Dual Negativity of CD56 and CD117 Links to Unfavorable Cytogenetic Abnormalities and Predicts Poor Prognosis in Multiple Myeloma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. FCM
2.3. FISH
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Cytogenetic Abnormalities
3.3. The Impact of Antigen Expression on Patient Survival
3.4. Univariate Analyses and Multivariate COX Regression Analyses for Prognostic Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Pulte, D.; Jansen, L.; Brenner, H. Changes in long term survival after diagnosis with common hematologic malignancies in the early 21st century. Blood Cancer J. 2020, 10, 56. [Google Scholar] [CrossRef]
- García-Ortiz, A.; Rodríguez-García, Y.; Encinas, J.; Maroto-Martín, E.; Castellano, E.; Teixidó, J.; Martínez-López, J. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers 2021, 13, 217. [Google Scholar] [CrossRef]
- Lanier, L.L.; Testi, R.; Bindl, J.; Phillips, J.H. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J. Exp. Med. 1989, 169, 2233–2238. [Google Scholar] [CrossRef] [Green Version]
- Rawstron, A.C.; Orfao, A.; Beksac, M.; Bezdickova, L.; Brooimans, R.A.; Bumbea, H.; Dalva, K.; Fuhler, G.; Gratama, J.; Hose, D.; et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008, 93, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Ri, M.; Kinoshita, S.; Narita, T.; Totani, H.; Ashour, R.; Ito, A.; Kusumoto, S.; Ishida, T.; Komatsu, H.; et al. Low expression of neural cell adhesion molecule, CD56, is associated with low efficacy of bortezomib plus dexamethasone therapy in multiple myeloma. PLoS ONE 2018, 13, e0196780. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Huang, Y.; Lin, Y.; Zhang, A.; Zou, R.; Xu, H.; Wang, S. Prognostic significance of CD56 expression in patients with multiple myeloma: A meta-analysis. Hematology 2022, 27, 122–131. [Google Scholar] [CrossRef]
- Ocqueteau, M.; Orfao, A.; García-Sanz, R.; Almeida, J.; Gonzalez, M.; Miguel, J.F.S. Expression of the CD117 antigen (c-Kit) on normal and myelomatous plasma cells. Br. J. Haematol. 1996, 95, 489–493. [Google Scholar] [CrossRef]
- Lebel, E.; Nachmias, B.; Pick, M.; Even-Zohar, N.G.; Gatt, M.E. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J. Clin. Med. 2022, 11, 1809. [Google Scholar] [CrossRef]
- Wallington-Beddoe, C.T.; Mynott, R.L. Prognostic and predictive biomarker developments in multiple myeloma. Hematol. Oncol. 2021, 14, 151. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [Green Version]
- Koumpis, E.; Tassi, I.; Malea, T.; Papathanasiou, K.; Papakonstantinou, I.; Serpanou, A.; Tsolas, E.; Kapsali, E.; Vassilakopoulos, T.P.; Papoudou-Bai, A.; et al. CD56 expression in multiple myeloma: Correlation with poor prognostic markers but no effect on outcome. Pathol. Res. Pract. 2021, 225, 153567. [Google Scholar] [CrossRef]
- Ceran, F.; Falay, M.; Dağdaş, S.; Özet, G. The Assessment of CD56 and CD117 Expressions at the Time of the Diagnosis in Multiple Myeloma Patients. Turk. J. Haematol. 2017, 34, 226–232. [Google Scholar] [CrossRef]
