The Impact of Coexisting Gestational Diabetes Mellitus on the Course of Preeclampsia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Blood Sample Preparation and Analysis
2.3. Statistical Analysis
3. Results
3.1. Maternal/Fetal Outcomes
3.2. Neonatal Outcomes
3.3. Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ananth, C.V.; Lavery, J.A.; Friedman, A.M.; Wapner, R.J.; Wright, J.D. Serious Maternal Complications in Relation to Severe Pre-Eclampsia: A Retrospective Cohort Study of the Impact of Hospital Volume. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 1246–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eades, C.E.; Cameron, D.M.; Evans, J.M.M. Prevalence of Gestational Diabetes Mellitus in Europe: A Meta-Analysis. Diabetes Res. Clin. Pract. 2017, 129, 173–181. [Google Scholar] [CrossRef] [PubMed]
- DeSisto, C.L.; Kim, S.Y.; Sharma, A.J. Prevalence Estimates of Gestational Diabetes Mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007–2010. Prev. Chronic Dis. 2014, 11, E104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S.; et al. The Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertens. 2018, 13, 291–310. [Google Scholar] [CrossRef]
- Pankiewicz, K.; Fijałkowska, A.; Issat, T.; Maciejewski, T.M. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs. Int. J. Mol. Sci. 2021, 22, 3132. [Google Scholar] [CrossRef]
- Rana, S.; Burke, S.D.; Karumanchi, S.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2022, 226, S1019–S1034. [Google Scholar] [CrossRef]
- Tan, M.Y.; Syngelaki, A.; Poon, L.C.; Rolnik, D.L.; O’Gorman, N.; Delgado, J.L.; Akolekar, R.; Konstantinidou, L.; Tsavdaridou, M.; Galeva, S.; et al. Screening for Pre-Eclampsia by Maternal Factors and Biomarkers at 11–13 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2018, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Akolekar, R.; de Cruz, J.; Foidart, J.-M.; Munaut, C.; Nicolaides, K.H. Maternal Plasma Soluble Fms-like Tyrosine Kinase-1 and Free Vascular Endothelial Growth Factor at 11 to 13 Weeks of Gestation in Preeclampsia. Prenat. Diagn. 2010, 30, 191–197. [Google Scholar] [CrossRef]
- Akolekar, R.; Zaragoza, E.; Poon, L.C.Y.; Pepes, S.; Nicolaides, K.H. Maternal Serum Placental Growth Factor at 11 + 0 to 13 + 6 Weeks of Gestation in the Prediction of Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2008, 32, 732–739. [Google Scholar] [CrossRef]
- Rana, S.; Powe, C.E.; Salahuddin, S.; Verlohren, S.; Perschel, F.H.; Levine, R.J.; Lim, K.-H.; Wenger, J.B.; Thadhani, R.; Karumanchi, S.A. Angiogenic Factors and the Risk of Adverse Outcomes in Women with Suspected Preeclampsia. Circulation 2012, 125, 911–919. [Google Scholar] [CrossRef]
- Yuen, L.; Saeedi, P.; Riaz, M.; Karuranga, S.; Divakar, H.; Levitt, N.; Yang, X.; Simmons, D. Projections of the Prevalence of Hyperglycaemia in Pregnancy in 2019 and beyond: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.; Freerksen, N.; Röhrig, S.; Hoeft, B.; Maul, H. Gestational Diabetes and Preeclampsia—Similar Risk Factor Profiles? Early Hum. Dev. 2012, 88, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Ostlund, I.; Haglund, B.; Hanson, U. Gestational Diabetes and Preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113, 12–16. [Google Scholar] [CrossRef]
