Cerebral Ischemic Lesions after Transcatheter Aortic Valve Implantation in Patients with Non-Calcific Aortic Stenosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woldendorp, K.; Indja, B.; Bannon, P.G.; Fanning, J.P.; Plunkett, B.T.; Grieve, S.M. Silent brain infarcts and early cognitive outcomes after transcatheter aortic valve implantation: A systematic review and meta-analysis. Eur. Heart J. 2021, 42, 1004–1015. [Google Scholar] [CrossRef]
- De Carlo, M.; Liga, R.; Migaleddu, G.; Scatturin, M.; Spaccarotella, C.; Fiorina, C.; Orlandi, G.; De Caro, F.; Rossi, M.L.; Chieffo, A.; et al. Evolution, predictors, and neurocognitive effects of silent cerebral embolism during transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2020, 13, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve academic research consortium 3: Updated endpoint definitions for aortic valve clinical research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve replacement with a Balloon-Expandable valve in Low-Risk patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Xiong, T.Y.; Feng, Y.; Liao, Y.B.; Li, Y.J.; Zhao, Z.G.; Wei, X.; Xu, Y.N.; Wei, J.F.; Peng, Y.; Piazza, N.; et al. Transcatheter aortic valve replacement in patients with non-calcific aortic stenosis. EuroIntervention 2018, 13, e1756–e1763. [Google Scholar] [CrossRef]
- Erdoes, G.; Basciani, R.; Huber, C.; Stortecky, S.; Wenaweser, P.; Windecker, S.; Carrel, T.; Eberle, B. Transcranial Doppler-detected cerebral embolic load during transcatheter aortic valve implantation. Eur. J. Cardiothorac. Surg. 2012, 41, 778–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tops, L.F.; Wood, D.A.; Delgado, V.; Schuijf, J.D.; Mayo, J.R.; Pasupati, S.; Lamers, F.P.; van der Wall, E.E.; Schalij, M.J.; Webb, J.G.; et al. Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc. Imaging 2008, 1, 321–330. [Google Scholar] [CrossRef] [Green Version]
- John, D.; Buellesfeld, L.; Yuecel, S.; Mueller, R.; Latsios, G.; Beucher, H.; Gerckens, U.; Grube, E. Correlation of Device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC Cardiovasc. Interv. 2010, 3, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Sievers, H.H.; Schmidtke, C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 2007, 133, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhou, D.; Dang, M.; He, Y.; Zhang, S.; Fang, J.; Wu, S.; Huang, Q.; Chen, L.; Yuan, Y.; et al. The predictors of conduction disturbances following transcatheter aortic valve replacement in patients with bicuspid aortic valve: A multicenter study. Front. Cardiovasc. Med. 2021, 8, 757190. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Zhu, Q.; Gao, F.; He, W.; Yu, L.; Zhou, Q.; Kong, M.; Wang, J. Supra-annular structure assessment for self-expanding transcatheter heart valve size selection in patients with bicuspid aortic valve. Catheter. Cardiovasc. Interv. 2018, 91, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Fang, X.; Liu, C.; Zhu, G.; Hou, C.R.; Jiang, J.; Lin, X.; Wang, L.; He, Y.; Zhu, Q.; et al. Brain injury after transcatheter replacement of bicuspid versus tricuspid aortic valves. J. Am. Coll. Cardiol. 2020, 76, 2579–2590. [Google Scholar] [CrossRef]