- Cho, Y.-U.; Park, C.-J.; Park, S.-J.; Chi, H.-S.; Jang, S.; Park, S.H.; Seo, E.-J.; Yoon, D.H.; Lee, J.-H.; Suh, C. Immunophenotypic characterization and quantification of neoplastic bone marrow plasma cells by multiparametric flow cytometry and its clinical significance in Korean myeloma patients. J. Korean Med. Sci. 2013, 28, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kimlinger, T.; Morice, W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract. Res. Clin. Haematol. 2010, 23, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Burgos, L.; Puig, N.; Cedena, M.-T.; Mateos, M.-V.; Lahuerta, J.J.; Paiva, B.; San-Miguel, J.F. Measurable residual disease in multiple myeloma: Ready for clinical practice? J. Hematol. Oncol. 2020, 13, 82. [Google Scholar] [CrossRef]
- Fitzpatrick, M.J.; Nardi, V.; Sohani, A.R. Plasma cell myeloma: Role of histopathology, immunophenotyping, and genetic testing. Skelet. Radiol. 2022, 51, 17–30. [Google Scholar] [CrossRef]
- Chen, F.; Hu, Y.; Wang, X.; Fu, S.; Liu, Z.; Zhang, J. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018, 7, 5920–5927. [Google Scholar] [CrossRef] [Green Version]
- Mateo, G.; Castellanos, M.; Rasillo, A.; Gutiérrez, N.C.; Montalbán, M.A.; Martín, M.L.; Hernández, J.M.; López-Berges, M.C.; Montejano, L.; Bladé, J.; et al. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin. Cancer Res. 2005, 11, 3661–3667. [Google Scholar] [CrossRef] [Green Version]
- Lugli, A.; Went, P.; Khanlari, B.; Nikolova, Z.; Dirnhofer, S. Rare KIT (CD117) expression in multiple myeloma abrogates the usefulness of imatinib mesylate treatment. Virchows Arch. 2004, 444, 264–268. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Tao, Q.; Zhang, C.; Yang, D.; Qin, H.; Xiong, S.; Tao, L.; Wu, F.; Zhang, J.; et al. Absence of both CD56 and CD117 expression on malignant plasma cells is related with a poor prognosis in patients with newly diagnosed multiple myeloma. Leuk. Res. 2016, 40, 77–82. [Google Scholar] [CrossRef] [PubMed]
- ElMenshawy, N.; Farag, N.A.; Atia, D.M.; Abousamra, N.; Shahin, D.; Fawzi, E.; Ghazi, H.; El-Kott, A.F.; Eissa, M. Prognostic Relevance of Concordant Expression CD69 and CD56 in Response to Bortezomib Combination Therapy in Multiple Myeloma Patients. Cancer Investig. 2021, 39, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Pawlyn, C.; Morgan, G.J. Evolutionary biology of high-risk multiple myeloma. Nat. Rev. Cancer 2017, 17, 543–556. [Google Scholar] [CrossRef]
- Kalff, A.; Spencer, A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: Prognostic implications and current clinical strategies. Blood Cancer J. 2012, 2, e89. [Google Scholar] [CrossRef] [Green Version]
