Establishing the Optimal Time for Induction of Labor in Women with Diet-Controlled Gestational Diabetes Mellitus: A Single-Center Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Antenatal Care
2.3. Outcome Measures
2.4. Statistical Analysis
2.5. Power Analysis
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Eades, C.E.; Cameron, D.M.; Evans, J.M.M. Prevalence of gestational diabetes mellitus in Europe: A meta-analysis. Diabetes Res. Clin. Pract. 2017, 129, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Paulo, M.S.; Abdo, N.M.; Bettencourt-Silva, R.; Al-Rifai, R.H. Gestational diabetes mellitus in Europe: A systematic review and meta-analysis of prevalence studies. Front. Endocrinol. 2021, 12, 691033. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.G. New consensus criteria for GDM: Problem solved or a pandora’s box? Diabetes Care 2010, 33, 690–6911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gestational Diabetes Mellitus. ACOG Practice Bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef]
- Landon, M.B.; Spong, C.Y.; Thom, E.; Carpenter, M.W.; Ramin, S.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M., Jr.; et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N. Engl. J. Med. 2009, 361, 1339–1348. [Google Scholar] [CrossRef]
- Crowther, C.A.; Hiller, J.E.; Moss, J.R.; McPhee, A.J.; Jeffries, W.S.; Robinson, J.S. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N. Engl. J. Med. 2005, 352, 2477–2486. [Google Scholar] [CrossRef] [Green Version]
- Tsakiridis, I.; Giouleka, S.; Mamopoulos, A.; Kourtis, A.; Athanasiadis, A.; Filopoulou, D.; Dagklis, T. Diagnosis and Management of Gestational Diabetes Mellitus: An Overview of National and International Guidelines. Obstet. Gynecol. Surv. 2021, 76, 367–381. [Google Scholar] [CrossRef]
- Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; McCance, D.R.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Trimble, E.R.; Coustan, D.R.; Hadden, D.R.; et al. The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012, 35, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, M.; Aboulfotouh, M.; Dabbous, Z.; Mokhtar, M.; Siddique, M.; Wahba, R.; Ibrahim, A.; Brich, S.A.H.; Konje, J.C.; Abou-Samra, A.B. Metformin-treated-GDM has lower risk of macrosomia compared to diet-treated GDM- a retrospective cohort study. J. Matern. Fetal Neonatal Med. 2020, 33, 2366–2371. [Google Scholar] [CrossRef] [PubMed]
- Hartling, L.; Dryden, D.M.; Guthrie, A.; Muise, M.; Vandermeer, B.; Donovan, L. Benefits and harms of treating gestational diabetes mellitus: A systematic review and meta-analysis for the U.S. Preventive Services Task Force and the National Institutes of Health Office of Medical Applications of Research. Ann. Intern. Med. 2013, 159, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, H.; Gagnon, R.; Sermer, M. Guideline no. 393-diabetes in pregnancy. J. Obstet. Gynaecol. Can. 2019, 41, 1814–1825.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstein, M.G.; Cheng, Y.W.; Snowden, J.M.; Nicholson, J.M.; Doss, A.E.; Caughey, A.B. The risk of stillbirth and infant death stratified by gestational age in women with gestational diabetes. Am. J. Obstet. Gynecol. 2012, 206, e1–e7. [Google Scholar] [CrossRef] [Green Version]