- Zhou, D.; Yidilisi, A.; Fan, J.; Zhang, Y.; Dai, H.; Zhu, G.; Guo, Y.; He, Y.; Zhu, Q.; Lin, X.; et al. Three-year outcomes of transcatheter aortic valve implantation for bicuspid versus tricuspid aortic stenosis. EuroIntervention 2022, 18, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Am. Coll. Cardiol. 2012, 60, 1438–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Kumar, A.; Jobanputra, Y.; Betancor, J.; Halane, M.; George, R.; Menon, V.; Krishnaswamy, A.; Tuzcu, E.M.; Harb, S.; et al. Association of time between left ventricular and aortic systolic pressure peaks with severity of aortic stenosis and calcification of aortic valve. JAMA Cardiol. 2019, 4, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Doerner, J.; Kupczyk, P.A.; Wilsing, M.; Luetkens, J.A.; Storm, K.; Fimmers, R.; Hickethier, T.; Eichhorn, L.; Naehle, C.P.; Schild, H.H.; et al. Cerebral white matter lesion burden is associated with the degree of aortic valve calcification and predicts peri-procedural cerebrovascular events in patients undergoing transcatheter aortic valve implantation (TAVI). Catheter. Cardiovasc. Interv. 2018, 91, 774–782. [Google Scholar] [CrossRef]
- Kahlert, P.; Knipp, S.C.; Schlamann, M.; Thielmann, M.; Al-Rashid, F.; Weber, M.; Johansson, U.; Wendt, D.; Jakob, H.G.; Forsting, M.; et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: A diffusion-weighted magnetic resonance imaging study. Circulation 2010, 121, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.R.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; Mcleod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: Executive summary: A report of the american college of Cardiology/American heart association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 2021, 77, 450–500. [Google Scholar] [CrossRef]
- Hong, N.; Pan, W.; Chen, S.; Zhang, X.; Zhou, D.; Ge, J. Transcatheter aortic valve replacement in Low-Risk patients with severe aortic valve stenosis in chinese patients. JACC Asia 2022, 2, 210–212. [Google Scholar] [CrossRef]
- Lee, C.H.; Inohara, T.; Hayashida, K.; Park, D. Transcatheter aortic valve replacement in asia: Present status and future perspectives. JACC Asia 2021, 1, 279–293. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nai, F.L.; Giacoppo, D.; Scotti, A.; Massussi, M.; Ueshima, D.; Sasano, T.; Fabris, T.; Tarantini, G. Association between surgical risk and 30-day stroke after transcatheter versus surgical aortic valve replacement: A systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 2021, 97, E536–E543. [Google Scholar] [CrossRef] [PubMed]
- Synnott, P.; Murphy, R.P.; Judge, C.; Costello, M.; Reddin, C.; Dennehy, K.; Loughlin, E.; Smyth, A.; Mylotte, D.; O’Donnell, M.J.; et al. Stroke severity in transcatheter aortic valve implantation versus surgical aortic valve replacement: A systematic review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105927. [Google Scholar] [CrossRef]