- Okura, M.; Ida, N.; Yamauchi, T. The clinical significance of CD49e and CD56 for multiple myeloma in the novel agents era. Med. Oncol. 2020, 37, 103. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A. The Chromosome 13 Conundrum in Multiple Myeloma. Blood Cancer Discov. 2020, 1, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.S.; He, J.; Tytarenko, R.; Deshpande, S.; Patel, P.; Bailey, M.; Stein, C.K.; Stephens, O.; Weinhold, N.; Petty, N.; et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017, 7, e535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zojer, N.; Königsberg, R.; Ackermann, J.; Fritz, E.; Dallinger, S.; Krömer, E.; Kaufmann, H.; Riedl, L.; Gisslinger, H.; Schreiber, S.; et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000, 95, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CD56− | CD56+ | p | CD117− | CD117+ | p |
---|---|---|---|---|---|---|
n = 39 | n = 89 | n = 78 | n = 50 | |||
Age ≥ 60years (n) | 28 | 59 | 0.539 | 50 | 37 | 0.242 |
Gender, male (n) | 20 | 59 | 0.108 | 43 | 36 | 0.055 |
Type of myeloma (n) | 0.054 | 0.603 | ||||
IgG | 14 | 48 | 37 | 25 | ||
IgA | 9 | 24 | 21 | 12 | ||
IgM | 0 | 1 | 1 | 0 | ||
IgD | 1 | 0 | 0 | 1 | ||
Light chain | 14 | 14 | 16 | 12 | ||
Nonsecretory | 1 | 2 | 3 | 0 | ||
DS stage III (n) | 33 | 74 | 0.979 | 61 | 46 | 0.101 |
ISS stage III (n) | 25 | 45 | 0.336 | 43 | 27 | 0.940 |
R-ISS stage III (n) | 9 | 20 | 0.510 | 21 | 8 | 0.302 |
mSMART High-risk (n) | 17 | 40 | 0.887 | 37 | 20 | 0.409 |
renal insufficiency (n) | 10 | 23 | 0.981 | 16 | 17 | 0.089 |
Hb (Mean ± SD), g/L | 98 ± 23 | 105 ± 27 | 0.166 | 105 ± 25 | 100 ± 28 | 0.375 |
Calcium (median), mmol/L | 2.33 | 2.31 | 0.903 | 2.31 | 2.32 | 0.988 |
Albumin (median), g/L | 36.4 | 35.5 | 0.660 | 34.9 | 37.5 | 0.068 |
β2-MG (median), mg/L | 6.52 | 5.12 | 0.184 | 5.52 | 5.90 | 0.794 |
LDH (median), U/L | 201 | 173 | 0.073 | 181 | 177 | 0.579 |
BMPC (median), % | 48.00 | 16.00 | 0.000 | 24.50 | 16.00 | 0.017 |
Bone lesions (n) | 0.701 | 0.771 | ||||
Group A | 8 | 21 | 17 | 12 | ||
Group B | 31 | 68 | 61 | 38 | ||
Response ≥ PR (n) | 31 | 72 | 0.853 | 63 | 40 | 0.915 |
CD56− | CD56+ | p | CD117− | CD117+ | p | |
---|---|---|---|---|---|---|
n = 39 | n = 89 | n = 78 | n = 50 | |||
D13S319 loss | 11(28.2) | 24(27.0) | 0.885 | 24(30.8) | 11(22.0) | 0.277 |
RB1 loss | 11(28.2) | 28(31.5) | 0.713 | 26(33.3) | 13(26.0) | 0.379 |
IgH/CCND1 | 3(7.7) | 21(23.6) | 0.034 | 12(15.4) | 12(24.0) | 0.223 |
CKS1B gain | 7(17.9) | 23(25.8) | 0.404 | 20(25.6) | 10(20.0) | 0.475 |
CKS1B amplification | 4(10.3) | 7(7.9) | 0.445 | 6(7.7) | 5(10.0) | 0.491 |
High risk | 25(64.1) | 41(46.2) | 0.060 | 42(53.8) | 24(46.0) | 0.518 |
1q21 gain and amplification | 11(28.2) | 31(34.8) | 0.462 | 27(34.6) | 15(30.0) | 0.587 |
Del 17p | 4(10.3) | 6(6.7) | 0.492 | 7(9.0) | 3(6.0) | 0.739 |
IgH/FGFR3 | 8(20.5) | 3(3.4) | 0.003 | 8(10.3) | 3(6.0) | 0.526 |
IgH/MAF | 2(5.1) | 0(0.0) | 0.091 | 0(0.0) | 2(4.0) | 0.151 |
IgH/MAFB | 0(0.0) | 0(0.0) | - | 0(0.0) | 0(0.0) | - |
p53 mutation | 0(0.0) | 1(1.1) | 1.000 | 0(0.0) | 1(1.1) | 0.391 |
CD56− CD117− | CD56+ CD117− | CD56+ CD117+ | CD56− CD117+ | p | |
---|---|---|---|---|---|
n = 29 | n = 49 | n = 40 | n = 10 | ||