- Ehrenberg, H.M.; Durnwald, C.P.; Catalano, P.; Mercer, B.M. The influence of obesity and diabetes on the risk of cesarean delivery. Am. J. Obstet. Gynecol. 2004, 191, 969–974. [Google Scholar] [CrossRef]
- Krejci, H.; Andelova, K.; Anderlova, K. Gestational diabetes mellitus. Czech Gynaecol. 2018, 83, 397–406. [Google Scholar]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Feghali, M.N.; Caritis, S.N.; Catov, J.M.; Scifres, C.M. Timing of delivery and pregnancy outcomes in women with gestational diabetes. Am. J. Obstet. Gynecol. 2016, 215, 243.e1–243.e7. [Google Scholar] [CrossRef] [Green Version]
- Gorgal, R.; Gonçalves, E.; Barros, M.; Namora, G.; Magalhães, Â.; Rodrigues, T.; Montenegro, N. Gestational diabetes mellitus: A risk factor for non-elective cesarean section. J. Obstet. Gynaecol. Res. 2012, 38, 154–159. [Google Scholar] [CrossRef]
- Kc, K.; Shakya, S.; Zhang, H. Gestational diabetes mellitus and macrosomia: A literature review. Ann. Nutr. Metab. 2015, 66 (Suppl. 2), 14–20. [Google Scholar] [CrossRef]
- Güemes, M.; Hussain, K. Hyperinsulinemic hypoglycemia. Pediatr. Clin. North Am. 2015, 62, 1017–1036. [Google Scholar] [CrossRef]
- Domanski, G.; Lange, A.E.; Ittermann, T.; Allenberg, H.; Spoo, R.A.; Zygmunt, M.; Heckmann, M. Evaluation of neonatal and maternal morbidity in mothers with gestational diabetes: A population-based study. BMC Pregnancy Childbirth 2018, 18, 367. [Google Scholar] [CrossRef] [PubMed]
- Kole, M.B.; Ayala, N.K.; Clark, M.A.; Has, P.; Esposito, M.; Werner, E.F. Factors associated with hypoglycemia among neonates born to mothers with gestational diabetes mellitus. Diabetes Care 2020, 43, e194–e195. [Google Scholar] [CrossRef] [PubMed]
- Voormolen, D.N.; de Wit, L.; van Rijn, B.B.; DeVries, J.H.; Heringa, M.P.; Franx, A.; Groenendaal, F.; Lamain-de Ruiter, M. Neonatal hypoglycemia following diet-controlled and insulin-treated gestational diabetes mellitus. Diabetes Care 2018, 41, 1385–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, P.; Shepherd, E.; Crowther, C.A. Induction of labour for improving birth outcomes for women at or beyond term. Cochrane Database Syst. Rev. 2018, 5, CD004945. [Google Scholar] [CrossRef] [Green Version]
- Sutton, A.L.; Mele, L.; Landon, M.B.; Ramin, S.M.; Varner, M.W.; Thorp, J.M., Jr.; Sciscione, A.; Catalano, P.; Harper, M.; Saade, G.; et al. Delivery timing and cesarean delivery risk in women with mild gestational diabetes. Am. J. Obstet. Gynecol. 2014, 211, 244.e1–244.e7. [Google Scholar] [CrossRef] [Green Version]