- Indja, B.; Woldendorp, K.; Vallely, M.P.; Grieve, S.M. Silent brain infarcts following cardiac procedures: A systematic review and Meta-Analysis. J. Am. Heart Assoc. 2019, 8, e10920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mieghem, N.M.; Schipper, M.E.; Ladich, E.; Faqiri, E.; van der Boon, R.; Randjgari, A.; Schultz, C.; Moelker, A.; van Geuns, R.J.; Otsuka, F.; et al. Histopathology of embolic debris captured during transcatheter aortic valve replacement. Circulation 2013, 127, 2194–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mieghem, N.M.; El, F.N.; Rahhab, Z.; Rodríguez-Olivares, R.; Wilschut, J.; Ouhlous, M.; Galema, T.W.; Geleijnse, M.L.; Kappetein, A.P.; Schipper, M.E.; et al. Incidence and predictors of debris embolizing to the brain during transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 2015, 8, 718–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroon, H.; von der Thusen, J.H.; Ziviello, F.; van Wiechen, M.; Ooms, J.; Kardys, I.; Schipper, M.; van Gils, L.; Daemen, J.; de Jaegere, P.; et al. Heterogeneity of debris captured by cerebral embolic protection filters during TAVI. EuroIntervention 2021, 16, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Leon, M.B.; Mehran, R.; Kuck, K.H.; Alu, M.C.; Braumann, R.E.; Kodali, S.; Kapadia, S.R.; Linke, A.; Makkar, R.; et al. Debris heterogeneity across different valve types captured by a cerebral protection system during transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2018, 11, 1262–1273. [Google Scholar] [CrossRef]
- Aratake, S.; Kayama, S.; Watanabe, Y.; Honjo, T.; Harada, M.; Onimaru, T.; Sawamura, S. High-intensity transient signals during transcatheter aortic valve implantation assessed by ultrasonic carotid artery blood-flow monitoring: A single center prospective observational study. J. Cardiol. 2020, 76, 244–250. [Google Scholar] [CrossRef]
- Megaly, M.; Sorajja, P.; Cavalcante, J.L.; Pershad, A.; Gössl, M.; Abraham, B.; Omer, M.; Elbadawi, A.; Garcia, S. Ischemic stroke with cerebral protection system during transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2020, 13, 2149–2155. [Google Scholar] [CrossRef]
- Butala, N.M.; Makkar, R.; Secemsky, E.A.; Gallup, D.; Marquis-Gravel, G.; Kosinski, A.S.; Vemulapalli, S.; Valle, J.A.; Bradley, S.M.; Chakravarty, T.; et al. Cerebral embolic protection and outcomes of transcatheter aortic valve replacement: Results from the transcatheter valve therapy registry. Circulation 2021, 143, 2229–2240. [Google Scholar] [CrossRef]
- Kapadia, S.; Agarwal, S.; Miller, D.C.; Webb, J.G.; Mack, M.; Ellis, S.; Herrmann, H.C.; Pichard, A.D.; Tuzcu, E.M.; Svensson, L.G.; et al. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (Placement of aortic transcatheter valves). Circ. Cardiovasc. Interv. 2016, 9, e002981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samim, M.; Hendrikse, J.; van der Worp, H.B.; Agostoni, P.; Nijhoff, F.; Doevendans, P.A.; Stella, P.R. Silent ischemic brain lesions after transcatheter aortic valve replacement: Lesion distribution and predictors. Clin. Res. Cardiol. 2015, 104, 430–438. [Google Scholar] [CrossRef] [PubMed]