- Weissgerber, T.L.; Mudd, L.M. Preeclampsia and Diabetes. Curr. Diabetes Rep. 2015, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Melchiorre, K.; Sutherland, G.R.; Liberati, M.; Thilaganathan, B. Preeclampsia Is Associated with Persistent Postpartum Cardiovascular Impairment. Hypertension 2011, 58, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Irgens, H.U.; Reisaeter, L.; Irgens, L.M.; Lie, R.T. Long Term Mortality of Mothers and Fathers after Pre-Eclampsia: Population Based Cohort Study. BMJ 2001, 323, 1213–1217. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Haththotuwa, R.; Kwok, C.S.; Babu, A.; Kotronias, R.A.; Rushton, C.; Zaman, A.; Fryer, A.A.; Kadam, U.; Chew-Graham, C.A.; et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003497. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chen, S.-H.; Ho, C.-H.; Liang, F.-W.; Chu, C.-C.; Wang, H.-Y.; Lu, Y.-H. End-Stage Renal Disease after Hypertensive Disorders in Pregnancy. Am. J. Obstet. Gynecol. 2014, 210, e1–e8. [Google Scholar] [CrossRef]
- Pankiewicz, K.; Szczerba, E.; Maciejewski, T.; Fijałkowska, A. Non-Obstetric Complications in Preeclampsia. Menopause Rev. 2019, 18, 99–109. [Google Scholar] [CrossRef]
- Kul, Ş.; Güvenç, T.S.; Baycan, Ö.F.; Çelik, F.B.; Çalışkan, Z.; Çetin Güvenç, R.; Çiftçi, F.C.; Caliskan, M. Combined Past Preeclampsia and Gestational Diabetes Is Associated with a Very High Frequency of Coronary Microvascular Dysfunction. Microvasc. Res. 2021, 134, 104104. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ouh, Y.-T.; Ahn, K.H.; Hong, S.C.; Oh, M.-J.; Kim, H.-J.; Cho, G.J. Preeclampsia: A Risk Factor for Gestational Diabetes Mellitus in Subsequent Pregnancy. PLoS ONE 2017, 12, e0178150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, S.K.; Das Gupta, R.; Alam, S.; Kaur, K.; Shamim, A.A.; Puthussery, S. Gestational Diabetes Mellitus (GDM) and Adverse Pregnancy Outcome in South Asia: A Systematic Review. Endocrinol. Diabetes Metab. 2021, 4, e00285. [Google Scholar] [CrossRef]
- Nunes, J.S.; Ladeiras, R.; Machado, L.; Coelho, D.; Duarte, C.; Furtado, J.M. The Influence of Preeclampsia, Advanced Maternal Age and Maternal Obesity in Neonatal Outcomes among Women with Gestational Diabetes. Rev. Bras. Ginecol. Obstet. 2020, 42, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Dmitrenko, O.P.; Karpova, N.S.; Nurbekov, M.K.; Papysheva, O.V. I/D Polymorphism Gene ACE and Risk of Preeclampsia in Women with Gestational Diabetes Mellitus. Dis. Markers 2020, 2020, 8875230. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Lin, M.-H.; Pai, L.-W.; Fang, J.-W.; Mou, C.-H.; Sung, F.-C.; Tzeng, Y.-L. Population-Based Study on Birth Outcomes among Women with Hypertensive Disorders of Pregnancy and Gestational Diabetes Mellitus. Sci. Rep. 2021, 11, 17391. [Google Scholar] [CrossRef]