- Magro-Malosso, E.R.; Saccone, G.; Chen, M.; Navathe, R.; di Tommaso, M.; Berghella, V. Induction of labour for suspected macrosomia at term in non-diabetic women: A systematic review and meta-analysis of randomized controlled trials. BJOG 2017, 124, 414–421. [Google Scholar] [CrossRef]
- Khan, N.; Ciobanu, A.; Karampitsakos, T.; Akolekar, R.; Nicolaides, K.H. Prediction of large-for-gestational-age neonate by routine third-trimester ultrasound. Ultrasound Obstet Gynecol. 2019, 54, 326–333. [Google Scholar] [CrossRef]
- Salihu, H.M.; Dongarwar, D.; King, L.M.; Yusuf, K.K.; Ibrahimi, S.; Salinas-Miranda, A.A. Phenotypes of fetal macrosomia and risk of stillbirth among term deliveries over the previous four decades. Birth 2020, 47, 202–210. [Google Scholar] [CrossRef]
- Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A.; Jacqueminet, S. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmon, A.; Levy, A.; Holcberg, G.; Wiznitzer, A.; Mazor, M.; Sheiner, E. Decreased perinatal mortality among women with diet-controlled gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 2009, 104, 199–202. [Google Scholar] [CrossRef] [PubMed]
37 wk | 38 wk | 39 wk | 40 wk | 41 wk | Total | p-Value | |
---|---|---|---|---|---|---|---|
n = 62 | n = 136 | n = 282 | n = 230 | n = 87 | n = 797 | ||
age [years] | 34.0 ± 5.2 | 34.1 ± 5.2 | 33.7 ± 5.0 | 33.3 ± 5.3 | 33.0 ± 4.0 | 33.6 ± 5.1 | 0.436 |
BMI [kg/m2] | 23.0 (20.4–27.0) | 24.0 (21.0–29.0) | 23.9 (21.0–27.0) | 23.2 (20.8–27.0) | 24.2 (21.0–28.8) | 23.7 (21.0–27.5) | 0.422 |
nulliparity | 51.6 % (32) | 58.1 % (79) | 55.0.% (155) | 46.5 % (107) * | 67.8 % (59) * | 54.2 % (432) | 0.011 |
conception after IVF | 17.7 % (11) | 17.6 % (24) * | 13.1 % (37) | 7.8 % (18) * | 8.0 % (7) | 12.2 % (97) | 0.023 |
chronic hypertension | 9.7 % (6) * | 5.1 % (7) | 2.5 % (7) | 3.0 % (7) | 1.1% (1) | 3.5 % (28) | 0.033 |
weight gain to screening [kg] | 7.0 (5.0–10.0) | 8.0 (6.0–10.0) | 7.5 (5.5–10.0) | 7.0 (5.0–10.0) | 7.6 (5.0–10.0) | 7.5 (5.0–10.0) | 0.988 |
weight gain in pregnancy [kg] | 9.5 (6.5–14.0) | 10.0 (7.0–14.0) | 10.0 (7.0–13.8) | 10.0 (7.0–13.0) | 10.3 (6.8–13.0) | 10.0 (7.0–13.3) | 0.992 |
fasting plasma glucose | 5.0 (4.6–5.4) | 5.0 (4.5–5.4) | 5.0 (4.6–5.3) | 4.8 (4.5–5.3) | 4.9 (4.5–5.3) | 4.9 (4.5–5.3) | 0.151 |
1 h plasma glucose [mmol/L] | 10.3 (9.6–11.1) | 10.3 (9.8–10.9) | 10.3 (9.6–10.7) | 10.2 (9.5–10.8) | 10.2 (9.7–10.8) | 10.3 (9.7–10.8) | 0.981 |
2 h plasma glucose [mmol/L] | 8.5 (6.9–9.1) | 8.5 (7.2–8.9) | 8.5 (7.3–9.0) | 8.6 (7.0–9.1) | 8.5 (7.4–8.9) | 8.5 (7.2–9.0) | 0.960 |
fasting glycemia ≥ 5.1 mmol/L | 35.5 % (22) | 39.0 % (53) | 36.9 % (104) | 27.4 % (63) * | 35.6 % (31) | 34.3 % (273) | 0.129 |
positive 75 g OGTT | 64.5 % (40) | 61.0 % (83) | 63.1 % (178) | 72.6 % (167) * | 64.4 % (56) | 65.7 % (524) | |
A1c at diagnosis [%; mmol/mol] | 5.1 (4.8–5.4); 32.0 (29.3–35.0) | 5.2 (4.9–5.4); 33.0 (30.0–35.0) | 5.1 (4.8–5.3); 32.0 (29.0–34.0) † | 5.1 (4.8–5.3); 32.0 (29.0–34.9) | 5.1 (4.8–5.3); 32.0 (29.0–34.9) | 5.1 (4.8–5.3); 32.0 (29.0–34.0) | 0.244 |