Non-Calcific AS n = 34 | Calcific AS n = 294 | p Value | |
---|---|---|---|
Ages, yrs | 72.0 (69.0–76.0) | 74.0 (69.0–79.3) | 0.102 |
Female | 28 (82.4%) | 116 (39.5%) | <0.001 |
Body mass index, kg/m2 | 22.89 ± 3.24 | 22.93 ± 3.41 | 0.955 |
Body surface area, m2 | 1.55 ± 0.12 | 1.63 ± 0.16 | 0.001 |
STS score, % | 3.92 (2.41–5.89) | 4.05 (2.43–7.23) | 0.625 |
Smoker | 4 (11.8%) | 65 (22.1%) | 0.161 |
Hypertension | 22 (64.7%) | 161 (54.8%) | 0.269 |
Diabetes mellitus | 13 (38.2%) | 60 (20.4%) | 0.018 |
Chronic kidney disease stage 4 or 5 | 2 (5.9%) | 26 (8.8%) | 0.794 |
History of cancer | 3 (8.8%) | 5 (1.7%) | 0.050 |
NYHA class III/IV | 21 (61.8%) | 241 (82.0%) | 0.005 |
Atrial fibrillation/flutter | 5 (14.7%) | 47 (16.0%) | 0.847 |
Prior myocardial infarction | 1 (2.9%) | 2 (0.7%) | 0.281 |
Prior PCI | 2 (5.9%) | 30 (10.2%) | 0.618 |
Prior stroke | 1 (2.9%) | 10 (3.4%) | 1.000 |
Prior pacemaker implantation | 1 (2.9%) | 0 (0%) | 0.104 |
Chronic obstructive pulmonary disease | 8 (23.5%) | 66 (22.4%) | 0.887 |
Echocardiographic data | |||
LVEF, % | 63.6 (58.6–68.4) | 59.2 (46.5–64.0) | 0.001 |
Max velocity, m/s | 4.59 (4.22–5.01) | 4.78 (4.33–5.46) | 0.044 |
Mean gradient, mmHg | 46.5 (40.0–57.3) | 53.0 (43.0–70.0) | 0.015 |
Aortic valve area, cm2 | 0.70 (0.50–0.81) | 0.58 (0.45–0.75) | 0.213 |
≥moderate aortic regurgitation | 17 (50.0%) | 117 (39.8%) | 0.252 |
≥moderate mitral regurgitation | 10 (29.4%) | 73 (25.0%) | 0.576 |
≥moderate tricuspid regurgitation | 4 (11.8%) | 37 (12.7%) | 1.000 |
Computed tomography data | |||
Calcium volume score | 83.0 (26.0–183.8) | 572.5 (308.8–1007.4) | <0.001 |
Bicuspid aortic valve | 12 (35.3%) | 190 (64.6%) | 0.001 |
Max diameter, mm | 25.0 (23.9–26.8) | 27.5 (25.8–29.5) | <0.001 |
Min diameter, mm | 19.9 (18.2–21.8) | 21.3 (19.9–23.2) | <0.001 |
Perimeter, mm | 71.3 (66.1–76.0) | 77.3 (72.8–83.1) | <0.001 |
Perimeter derived diameter, mm | 22.7 (21.1–24.2) | 24.6 (23.2–26.4) | <0.001 |
Area, mm2 | 392.5 (337.7–447.1) | 454.0 (405.4–526.5) | <0.001 |
STJ diameter, mm | 28.7 ± 4.8 | 30.6 ± 4.2 | 0.015 |
Ascent aorta diameter at 4 cm, mm | 37.1 ± 5.7 | 37.9 ± 4.5 | 0.301 |
Right coronary artery height, mm | 16.0 (13.6–18.1) | 16.7 (14.7–18.6) | 0.107 |
Left coronary artery height, mm | 12.9 (11.6–14.3) | 14.7 (12.6–17.0) | <0.001 |
Aortic root angle, degree | 50.0 ± 10.3 | 51.2 ± 10.5 | 0.512 |
Non-Calcific AS n = 34 | Calcific AS n = 294 | p Value | |
---|---|---|---|
Pre-dilatation | 34(100%) | 293(99.7%) | 1.000 |
Post-dilatation | 18(52.9%) | 201(68.4%) | 0.071 |
Oversizing ratio by perimeter, % | 12.10 ± 7.86 | 6.84 ± 7.92 | <0.001 |
Second valve implantation | 2(5.9%) | 26(8.8%) | 0.794 |
Annular rupture | 0(0%) | 1(0.3%) | 1.000 |
Coronary obstruction | 0(0%) | 1(0.3%) | 1.000 |
Echocardiographic data before discharge | |||
LVEF, % | 61.2(57.7–66.6) | 60(51.0–65.9) | 0.103 |
Max velocity, m/s | 2.45(2.16–2.74) | 2.31(1.99–2.67) | 0.106 |
Mean gradient, mmHg | 11.0(10.0–16.0) | 11.0(8.0–15.0) | 0.150 |
Aortic valve area, cm2 | 1.55(1.16–1.71) | 1.57(1.32–1.82) | 0.208 |
≥mild paravalvular leakage | 9(26.5%) | 188(63.9%) | <0.001 |