- European Society of Gynecology (ESG); Association for European Paediatric Cardiology (AEPC); German Society for Gender Medicine (DGesGM); Regitz-Zagrosek, V.; Lundqvist, C.B.; Borghi, C.; Cifkova, R.; Ferreira, R.; Foidart, J.-M.; Gibbs, J.S.R.; et al. ESC Guidelines on the Management of Cardiovascular Diseases during Pregnancy: The Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur. Heart J. 2011, 32, 3147–3197. [Google Scholar] [CrossRef] [Green Version]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Persson, M.; Norman, M.; Hanson, U. Obstetric and Perinatal Outcomes in Type 1 Diabetic Pregnancies: A Large, Population-Based Study. Diabetes Care 2009, 32, 2005–2009. [Google Scholar] [CrossRef]
- Knight, K.M.; Thornburg, L.L.; Pressman, E.K. Pregnancy Outcomes in Type 2 Diabetic Patients as Compared with Type 1 Diabetic Patients and Nondiabetic Controls. J. Reprod. Med. 2012, 57, 397–404. [Google Scholar] [PubMed]
- Nerenberg, K.A.; Johnson, J.A.; Leung, B.; Savu, A.; Ryan, E.A.; Chik, C.L.; Kaul, P. Risks of Gestational Diabetes and Preeclampsia over the Last Decade in a Cohort of Alberta Women. J. Obstet. Gynaecol. Can. 2013, 35, 986–994. [Google Scholar] [CrossRef]
- de Guimarães, M.F.B.R.; Brandão, A.H.F.; de Rezende, C.A.L.; Cabral, A.C.V.; Brum, A.P.; Leite, H.V.; Capuruço, C.A.B. Assessment of Endothelial Function in Pregnant Women with Preeclampsia and Gestational Diabetes Mellitus by Flow-Mediated Dilation of Brachial Artery. Arch. Gynecol. Obstet. 2014, 290, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Karacay, O.; Sepici-Dincel, A.; Karcaaltincaba, D.; Sahin, D.; Yalvaç, S.; Akyol, M.; Kandemir, O.; Altan, N. A Quantitative Evaluation of Total Antioxidant Status and Oxidative Stress Markers in Preeclampsia and Gestational Diabetic Patients in 24–36 Weeks of Gestation. Diabetes Res. Clin. Pract. 2010, 89, 231–238. [Google Scholar] [CrossRef]
- Kapustin, R.V.; Drobintseva, A.O.; Alekseenkova, E.N.; Onopriychuk, A.R.; Arzhanova, O.N.; Polyakova, V.O.; Kvetnoy, I.M. Placental Protein Expression of Kisspeptin-1 (KISS1) and the Kisspeptin-1 Receptor (KISS1R) in Pregnancy Complicated by Diabetes Mellitus or Preeclampsia. Arch. Gynecol. Obstet. 2020, 301, 437–445. [Google Scholar] [CrossRef]
- Abo-Elmatty, D.M.; Mehanna, E.T. MIR146A Rs2910164 (G/C) Polymorphism Is Associated with Incidence of Preeclampsia in Gestational Diabetes Patients. Biochem. Genet. 2019, 57, 222–233. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhang, D. Maternal Diabetes Mellitus and Risk of Neonatal Respiratory Distress Syndrome: A Meta-Analysis. Acta Diabetol. 2019, 56, 729–740. [Google Scholar] [CrossRef]
- Bourbon, J.R.; Farrell, P.M. Fetal Lung Development in the Diabetic Pregnancy. Pediatr. Res. 1985, 19, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Gorgal, R.; Gonçalves, E.; Barros, M.; Namora, G.; Magalhães, A.; Rodrigues, T.; Montenegro, N. Gestational Diabetes Mellitus: A Risk Factor for Non-Elective Cesarean Section. J. Obstet. Gynaecol. Res. 2012, 38, 154–159. [Google Scholar] [CrossRef]