D13S319 loss | 6(17.1) | 18(51.4) | 6(17.1) | 5(14.3) | 0.021 |
RB1 loss | 6(15.4) | 20(51.3) | 8(20.5) | 5(12.8) | 0.030 |
IgH/CCND1 | 2(8.3) | 9(37.5) | 12(50.0) | 1(4.2) | 0.097 |
CKS1B gain | 5(16.7) | 13(43.3) | 10(33.3) | 2(6.7) | 0.606 |
CKS1B amplification | 4(36.4) | 2(18.2) | 5(45.5) | 0(0.0) | 0.606 |
1q21 gain and amplification | 9(21.4) | 16(38.1) | 15(35.7) | 2(4.8) | 0.790 |
Del 17p | 2(20.0) | 5(50.0) | 1(10.0) | 2(20.0) | 0.229 |
IgH/FGFR3 | 5(45.5) | 3(27.3) | 0(0.0) | 3(27.3) | 0.003 |
IgH/MAF | 0(0.0) | 0(0.0) | 0(0.0) | 2(100.0) | 0.006 |
IgH/MAFB | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | - |
p53 mutation | 0(0.0) | 0(0.0) | 1(100.0) | 0(0.0) | 0.559 |
Variables | Univariate Analysis | p | Multivariate Analysis | p |
---|---|---|---|---|
HR (95%CI) | HR (95%CI) | |||
CD56− vs. CD56+ | 1.332 (0.586–3.026) | 0.494 | ||
CD117− vs. CD117+ | 1.174 (0.542–2.545) | 0.684 | ||
Age ≥ 60 vs. > 60 years | 1.395 (0.614–3.169) | 0.427 | ||
LDH ≥ 250 vs. > 250U/L | 1.000 (0.380–2.632) | 1.000 | ||
β2-MG ≥ 5.5 vs. > 5.5 mg/L | 2.565 (1.090–6.037) | 0.031 | 4.566 (0.000–1.456) | 0.929 |
ISS stage III vs. I + II | 2.433 (1.034–5.726) | 0.042 | 0.001 (0.000–1.742) | 0.937 |
Cytogenetics high risk vs. other | 1.850 (0.879–3.895) | 0.105 |
Variables | Univariate Analysis | p | Multivariate Analysis | p |
---|---|---|---|---|
HR (95%CI) | HR (95%CI) | |||
CD56− vs. CD56+ | 2.409 (1.113–5.213) | 0.026 | 2.529 (1.165–5.489) | 0.019 |
CD117− vs. CD117+ | 2.381 (0.956–5.932) | 0.062 | ||
Age ≥ 60 vs. > 60 years | 1.516 (0.036–3.612) | 0.348 | ||
LDH ≥ 250 vs. < 250U/L | 2.540 (1.130–5.706) | 0.024 | 2.694 (1.195–6.073) | 0.017 |
β2-MG ≥ 5.5 vs. < 5.5 mg/L | 1.116 (0.512–2.429) | 0.783 | ||
ISS stage III vs. I + II | 1.234 (0.560–2.719) | 0.602 | ||
Cytogenetics high risk vs. other | 2.030 (0.931–4.426) | 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, D.; Zhu, M.; Li, Q.; Wan, W.; Chen, Y.; Jing, H. Dual Negativity of CD56 and CD117 Links to Unfavorable Cytogenetic Abnormalities and Predicts Poor Prognosis in Multiple Myeloma. J. Clin. Med. 2022, 11, 6524. https://doi.org/10.3390/jcm11216524
Zheng D, Zhu M, Li Q, Wan W, Chen Y, Jing H. Dual Negativity of CD56 and CD117 Links to Unfavorable Cytogenetic Abnormalities and Predicts Poor Prognosis in Multiple Myeloma. Journal of Clinical Medicine. 2022; 11(21):6524. https://doi.org/10.3390/jcm11216524
Chicago/Turabian StyleZheng, Dong, Mingxia Zhu, Qihui Li, Wenli Wan, Yingtong Chen, and Hongmei Jing. 2022. "Dual Negativity of CD56 and CD117 Links to Unfavorable Cytogenetic Abnormalities and Predicts Poor Prognosis in Multiple Myeloma" Journal of Clinical Medicine 11, no. 21: 6524. https://doi.org/10.3390/jcm11216524
APA StyleZheng, D., Zhu, M., Li, Q., Wan, W., Chen, Y., & Jing, H. (2022). Dual Negativity of CD56 and CD117 Links to Unfavorable Cytogenetic Abnormalities and Predicts Poor Prognosis in Multiple Myeloma. Journal of Clinical Medicine, 11(21), 6524. https://doi.org/10.3390/jcm11216524