Left Ventricular Myocardial and Cavity Velocity Disturbances Are Powerful Predictors of Significant Coronary Artery Stenosis
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Demographic and Clinical Indices of the Patients
3.2. Left Ventricular Function in Patients with and without CAD
3.3. Left Ventricle Function in Patients with and without Significant CAD
3.4. Predictors of CAD
Clinical Predictors
3.5. Echocardiographic Predictors
3.6. Echocardiographic Predictors of Multivessel and Single Vessel Coronary Disease
3.7. The Effect of LV Cavity Dyssynchrony and Longitudinal Systolic Function in CAD Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Detrano, R.; Gianrossi, R.; Froelicher, V. The diagnostic accuracy of the exercise electrocardiogram: A meta-analysis of 22 years of research. Prog. Cardiovasc. Dis. 1989, 32, 173–206. [Google Scholar] [CrossRef]
- Senior, R.; Monaghan, M.; Becher, H.; Mayet, J.; Nihoyannopoulos, P.; British Society of Echocardiography. Stress echocardiography for the diagnosis and risk stratification of patients with suspected or known coronary artery disease: A critical appraisal. Supported by the British Society of Echocardiography. Heart 2005, 91, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijenbrok-Kal, M.H.; Fleischmann, K.E.; Hunink, M.G. Stress echocardiography, stress single-photon-emission computed to-mography and electron beam computed tomography for the assessment of coronary artery disease: A meta-analysis of diag-nostic performance. Am. Heart J. 2007, 154, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Yao, S.-S.; Chaudhry, F.A. Utilization of stress echocardiography in patients with multivessel coronary artery disease. J. Cardiovasc. Med. 2016, 17, 354–360. [Google Scholar] [CrossRef]
- Armstrong, W.F.; Zoghbi, W.A. Stress echocardiography: Current methodology and clinical applications. J. Am. Coll. Cardiol. 2005, 45, 1739–1747. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.M.; Francis, D.P.; Gibson, D.G.; Henein, M.Y. Differentiation of ischemic from nonischemic cardiomyopathy during do-butamine stress by left ventricular long-axis function: Additional effect of left bundle-branch block. Circulation 2003, 108, 1214–1220. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.M.; Lim, E.; Gibson, D.G.; Henein, M.Y. Effect of dobutamine stress on left ventricular filling in ischemic dilated cardi-omyopathy: Pathophysiology and prognostic implications. J. Am. Coll. Cardiol. 2005, 46, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Dash, A.; Chakravarty, R. Radionuclide generators: The prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am. J. Nucl. Med. Mol. Imaging 2019, 9, 30e66. [Google Scholar]
- Miller, J.M.; Rochitte, C.E.; Dewey, M.; Arbab-Zadeh, A.; Niinuma, H.; Gottlieb, I.; Paul, N.; Clouse, M.E.; Shapiro, E.P.; Hoe, J.; et al. Di-agnostic performance of coronary angiography by 64-row CT. N. Engl. J. Med. 2008, 359, 2324–2336. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Senior, R. Stress Echocardiography in Stable Coronary Artery Disease. Curr. Cardiol. Rep. 2017, 19, 121. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Papadopoulos, C.H.; Karagiannis, S.; Karabinos, I.; Loizos, S.; Theodosis-Georgilas, A.; Aggeli, K.; Keramida, K.; Klettas, D.; Kounas, S.; et al. Updated knowledge and practical implementations of stress echocardiography in ischemic and non-ischemic cardiac diseases: An expert consensus of the Working Group of Echocardiography of the Hellenic Society of Cardiology. Hell. J. Cardiol. 2022, 64, 30–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Su, L.; Yang, R.; Zhang, H.; Liu, D. Myocardial strain/stress changes identified by echocardiography may reveal early sepsis-induced myocardial dysfunction. J. Int. Med. Res. 2018, 46, 1439–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bytyçi, I.; Bengrid, T.M.; Henein, M.Y. Longitudinal myocardial function is more compromised in cardiac syndrome X compared to insignificant CAD: Role of stress echocardiography and calcium scoring. Clin. Physiol. Funct. Imaging 2021, 42, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M. Cardiovascular Risk Prediction. Circulation 2010, 121, 1768–1777. [Google Scholar] [CrossRef]
