Long-Term Clinical Outcome of Low-Temperature Plasma Ablation Treatment for Recurrent Corneal Erosions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Low Temperature Plasma Ablation Surgery
2.5. Statistics
3. Results
3.1. Demographics and Medical Status
3.2. The Main Outcomes of Coblation
3.3. The Outcomes of In Vivo Confocal Microscopy
3.4. Case Examples
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, S.R.; Aldave, A.J.; Chodosh, J. Recurrent corneal erosion syndrome. Br. J. Ophthalmol. 2019, 103, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Laibson, P.R. Recurrent Corneal Erosions and Epithelial Basement Membrane Dystrophy. Eye Contact Lens Sci. Clin. Pr. 2010, 36, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Diez-Feijóo, E.; Grau, A.E.; Abusleme, E.I.; Durán, J.A. Clinical Presentation and Causes of Recurrent Corneal Erosion Syndrome. Cornea 2014, 33, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.L.; Leung, V. Interventions for recurrent corneal erosions. Cochrane Database Syst. Rev. 2018, 2018, CD001861. [Google Scholar] [CrossRef] [PubMed]
- Reidy, J.J.; Paulus, M.P.; Gona, S. Recurrent Erosions of the Cornea. Cornea 2000, 19, 767–771. [Google Scholar] [CrossRef]
- Ewald, M.; Hammersmith, K.M. Review of diagnosis and management of recurrent erosion syndrome. Curr. Opin. Ophthalmol. 2009, 20, 287–291. [Google Scholar] [CrossRef]
- Reeves, S.W.; Kang, P.C.; Zlogar, D.F.; Gupta, P.K.; Stinnett, S.; Afshari, N.A. Recurrent Corneal Erosion Syndrome: A Study of 364 Episodes. Ophthalmic Surg. Lasers Imaging 2010, 1–2. [Google Scholar] [CrossRef]
- Brown, N.; Bron, A. Recurrent erosion of the cornea. Br. J. Ophthalmol. 1976, 60, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Seitz, B. Recurrent Corneal Erosion Syndrome. Surv. Ophthalmol. 2008, 53, 3–15. [Google Scholar] [CrossRef]
- Hernández-Quintela, E.; Mayer, F.; Dighiero, P.; Briat, B.; Savoldelli, M.; Legeais, J.-M.; Renard, G. Confocal microscopy of cystic disorders of the corneal epithelium. Ophthalmology 1998, 105, 631–636. [Google Scholar] [CrossRef]
- Cogan, D.G.; Kuwabara, T.; Donaldson, D.D.; Collins, E. Microcystic Dystrophy of the Cornea. Arch. Ophthalmol. 1974, 92, 470–474. [Google Scholar] [CrossRef]
- Ehlers, N.; Møller, H.U. Pathology and pathomechanisms of epithelial microcystic and basement membrane abnormalities of the cornea. Acta Ophthalmol. 1988, 66, 318–326. [Google Scholar] [CrossRef]
- Tripathi, R.C.; Bron, A.J. Cystic disorders of the corneal epithelium. II. Pathogenesis. Br. J. Ophthalmol. 1973, 57, 376–390. [Google Scholar] [CrossRef] [Green Version]
- Labbé, A.; De Nicola, R.; Dupas, B.; Auclin, F.; Baudouin, C. Epithelial Basement Membrane Dystrophy: Evaluation with the HRT II Rostock Cornea Module. Ophthalmology 2006, 113, 1301–1308. [Google Scholar] [CrossRef]
- Hykin, P.G.; E Foss, A.; Pavesio, C.; Dart, J.K.G. The natural history and management of recurrent corneal erosion: A prospective randomised trial. Eye 1994, 8, 35–40. [Google Scholar] [CrossRef]
- Ziakas, N.G.; Boboridis, K.G.; Terzidou, C.; Naoumidi, T.L.; Mikropoulos, D.; Georgiadou, E.N.; Georgiadis, N.S. Long-term follow up of autologous serum treatment for recurrent corneal erosions. Clin. Exp. Ophthalmol. 2010, 38, 683–687. [Google Scholar] [CrossRef]
- Fraunfelder, F.W.; Cabezas, M. Treatment of Recurrent Corneal Erosion by Extended-wear Bandage Contact Lens. Cornea 2011, 30, 164–166. [Google Scholar] [CrossRef]
- Dursun, D.; Kim, M.C.; Solomon, A.; Pflugfelder, S.C. Treatment of recalcitrant recurrent corneal erosions with inhibitors of matrix metalloproteinase-9, doxycycline and corticosteroids. Am. J. Ophthalmol. 2001, 132, 8–13. [Google Scholar] [CrossRef]