- Kc, K.; Shakya, S.; Zhang, H. Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Ann. Nutr. Metab. 2015, 66 (Suppl. 2), 14–20. [Google Scholar] [CrossRef]
- Nuzzo, A.M.; Giuffrida, D.; Moretti, L.; Re, P.; Grassi, G.; Menato, G.; Rolfo, A. Placental and Maternal SFlt1/PlGF Expression in Gestational Diabetes Mellitus. Sci. Rep. 2021, 11, 2312. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Lim, K.-H.; Lee, Y.; Rana, S.; Karumanchi, S.A.; Brown, F. Circulating Levels of the Antiangiogenic Marker Soluble FMS-like Tyrosine Kinase 1 Are Elevated in Women with Pregestational Diabetes and Preeclampsia: Angiogenic Markers in Preeclampsia and Preexisting Diabetes. Diabetes Care 2007, 30, 375–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapustin, R.V.; Kopteeva, E.V.; Alekseenkova, E.N.; Tral, T.G.; Tolibova, G.K.; Arzhanova, O.N. Placental Expression of Endoglin, Placental Growth Factor, Leptin, and Hypoxia-Inducible Factor-1 in Diabetic Pregnancy and Pre-Eclampsia. Gynecol. Endocrinol. 2021, 37, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.C.; Begum, S.; Seed, P.T.; Badran, D.; Briley, A.L.; Gill, C.; Godfrey, K.M.; Lawlor, D.A.; Nelson, S.M.; Patel, N.; et al. Gestational Diabetes Modifies the Association between PlGF in Early Pregnancy and Preeclampsia in Women with Obesity. Pregnancy Hypertens. 2018, 13, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Troncoso, F.; Acurio, J.; Herlitz, K.; Aguayo, C.; Bertoglia, P.; Guzman-Gutierrez, E.; Loyola, M.; Gonzalez, M.; Rezgaoui, M.; Desoye, G.; et al. Gestational Diabetes Mellitus Is Associated with Increased Pro-Migratory Activation of Vascular Endothelial Growth Factor Receptor 2 and Reduced Expression of Vascular Endothelial Growth Factor Receptor 1. PLoS ONE 2017, 12, e0182509. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.; Sauk, J.; Shah, A.; Smirnakis, K.V.; Jimenez-Kimble, R.; Ecker, J.L.; Thadhani, R. Inflammation and Glucose Intolerance: A Prospective Study of Gestational Diabetes Mellitus. Diabetes Care 2004, 27, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Harmon, A.C.; Cornelius, D.C.; Amaral, L.M.; Faulkner, J.L.; Cunningham, M.W.; Wallace, K.; LaMarca, B. The Role of Inflammation in the Pathology of Preeclampsia. Clin. Sci. 2016, 130, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Pietro, L.; Daher, S.; Rudge, M.V.C.; Calderon, I.M.P.; Damasceno, D.C.; Sinzato, Y.K.; Bandeira, C.; Bevilacqua, E. Vascular Endothelial Growth Factor (VEGF) and VEGF-Receptor Expression in Placenta of Hyperglycemic Pregnant Women. Placenta 2010, 31, 770–780. [Google Scholar] [CrossRef]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic Syndrome: Pathophysiology, Management, and Modulation by Natural Compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Vernini, J.M.; Nicolosi, B.F.; Arantes, M.A.; Costa, R.A.; Magalhães, C.G.; Corrente, J.E.; Lima, S.A.M.; Rudge, M.V.; Calderon, I.M. Metabolic Syndrome Markers and Risk of Hyperglycemia in Pregnancy: A Cross-Sectional Cohort Study. Sci. Rep. 2020, 10, 21042. [Google Scholar] [CrossRef]