- Galper, B.Z.; Moran, A.; Coxson, P.G.; Pletcher, M.J.; Heidenreich, P.; Lazar, L.D.; Rodondi, N.; Wang, Y.C.; Goldman, L. Using Stress testing to guide primary prevention of coronary heart disease among intermediate-risk patients. Circulation 2012, 125, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Bairey Merz, C.N.; Pepine, C.J.; Walsh, M.N.; Fleg, J.L. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 2017, 135, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.-M.; Li, W.; O’Sullivan, C.; Francis, D.P.; Gibson, D.; Henein, M.Y. Clinical in vivo calibration of pulse wave tissue Doppler velocities in the assessment of ventricular wall motion. A comparison study with M-mode echocardiography. Int. J. Cardiol. 2004, 97, 289–295. [Google Scholar] [CrossRef]
- Henein, M.Y.; Xiao, H.B.; Brecker, S.J.; Gibson, D.G. Berheim “a” wave: Obstructed right ventricular inflow or atrial cross talk? Br. Heart J. 1993, 69, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.M.; Lim, E.; Clague, J.; Gibson, D.G.; Henein, M.Y. Comparison of segmental and global markers of dyssynchrony in pre-dicting clinical response to cardiac resynchronization. Eur. Heart J. 2006, 27, 2426–2432. [Google Scholar] [CrossRef]
- Bajraktari, G. The Clinical Value of Total Isovolumic Time. Print & Media. Ph.D. Thesis, Umeå University, Umeå, Sweden, 2014. [Google Scholar]
- Duncan, A.M.; Francis, D.P.; Henein, M.Y. Gibson DG. Importance of left ventricular activation in determining myocardial per-formance (Tei) index: Comparison with total isovolumic time. Int. J. Cardiol. 2004, 95, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S.; et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [PubMed] [Green Version]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low diagnostic yield of elec-tive coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, H.S.; Cronin, P.; Blaha, M.J.; Budoff, M.J.; Kazerooni, E.A.; Narula, J.; Yankelevitz, D.; Abbara, S. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: A report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J. Cardiovasc. Comput. Tomogr. 2017, 11, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Marangelli, V.; Iliceto, S.; Piccini, G.; De Martino, G.; Sogente, L.; Rizzon, P. Detection of coronary artery disease by digital stress echocardiography: Comparison of exercise, transesophageal atrial pacing and dipyridamole echocardiography. J. Am. Coll. Cardiol. 1994, 24, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Bjørnstad, K.; Aakhus, S.; Hatle, L. Comparison of Digital Dipyridamole Stress Echocardiography and Upright Bicycle Stress Echocardiography for Identification of Coronary Artery Stenosis. Cardiology 1995, 86, 514–520. [Google Scholar]
- Mädler, C.F.; Payne, N.; Wilkenshoff, U.; Cohen, A.; Derumeaux, G.A.; Piérard, L.A.; Engvall, J.; Brodin, L.A.; Sutherland, G.R.; Fraser, A.G. Myocardial Doppler in Stress Echocardi-ography (MYDISE) Study Investigators. Non-invasive diagnosis of coronary artery disease by quantitative stress echocardi-ography: Optimal diagnostic models using off-line tissue Doppler in the MYDISE study. Eur. Heart J. 2003, 24, 1584–1594. [Google Scholar] [CrossRef] [Green Version]