mean A1c [%; mmol/mol] | 5.2 (4.9–5.4); 33.0 (30.4–35.2) | 5.2 (5.0–5.4); 33.0 (30.7–35.7) | 5.2 (4.9–5.3); 32.5 (30.0–34.3) † | 5.2 (4.9–5.4); 32.7 (30.0–35.0) | 5.2 (4.9–5.4); 33.0 (30.3–35.0) | 5.2 (4.9–5.4); 32.8 (30.0–35.0) | 0.236 |
37 wk | 38 wk | 39 wk | 40 wk | 41 wk | Total | p-Value | ||
---|---|---|---|---|---|---|---|---|
n= 62 | n= 136 | n= 282 | n= 230 | n= 87 | n= 797 | |||
spontaneous onset | 59.7 % (37) | 65.4 % (89) | 58.2 % (164) | 61.3 % (141) | 40.2 % (35) † | 58.5 % (466) | <0.0001 | |
vaginal delivery ‡ | 81.1 % (30) | 87.6 % (78) | 95.1% (156) † | 87.2 % (123) | 85.3 % (29) | 89.3 % (416) | 0.029 | |
emergency CS ‡ | 18.9 % (7) | 12.4 % (11) | 4.9 % (8) † | 12.8 % (18) | 17.1 % (5) | 10.7 % (50) | ||
labor induction | 6.5 % (4) | 5.1 % (7) † | 8.9 % (25) † | 11.7 % (27) | 56.3 % (49) † | 14.1 % (112) | <0.0001 | |
vaginal delivery § | 75.0 % (3) | 57.1 % (4) | 64.0 % (16) | 74.1 % (20) | 71.4 % (35) | 69.6 % (78) | 0.866 | |
emergency CS § | 25.0 % (1) | 42.9 % (3) | 36.0 % (9) | 25.9 % (7) | 28.6 % (14) | 30.4 % (34) | ||
elective CS | 33.9 % (21) | 29.4 % (40) | 33.0 % (93) * | 27.0 % (62) | 3.4 % (3) † | 27.5 % (219) | <0.0001 | |
emergency CS ¶ | 19.5 % (8) | 14.6 % (14) | 9.0 % (17) † | 14.9 % (25) | 23.8 % (20) † | 14.5 % (84) | 0.023 |
37 wk | 38 wk | 39 wk | 40 wk | 41 wk | Total | p-Value | |
---|---|---|---|---|---|---|---|
N = 62 | n= 136 | n= 282 | n= 230 | n= 87 | n= 797 | ||
preeclampsia | 6.5 % (4) * | 2.9 % (4) | 1.4 % (4) | 1.3 % (3) | 0 | 1.9 % (15) | 0.036 |
ICP | 4.8 % (3) | 8.1 % (11) | 6.7 % (19) | 2.6 % (6) | 0 * | 4.9 % (39) | 0.017 |
birthweight [g] | 2992 ± 412 † | 3233 ± 413 | 3311 ± 388 | 3457 ± 398 † | 3595 ± 388 † | 3346 ± 424 | <0.0001 |
macrosomia | 1.6 % (1) | 2.9 % (4) | 4.6 % (13) | 7.0 % (16) | 20.7 %(18) † | 6.5 % (52) | <0.0001 |
LGA | 16.1% (10) | 18.4 % (25) | 11.3 % (32) | 16.1 % (37) | 12.6 % (11) | 14.4 % (115) | 0.269 |
SGA | 4.8 % (3) | 1.5 % (2) | 3.2 % (9) | 3.9 % (9) | 6.9 % (6) | 3.6 % (29) | 0.295 |
phototherapy | 21% (13) † | 5.1% (7) | 5.7 % (16) | 1.7 % (4) † | 6.9 % (6) | 5.8 % (46) | <0.0001 |
NICU admission | 9.7 % (6) † | 2.9 % (4) | 2.1 % (6) | 1.3 % (3) | 2.3 % (2) | 2.6 % (21) | 0.007 |
5 min APG < 7 | 0 | 0.7 % (1) | 0 | 0 | 1.1 % (1) | 0.3 % (2) | 0.238 |
umbilical artery pH < 7.15 | 5.9 % (3) | 9.6 % (11) | 8.1 % (18) | 6.8 % (11) | 7.9 % (6) | 7.9 % (49) | 0.900 |
neonatal hypoglycemia | 6.5 % (4) * | 1.5 % (2) | 2.1 % (6) | 1.7 % (4) | 1.2 % (1) | 2.1 % (17) | 0.171 |
clavicle fracture ‡ | 3.0 % (1) | 2.4 % (2) | 3.5 % (6) | 3.5 % (5) | 4.7 % (3) | 3.4% (17) | 0.967 |
CANO | 29.0 % (18) † | 15.4 % (21) | 15.6 % (44) | 10.4 % (24) * | 16.1 % (14) | 15.2 % (121) | 0.010 |
Outcome | IOL at 39 Weeks n = 25 | Expectant Management n = 252 | aOR (95% CI) | p-Value |