- Grieger, J.A.; Bianco-Miotto, T.; Grzeskowiak, L.E.; Leemaqz, S.Y.; Poston, L.; McCowan, L.M.; Kenny, L.C.; Myers, J.E.; Walker, J.J.; Dekker, G.A.; et al. Metabolic Syndrome in Pregnancy and Risk for Adverse Pregnancy Outcomes: A Prospective Cohort of Nulliparous Women. PLoS Med. 2018, 15, e1002710. [Google Scholar] [CrossRef] [PubMed]
- Hooijschuur, M.C.E.; Ghossein-Doha, C.; Kroon, A.A.; De Leeuw, P.W.; Zandbergen, A.A.M.; Van Kuijk, S.M.J.; Spaanderman, M.E.A. Metabolic Syndrome and Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2019, 54, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, K.; Sharma, R.; Thilaganathan, B. Cardiovascular Implications in Preeclampsia: An Overview. Circulation 2014, 130, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Schnettler, W.T.; Powe, C.; Wenger, J.; Salahuddin, S.; Cerdeira, A.S.; Verlohren, S.; Perschel, F.H.; Arany, Z.; Lim, K.-H.; et al. Clinical Characterization and Outcomes of Preeclampsia with Normal Angiogenic Profile. Hypertens. Pregnancy 2013, 32, 189–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oe, Y.; Ko, M.; Fushima, T.; Sato, E.; Karumanchi, S.A.; Sato, H.; Sugawara, J.; Ito, S.; Takahashi, N. Hepatic Dysfunction and Thrombocytopenia Induced by Excess SFlt1 in Mice Lacking Endothelial Nitric Oxide Synthase. Sci. Rep. 2018, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E.; Sachs, B.P.; Sibai, B.M.; Epstein, F.H.; Romero, R.; Thadhani, R.; et al. Soluble Endoglin and Other Circulating Antiangiogenic Factors in Preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005. [Google Scholar] [CrossRef]
- Pankiewicz, K.; Szczerba, E.; Fijalkowska, A.; Szamotulska, K.; Szewczyk, G.; Issat, T.; Maciejewski, T.M. The Association between Serum Galectin-3 Level and Its Placental Production in Patients with Preeclampsia. J. Physiol. Pharmacol. 2020, 71, 1–12. [Google Scholar] [CrossRef]
Group 1 (n = 38) PE without GDM | Group 2 (n = 14) PE with GDM | Group 3 (n = 47) Control Group | Chi2 | p Value | |
---|---|---|---|---|---|
Maternal age (years) Gestational age at study enrollement (weeks) Gestational age at delivery (weeks) | 31.53 ± 5.68 33.58 ± 2.85 34.97 ± 2.95 | 34.93 ± 3.29 33.57 ± 4.33 34.64 ± 4.38 | 30.4 ± 4.9 36.49 ± 2.24 38.53 ± 1.73 | N/A N/A N/A | † †† ‡ |
Nulliparity | 27 (71.05%) | 7 (50.0%) | 24 (51.06%) | 3.96 | 0.48 |
Maternal Medical history: Hypothyroidism and other concomitant disease * | 14 (36.84%) | 8 (57.14%) | 13 (27.7%) | 4.16 | 0.125 |
Obesity | 12 (31.58%) | 7 (50.0%) | 11 (23.4%) | 3.66 | 0.16 |
Delivery mode: Cesarean section Vaginal birth | 31 (81.58%) 7 (18.42%) | 13 (92.86%) 1 (7.14%) | 12 (25.53%) 35 (74.47%) | 35.61 33.32 | <0.001 <0.001 |
Group 1 (n = 38) PE without GDM | Group 2 (n = 14) PE with GDM | Group 3 (n = 47) Control Group | Chi2 | p | |