- Wang, L.; Tsang, H.; Coroneo, M. Treatment of recurrent corneal erosion syndrome using the combination of oral doxycycline and topical corticosteroid. Clin. Exp. Ophthalmol. 2008, 36, 8–12. [Google Scholar] [CrossRef]
- Zauberman, N.A.; Artornsombudh, P.; Elbaz, U.; Goldich, Y.; Rootman, D.S.; Chan, C.C. Anterior Stromal Puncture for the Treatment of Recurrent Corneal Erosion Syndrome: Patient Clinical Features and Outcomes. Am. J. Ophthalmol. 2014, 157, 273–279.e1. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Hu, F.-R.; Hou, Y.-C. Recurrent Corneal Erosions Treated with Anterior Stromal Puncture by Neodymium: Yttrium-Aluminum-Garnet Laser. Ophthalmology 2009, 116, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Jhanji, V.; Constantinou, M.; Amiel, H.; Snibson, G.R.; Vajpayee, R.B. A randomised controlled trial of alcohol delamination and phototherapeutic keratectomy for the treatment of recurrent corneal erosion syndrome. Br. J. Ophthalmol. 2013, 98, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.; A Lee, G.; Maccheron, L. Epithelial debridement with diamond burr superficial keratectomy for the treatment of recurrent corneal erosion. Clin. Exp. Ophthalmol. 2012, 41, 621–622. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.C.; Rapuano, C.J.; Nagra, P.K.; Hammersmith, K.M. Excimer Laser Phototherapeutic Keratectomy in Eyes with Corneal Stromal Dystrophies with and without a Corneal Graft. Am. J. Ophthalmol. 2013, 155, 1111–1118.e2. [Google Scholar] [CrossRef]
- Metcalfe, C.; Muzaffar, J.; Daultrey, C.; Coulson, C. Coblation tonsillectomy: A systematic review and descriptive analysis. Eur. Arch Otorhinolaryngol. 2017, 112, 3–2647. [Google Scholar] [CrossRef]
- Svistushkin, V.M.; Starostina, S.V.; Toldanov, A.V. Possibilities of coblation in otorhinolaryngology: Analytical review. Eur. Arch Otorhinolaryngol. 2021, 279, 1655–1662. [Google Scholar] [CrossRef]
- Choby, G.W.; Hwang, P.H. Emerging Roles of Coblation in Rhinology and Skull Base Surgery. Otolaryngol. Clin. N. Am. 2017, 50, 599–606. [Google Scholar] [CrossRef]
- Stuck, B.A.; Köpke, J.; Hörmann, K.; Verse, T.; Eckert, A.; Bran, G.; Dübre, C.; Maurer, J.T. Volumetric tissue reduction in radiofrequency surgery of the tongue base. Otolaryngol. Neck Surg. 2005, 132, 132–135. [Google Scholar] [CrossRef]
- Qin, Q.; Li, B.; Ming, J.; Liu, B.; Mou, Y.; Jin, X. Clinical efficacy comparison of low-temperature plasma radiofrequency ablation and Nd:YAG laser in treating recurrent acquired nasolacrimal duct obstruction. Lasers Med Sci. 2020, 35, 1937–1944. [Google Scholar] [CrossRef]
- Patel, A.; Adshead, J.M. First Clinical Experience with New Transurethral Bipolar Prostate Electrosurgery Resection System: Controlled Tissue Ablation (Coblation Technology®). J. Endourol. 2004, 18, 959–964. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Li, W.; Huang, X. Semiautomated and Automated Quantitative Analysis of Corneal Sub-Basal Nerves in Patients with DED With Ocular Pain Using IVCM. Front. Med. 2022, 9, 831307. [Google Scholar] [CrossRef]
- Mhéalóid, N.; Lukasik, T.; Power, W.; Murphy, C.C. Alcohol delamination of the corneal epithelium for recurrent corneal erosion syndrome. Int. J. Ophthalmol. 2018, 11, 1129–1131. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Huang, X.; Xu, L.; Tang, S. Bandage Contact Lenses versus Deproteinized Calf Blood Extract Eye Gel for Recurrent Corneal Erosion Syndrome: A Case-Control Study. Ther. Clin. Risk Manag. 2020, 16, 1109–1115. [Google Scholar] [CrossRef]
- Wong, V.W.Y.; Chi, S.C.C.; Lam, D.S.C. Diamond Burr Polishing for Recurrent Corneal Erosions: Results from a Prospective Randomized Controlled Trial. Cornea 2009, 28, 152–156. [Google Scholar] [CrossRef]