≥moderate paravalvular leakage | 0(0%) | 19(6.5%) | 0.254 |
Non-Calcific AS n = 34 | Calcific AS n = 294 | p Value | |
---|---|---|---|
Patients with new lesions | 24 (70.6%) | 252 (85.7%) | 0.022 |
New lesions per patient | 2.0 (0–4.0) | 3.0 (1.0–7.3) | 0.010 |
Patients with a single lesion | 6 (17.6%) | 33 (11.2%) | 0.415 |
Patients with multiple lesions | 18 (52.9%) | 219 (74.5%) | 0.008 |
Total new lesions | 130 | 1590 | |
Patients with new lesions in different location | |||
ACA | 7 (20.6%) | 87 (29.6%) | 0.272 |
ACA/MCA | 14 (41.2%) | 123 (41.8%) | 0.941 |
MCA | 18 (52.9%) | 153 (52.0%) | 0.921 |
MCA/PCA | 3 (8.8%) | 36 (12.2%) | 0.761 |
PCA | 5 (14.7%) | 141 (48.0%) | <0.001 |
VA/BA | 13 (38.2%) | 158 (53.7%) | 0.087 |
Maximal lesion volume, mm3, per patient | 70.0 (0–127.5) | 90.0 (40.0–200.0) | 0.151 |
Average lesion volume, mm3, per patient | 60.0 (0–79.0) | 55.0 (29.5–90.0) | 0.461 |
Total lesion volume, mm3, per patient | 105.0 (0–332.5) | 200.0 (70.0–570.0) | 0.047 |
MRI time after procedure, days | 3.0 (1.0–5.0) | 2.5 (1.0–5.0) | 0.910 |
Univariate Regression | Multivariate Regression | |||
---|---|---|---|---|
p Value | OR (95% CI) | p Value | OR (95% CI) | |
Non-Calcific AS | 0.026 | 0.40(0.18–0.90) | 0.010 | 0.31(0.13–0.76) |
Bicuspid aortic stenosis | 0.063 | 1.76(0.97–3.20) | - | - |
Diabetes mellitus | 0.110 | 0.59(0.30–1.13) | - | - |
Dyslipidemia | 0.135 | 2.53(0.75–8.53) | - | - |
Max velocity ≥ 5 m/s | 0.070 | 1.82(0.95–3.46) | 0.048 | 1.97(1.01–3.86) |
Pure AS * | 0.050 | 3.35(1.00–11.21) | 0.075 | 3.06(0.89–10.51) |
Moderate/severe MR | 0.008 | 0.43(0.23–0.80) | 0.026 | 0.48(0.25–0.92) |
Oversizingratio by annulus perimeter > 6.90% | 0.105 | 1.64(0.90–2.98) | 0.025 | 2.12(1.10–4.09) |
MRI time | 0.078 | 0.88(0.76–1.01) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhou, D.; Fan, J.; Dai, H.; Zhu, G.; Chen, J.; Guo, Y.; Yidilisi, A.; Zhu, Q.; He, Y.; et al. Cerebral Ischemic Lesions after Transcatheter Aortic Valve Implantation in Patients with Non-Calcific Aortic Stenosis. J. Clin. Med. 2022, 11, 6502. https://doi.org/10.3390/jcm11216502
Liu X, Zhou D, Fan J, Dai H, Zhu G, Chen J, Guo Y, Yidilisi A, Zhu Q, He Y, et al. Cerebral Ischemic Lesions after Transcatheter Aortic Valve Implantation in Patients with Non-Calcific Aortic Stenosis. Journal of Clinical Medicine. 2022; 11(21):6502. https://doi.org/10.3390/jcm11216502
Chicago/Turabian StyleLiu, Xianbao, Dao Zhou, Jiaqi Fan, Hanyi Dai, Gangjie Zhu, Jun Chen, Yuchao Guo, Abuduwufuer Yidilisi, Qifeng Zhu, Yuxin He, and et al. 2022. "Cerebral Ischemic Lesions after Transcatheter Aortic Valve Implantation in Patients with Non-Calcific Aortic Stenosis" Journal of Clinical Medicine 11, no. 21: 6502. https://doi.org/10.3390/jcm11216502
APA StyleLiu, X., Zhou, D., Fan, J., Dai, H., Zhu, G., Chen, J., Guo, Y., Yidilisi, A., Zhu, Q., He, Y., Wei, Y., Liu, Q., Qi, X., & Wang, J. (2022). Cerebral Ischemic Lesions after Transcatheter Aortic Valve Implantation in Patients with Non-Calcific Aortic Stenosis. Journal of Clinical Medicine, 11(21), 6502. https://doi.org/10.3390/jcm11216502