---|---|---|---|---|---|
Birthweight (g) | 2239.2 ± 762.58 | 2523.6 ± 1079.3 | 3273.5 ± 491.56 | N/A | † |
First-minute Apgar score | 8.76 ± 1.62 | 8.29 ± 2.49 | 9.64 ± 0.965 | N/A | †† |
Fifth-minute Apgar score | 9.54 ± 0.77 | 9.29 ± 1.38 | 9.89 ± 0.43 | N/A | ‡ |
Neonatal complicationsDeath | 0 | 1 (7.14%) | 0 | 6.13 | 0.047 |
Admission to NICU | 8 (21.05%) | 2 (14.29%) | 0 | 10.57 | 0.005 |
RDS | 6 (15.79%) | 5 (35.71%) | 1 (2.13%) | 12.20 | 0.002 |
IVH III/IV | 1 (2.63%) | 0 | 0 | 1.62 | 0.445 |
NEC | 2 (5.26%) | 0 | 0 | 3.28 | 0.194 |
sepsis | 3 (7.89%) | 0 | 0 | 4.97 | 0.084 |
BPD | 2 (5.26%) | 0 | 0 | 3.28 | 0.194 |
without any complication | 30 (78.95%) | 8 (57.14%) | 46 (97.87%) | 15.59 | <0.001 |
Group 1 (PE without GDM) | Group 2 (PE with GDM) | Group 3 (Control) | p Value (Kruskal–Wallis Test) | |||
---|---|---|---|---|---|---|
Gr. 1 vs. 2 | Gr. 1 vs. 3 | Gr. 2 vs. 3 | ||||
sFlt-1 (pg/mL) | 12054.0 ± 6757.45 (95% CI 10842.65–15284.88) | 10109.5 ± 5265.4 (95% CI 7966.46–14046.8) | 3556.0 ± 2218.7 (95% CI 3160.69–4463.56) | 1.00 | <0.001 | <0.001 |
PlGF (pg/mL) | 54.75 ± 75.33 (95% CI 50.46–109.98) | 68.70 ± 53.38 (95% CI 52.47–114.1) | 192.9 ± 404.7 (95% CI 209.66–447.32) | 1.00 | <0.001 | <0.001 |
sFlt-1/PlGF | 209.27 ± 253.88 (95% CI 189.73–356.63) | 162.7 ± 327.37 (95% CI 66.9–444.9) | 15.7 ± 22.24 (95% CI 16.97–30.02) | 1.00 | <0.001 | <0.001 |
PLT | 189.5 ± 58.88 (95% CI 174.88–213.59) | 159.0 ± 79.6 (95% CI 136.7–228.7) | 217.0 ± 49.69 (95% CI 211.54–240.72) | 0.868 | 0.022 | 0.008 |
Creatinine (µmo/L) | 55.0 ± 12.71 (95% CI 53.03–61.63) | 61.0 ± 15.88 (95% CI 53.05–71.38) | 49.0 ± 7.09 (95% CI 45.17–50.04) | 1.00 | <0.01 | 0.001 |
eGFR (mL/min/1.732) | 119.8 ± 15.92 (95% CI 110.03–120.81) | 112.05 ± 18.85 (95% CI 95.78–117.55) | 124.6 ± 8.24 (95% CI 123.74–129.4) | 0.487 | 0.004 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pankiewicz, K.; Szczerba, E.; Fijałkowska, A.; Sierdziński, J.; Issat, T.; Maciejewski, T.M. The Impact of Coexisting Gestational Diabetes Mellitus on the Course of Preeclampsia. J. Clin. Med. 2022, 11, 6390. https://doi.org/10.3390/jcm11216390
Pankiewicz K, Szczerba E, Fijałkowska A, Sierdziński J, Issat T, Maciejewski TM. The Impact of Coexisting Gestational Diabetes Mellitus on the Course of Preeclampsia. Journal of Clinical Medicine. 2022; 11(21):6390. https://doi.org/10.3390/jcm11216390
Chicago/Turabian StylePankiewicz, Katarzyna, Ewa Szczerba, Anna Fijałkowska, Janusz Sierdziński, Tadeusz Issat, and Tomasz Mikołaj Maciejewski. 2022. "The Impact of Coexisting Gestational Diabetes Mellitus on the Course of Preeclampsia" Journal of Clinical Medicine 11, no. 21: 6390. https://doi.org/10.3390/jcm11216390
APA StylePankiewicz, K., Szczerba, E., Fijałkowska, A., Sierdziński, J., Issat, T., & Maciejewski, T. M. (2022). The Impact of Coexisting Gestational Diabetes Mellitus on the Course of Preeclampsia. Journal of Clinical Medicine, 11(21), 6390. https://doi.org/10.3390/jcm11216390