---|---|---|---|---|
emergency cesarean section | 36.0 % (9) | 17.9 % (45) | 2.16 (0.86–5.43) | 0.102 |
macrosomia | 0 | 11.5 % (29) | NA | NA |
LGA | 4.0 % (1) | 13.9 % (35) | 0.33 (0.04–2.55) | 0.287 |
SGA | 4.0 % (1) | 4.8 % (12) | 0.76 (0.09–6.21) | 0.799 |
5 min APG < 7 | 0 | 0.4 % (1) | NA | NA |
Phototherapy | 4.0 % (1) | 3.2 % (8) | 1.04 (0.12–8.87) | 0.973 |
NICU | 4.0 % (1) | 2.0 % (5) | 3.30 (0.31–35.29) | 0.324 |
umbilical artery pH < 7.15 * | 12.5 % (3) | 7.3 % (16) | 2.05 (0.53–7.87) | 0.296 |
neonatal hypoglycemia | 8.0 % (2) | 2.0 % (5) | 12.29 (1.35–111.75) | 0.026 |
clavicle fracture | 0 | 3.2 % (8) | NA | NA |
CANO | 24.0 % (6) | 13.9 % (35) | 2.21 (0.80–6.15) | 0.127 |
Outcome | IOL at 40 Weeks n = 27 | Expectant Management n = 84 | aOR (95% CI) | p-Value |
---|---|---|---|---|
emergency cesarean section | 25.9 % (7) | 23.8 % (20) | 1.36 (0.45–4.11) | 0.586 |
macrosomia | 3.7 % (1) | 21.4 % (18) | 0.11 (0.01–0.92) | 0.041 |
LGA | 18.5 % (5) | 13.1 % (11) | 1.27 (0.38–4.27) | 0.704 |
SGA | 14.8 % (4) | 6.0 % (5) | 4.44 (0.94–20.90) | 0.059 |
5 min APG < 7 | 0 | 1.2 % (1) | NA | NA |
Phototherapy | 0 | 6.0 % (5) | NA | NA |
NICU | 3.7 % (1) | 2.4 % (2) | 1.00 (0.03–32.74) | 1.000 |
pH < 7.15 * | 14.8 % (4) | 8.0% (6) | 1.87 (0.42–8.44) | 0.415 |
neonatal hypoglycemia | 3.7 % (1) | 1.2 % (1) | 4.31 (0.18–102.97) | 0.367 |
clavicle fracture | 3.7 % (1) | 3.6 % (3) | 1.16 (0.10–14.27) | 0.909 |
CANO | 22.2 % (6) | 15.5 % (13) | 1.33 (0.39–4.60) | 0.649 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimják, P.; Krejčí, H.; Hornová, M.; Mráz, M.; Pařízek, A.; Kršek, M.; Haluzík, M.; Anderlová, K. Establishing the Optimal Time for Induction of Labor in Women with Diet-Controlled Gestational Diabetes Mellitus: A Single-Center Observational Study. J. Clin. Med. 2022, 11, 6410. https://doi.org/10.3390/jcm11216410
Šimják P, Krejčí H, Hornová M, Mráz M, Pařízek A, Kršek M, Haluzík M, Anderlová K. Establishing the Optimal Time for Induction of Labor in Women with Diet-Controlled Gestational Diabetes Mellitus: A Single-Center Observational Study. Journal of Clinical Medicine. 2022; 11(21):6410. https://doi.org/10.3390/jcm11216410
Chicago/Turabian StyleŠimják, Patrik, Hana Krejčí, Markéta Hornová, Miloš Mráz, Antonín Pařízek, Michal Kršek, Martin Haluzík, and Kateřina Anderlová. 2022. "Establishing the Optimal Time for Induction of Labor in Women with Diet-Controlled Gestational Diabetes Mellitus: A Single-Center Observational Study" Journal of Clinical Medicine 11, no. 21: 6410. https://doi.org/10.3390/jcm11216410
APA StyleŠimják, P., Krejčí, H., Hornová, M., Mráz, M., Pařízek, A., Kršek, M., Haluzík, M., & Anderlová, K. (2022). Establishing the Optimal Time for Induction of Labor in Women with Diet-Controlled Gestational Diabetes Mellitus: A Single-Center Observational Study. Journal of Clinical Medicine, 11(21), 6410. https://doi.org/10.3390/jcm11216410