- Hütz, W.W.; Stachs, O.; Hengerer, F.; Eckhardt, B. Efficacy of Different Excimer Laser Techniques in the Management of Recurrent Corneal Erosions. Ophthalmic Surgery Lasers Imaging Retin. 2010, 41, 635–641. [Google Scholar] [CrossRef]
- Huang, H.; Li, S.; Zhong, J.; Wang, B.; Peng, L.; Deng, Y.; Wang, M.; Yuan, J. Evaluation of the Safety and Efficacy of a Low-Temperature Plasma Surgical System for Pterygium. Cornea 2020, 39, 1581–1587. [Google Scholar] [CrossRef]
- Saleem, W.; Benton, A.H.; Marquart, M.E.; Wang, S.; Saleem, W.; Vigil, R.; Huang, B.; Sharma, A.C. Innovative cold atmospheric plasma (iCAP) decreases mucopurulent corneal ulcer formation and edema and reduces bacterial load in Pseudomonaskeratitis. Clin. Plasma Med. 2019, 16, 100093. [Google Scholar] [CrossRef]
- Trial, C.; Brancati, A.; Marnet, O.; Téot, L. Coblation Technology for Surgical Wound Debridement. Int. J. Low. Extremity Wounds 2012, 11, 286–292. [Google Scholar] [CrossRef]
- Tan, Q.W. Preliminary application of low-temperature plasma ablation combined with drug therapy in the treatment of infectious corneal ulcer. Int. Eye Sci. 2022, 485–489. (In Chinese) [Google Scholar] [CrossRef]
- Luo, S.R.; Wu, H.P.; Xie, Z.W. Clinical application of low-temperature plasma ablation for fungal corneal ulcers. Chin. J. Ophthalmol. 2020, 56, 780–785. (In Chinese) [Google Scholar] [CrossRef]
- Cai, M.H.; Zhao, M.; Xu, M. Application of low temperature plasma ablation in the treatment of ocular surface. Chin. J. Pract. Ophthalmol. 2017, 35, 1020–1022, 1024. (In Chinese) [Google Scholar] [CrossRef]
- Kheirkhah, A.; Dohlman, T.H.; Amparo, F.; Arnoldner, M.A.; Jamali, A.; Hamrah, P.; Dana, R. Effects of Corneal Nerve Density on the Response to Treatment in Dry Eye Disease. Ophthalmology 2014, 122, 662–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grupcheva, C.N.; Grupchev, D.I.; Radeva, M.N.; Vankova, D.I.; Manolova, Y.M. Microstructural evaluation of the mucin balls and their relations to the corneal surface—Insights by in vivo confocal microscopy. Contact Lens Anterior Eye 2017, 40, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Szczotka-Flynn, L.; Benetz, B.A.; Lass, J.; Albright, M.; Gillespie, B.; Kuo, J.; Fonn, D.; Sethi, A.; Rimm, A. The Association Between Mucin Balls and Corneal Infiltrative Events During Extended Contact Lens Wear. Cornea 2011, 30, 535–542. [Google Scholar] [CrossRef]
Patients of RCEs | |
---|---|
Number of eyes | 35 |
Age (years) | 48.9 ± 10.9 (25–67) |
Sex | 16 males, 19 females |
Duration (months) | 9.7 ± 5.7 (3–24) |
Pain score | 7.7 ± 2.4 (3–10) |
Follow-up (months) | 12.4 ± 6.1 (6–29) |
Aetiology | |
Trauma | 16 (45.7%) |
Others | 19 (54.3%) |
Preoperation | Postoperation | p Value | |
---|---|---|---|
Intraocular pressure | 15.5 ± 3.3 | 16.9 ± 3.3 | 0.090 |
Pain score | 7.7 ± 2.4 | 1.1 ± 1.8 | <0.001 |
Corneal astigmatism (D) | 1.5 ± 1.6 | 0.9 ± 1.1 | 0.175 |
Corneal thickness (mm) | 562.6 ± 42.2 | 549.6 ± 26.9 | 0.031 |
NIKTMH (mm) | 0.210 ± 0.054 | 0.208 ± 0.045 | 0.001 |
TBUT (s) | 6.191 ± 2.811 | 5.815 ± 2.802 | <0.001 |
CNFL (mm/mm2) | 10.106 ± 4.657 | 6.928 ± 6.620 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lin, L.; Zhu, Y.; Yang, S.; Huang, X. Long-Term Clinical Outcome of Low-Temperature Plasma Ablation Treatment for Recurrent Corneal Erosions. J. Clin. Med. 2022, 11, 6280. https://doi.org/10.3390/jcm11216280
Zhang Y, Lin L, Zhu Y, Yang S, Huang X. Long-Term Clinical Outcome of Low-Temperature Plasma Ablation Treatment for Recurrent Corneal Erosions. Journal of Clinical Medicine. 2022; 11(21):6280. https://doi.org/10.3390/jcm11216280
Chicago/Turabian StyleZhang, Yu, Lin Lin, Yirui Zhu, Shuo Yang, and Xiaodan Huang. 2022. "Long-Term Clinical Outcome of Low-Temperature Plasma Ablation Treatment for Recurrent Corneal Erosions" Journal of Clinical Medicine 11, no. 21: 6280. https://doi.org/10.3390/jcm11216280