the first applanation |
A2DA (mm) | Deformation amplitude at the second applanation | Corneal displacement at the second applanation |
HC, PD (mm) | Highest concavity, Peak distance | Distance between the two peaks of the cornea at the highest concavity phase |
HC, Radius (mm) | Highest concavity radius | Radius of curvature of the cornea at the highest concavity phase |
HC-T (ms) | Highest concavity time | Time from initiation of air puff until highest concavity |
HC, DA (mm) | Highest concavity, Deformation amplitude | Corneal displacement at the highest concavity phase |
SPA1 (mm Hg/mm) | Stiffness parameter at the first applanation | Resultant pressure [adjusted pressure at A1 (adj AP1)-biomechanically compensated IOP (bIOP)] divided by deflection amplitude at A1 |
IR (mm−1) | Integrated inverse radius | Area under the inverse concave radius curve |
DARMax1 | Deformation amplitude ratio at 1 mm | Ratio between DA at the apex and the average of DAs at 1 mm around the center in temporal and nasal directions |
DAR Max2 | Deformation amplitude ratio at 2 mm | Ratio between DA at the apex and the average of DAs at 2 mm around the center in temporal and nasal directions |
SSI | Stress-stain index | A parameter to predict the biomechanical behavior of the cornea in terms of the material properties used in its structure |
CCT (µm) | Central corneal thickness | Corneal thickness at the corneal apex |
IOPnct (mmHg) | Non-corrected IOP | Intraocular pressure non-corrected based on the corneal characteristic and age |
bIOP (mmHg) | Biomechanically corrected intraocular pressure | Estimates IOP based on an algorithm that reduces the confounding effects of corneal characteristics and aging |
Variables | Mean ± SD (95% CI) | p-Value | |
---|---|---|---|
GCD (n = 12 Eyes) | Control (n = 20 Eyes) | ||
AL1 (mm) | 2.55 ± 0.24 (2.45 to 2.65) | 2.58 ± 0.21 (2.48 to 2.68) | 0.704 |
AL2 (mm) | 3.06 ± 0.49 (2.64 to 3.49) | 3.46 ± 1.09 (3.05 to 3.87) | 0.193 |
AV1 (m/s) | 0.15 ± 0.02 (0.14 to 0.15) | 0.13 ± 0.02 (0.12 to 0.13) | <0.001 |
AV2 (m/s) | −0.26 ± 0.06 (−0.28 to −0.25) | −0.27 ± 0.05 (−0.29 to −0.25) | 0.872 |
AT1 (ms) | 7.33 ± 0.66 (7.26 to 7.39) | 7.47 ± 0.36 (7.41 to 7.53) | 0.002 |
AT2 (ms) | 21.02 ± 0.61 (20.89 to 21.14) | 21.08 ± 0.29 (20.96 to 21.21) | 0.471 |
A1DA (mm) | 0.15 ± 0.02 (0.14 to 0.15) | 0.14 ± 0.01 (0.14 to 0.15) | 0.108 |
A2DA (mm) | 0.43 ± 0.05 (0.40 to 0.46) | 0.40 ± 0.07 (0.37 to 0.43) | 0.144 |
HC, PD (mm) | 4.99 ± 0.45 (4.90 to 5.08) | 4.99 ± 0.27 (4.90 to 5.07) | 0.955 |
HC, R (mm) | 7.42 ± 0.76 (6.99 to 7.85) | 8.20 ± 1.08 (7.79 to 8.62) | 0.014 |
HC-T (ms) | 16.59 ± 0.51 (16.38 to 16.80) | 16.60 ± 0.35 (16.39 to 16.81) | 0.948 |
HC, DA (mm) | 1.05 ± 0.16 (1.01 to 1.09) | 1.00 ± 0.11 (0.97 to 1.04) | 0.123 |
SP-A1 (mm Hg/mm) | 104.03 ± 19.29 (99.35 to 108.72) | 110.45 ± 17.13 (105.90 to 115.01) | 0.061 |
IR (mm−1) | 7.48 ± 1.01 (7.18 to 7.78) | 6.80 ± 1.22 (6.51 to 7.09) | 0.003 |
DAR Max2 | 3.77 ± 0.42 (3.66 to 3.89) | 3.65 ± 0.49 (3.54 to 3.76) | 0.154 |
DAR Max1 | 1.51 ± 0.06 (1.49 to 1.53) | 1.50 ± 0.06 (1.48 to 1.51) | 0.259 |
SSI | 1.09 ± 0.20 (1.00 to 1.17) | 1.21 ± 0.17 (1.13 to 1.30) | 0.04 |
CBI | 0.33 ± 0.03 (0.31 to 0.35) | 0.02 ± 0.03 (0.01 to 0.03) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari, H.; Momeni-Moghaddam, H.; Jadidi, K.; Pirhadi, S.; Moshirfar, M. Changes in Stress-Strain Index and Corneal Biomechanics in Granular Corneal Dystrophy. J. Clin. Med. 2022, 11, 6571. https://doi.org/10.3390/jcm11216571
Heidari H, Momeni-Moghaddam H, Jadidi K, Pirhadi S, Moshirfar M. Changes in Stress-Strain Index and Corneal Biomechanics in Granular Corneal Dystrophy. Journal of Clinical Medicine. 2022; 11(21):6571. https://doi.org/10.3390/jcm11216571
Chicago/Turabian StyleHeidari, Hamidreza, Hamed Momeni-Moghaddam, Khosrow Jadidi, Shiva Pirhadi, and Majid Moshirfar. 2022. "Changes in Stress-Strain Index and Corneal Biomechanics in Granular Corneal Dystrophy" Journal of Clinical Medicine 11, no. 21: 6571. https://doi.org/10.3390/jcm11216571
APA StyleHeidari, H., Momeni-Moghaddam, H., Jadidi, K., Pirhadi, S., & Moshirfar, M. (2022). Changes in Stress-Strain Index and Corneal Biomechanics in Granular Corneal Dystrophy. Journal of Clinical Medicine, 11(21), 6571. https://doi.org/10.3390/jcm11216571