- Henein, M.Y.; Priestley, K.; Davarashvili, T.; Buller, N.; Gibson, D.G. Early changes in left ventricular subendocardial function after successful coronary angioplasty. Heart 1993, 69, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Bajraktari, G.; Duncan, A.; Pepper, J.; Henein, M. Prolonged total isovolumic time predicts cardiac events following coronaryartery bypass surgery. Eur. J. Echocardiogr. 2008, 9, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Reduto, L.A.; Wickemeyer, W.J.; Young, J.B.; Del Ventura, L.A.; Reid, J.W.; Glaeser, D.H.; Quinones, M.A.; Miller, R.R. Left ventricular diastolic performance at rest and during exercise in patients with coronary artery disease. Assessment with first-pass radionuclide angiography. Circulation 1981, 63, 1228–1237. [Google Scholar] [CrossRef] [Green Version]
- Henein, M.Y.; O’Sullivan, C.; Davies, S.W.; Sigwart, U.; Gibson, D.G. Effects of acute coronary occlusion and previous ischaemic injury on left ventricular wall motion in humans. Heart 1997, 77, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.M.; Kim, H.L.; Kim, M.A.; Oh, S.; Kim, M.; Park, S.M.; Yoon, H.J.; Byun, Y.S.; Park, S.M.; Shin, M.S.; et al. Additional roles of diastolic parameters in the diagnosis of obstructive coronary artery disease. Coron. Artery Dis. 2021, 32, 145–151. [Google Scholar] [CrossRef] [PubMed]
Variable | Patients with Suspected CAD (n = 103) | Patients with CAD − (n = 44) | Patients with CAD + (n = 59) | p Value | |
---|---|---|---|---|---|
LV dimensions | |||||
LVEDD (cm) | Δ (%) | −0.53 ± 0.3 (−11.1) | −0.47 ± 0.3 (−10.1) | −0.54 ± 0.3 (−11.3) | 0.11 |
IVSd (cm) | Δ (%) | 0.12 ± 0.1 (11.5) | 0.12 ± 0.1 (11.9) | 0.11 ± 0.2 (10.5) | 0.33 |
LVPWd (cm) | Δ (%) | 0.09 ± 0.1 (10.1) | 0.10 ± 0.1 (11.2) | 0.08 ± 0.2 (9.0) | 0.12 |
LV systolic function | |||||
LV EF (%) | Δ (%) | 6.79 ± 6.1 (11.6) | 9.6 ± 4.3 (15.6) | 5.7 ± 6.4 (9.9) | 0.02 |
Lateral s’ (cm/s) | Δ (%) | 3.8 ± 3.6 (43.2) | 5.0 ± 2.6 (56.6) | 2.6 ± 1.8 (29.8) | 0.001 |
Septal s’ (cm/s) | Δ (%) | 3.2 ± 2.9 (43.0) | 4.1 ± 2.6 (54.6) | 2.2 ± 2.5 (29.7) | 0.004 |
Posterior s’ (cm/s) | Δ (%) | 5.2 ± 4.1 (53.9) | 6.7 ±3.9 (64.4) | 4.1 ± 3.9 (46.1) | 0.003 |
MAPSEl (cm) | Δ (%) | 0.17 ± 0.2 (11.9) | 0.20 ± 0.3 (12.9) | 0.12 ± 0.2 (9.2) | 0.002 |
MAPSEs (cm) | Δ (%) | 0.17 ± 0.2 (13.6) | 0.21 ± 0.3 (14.9) | 0.12 ± 0.2 (10.9) | 0.001 |
MAPSEp (cm) | Δ (%) | 0.24 ± 0.2 (17.1) | 0.29 ± 0.3 (18.3) | 0.18 ± 0.2 (14.7) | 0.001 |
LV diastolic function | |||||
E wave (cm/s) | Δ (%) | 10.3 ± 7.8 (15.5) | 15.1 ± 3.1 (22.8) | 6.11 ± 4.3 (9.1) | 0.001 |
A wave (cm/s) | Δ (%) | 9.1 ± 5.1 (13.7) | 12.5 ± 7.4 (19.1) | 5.40 ± 5.2 (8.1) | 0.02 |
E/A ratio | Δ (%) | 0.02 ± 0.1 (2.0) | 0.03 ± 0.5 (2.9) | 0.02 ± 0.3 (2.0) | 0.11 |
E/e’ ratio | Δ (%) | −0.34 ± 2.3 (−4.14) | −1.52 ± 1.5 (−17.3) | 0.23 ± 2.6 (2.6) | 0.01 |
Lateral e’ (cm/s) | Δ (%) | 2.0 ± 2.1 (21.4) | 3.7 ± 1.9 (45.1) | 0.50 ± 1.6 (5.9) | 0.001 |
Lateral a’ (cm/s) | Δ (%) | 2.9 ± 3.4 (28.1) | 2.4 ± 2.1 (24.5) | 2.6 ± 3.1 (24.3) | 0.32 |
Septal e’ (cm/s) | Δ (%) | 2.1 ± 1.7 (31.2) | 3.7 ± 1.9 (47.8) | 0.5 ± 1.6 (7.7) | 0.001 |
Septal a’ (cm/s) | Δ (%) | 3.2 ± 2.1 (34.7) | 3.5 ± 2.1 (37.2) | 3.0 ± 2.2 (33.3) | 0.39 |
Posterior e’(cm/s) | Δ (%) | 3.4 ± 1.7 (37.7) | 3.8 ± 1.8 (38.0) | 3.0 ± 2.5 (35.9) | 0.07 |
Posterior a’(cm/s) | Δ (%) | 3.3 ± 2.9 (30.8) | 3.1 ± 2.5 (27.8) | 3.3 ± 2.1 (31.4) | 0.73 |
LV global function | |||||
Ejection time (ms) | Δ (%) | −102 ± 11 (34.6) | −105 ± 30 (35.4) | −99 ± 41 (33.1) | 0.08 |
Ejection time(s/ms) | Δ (%) | 1.6 ± 1.4 (7.84) | 1.0 ± 1.3 (4.76) | 2.0 ± 1.4 (10) | 0.04 |
Filling time (ms) | Δ (%) | −157 ± 38 (−34.9) | −148 ± 20 (−32.3) | −169 ± 100 (−37.8) | 0.04 |
Filling time (s/ms) | Δ (%) | 1.5 ± 0.9 (4.77) | 2.7 ± 1.4 (8.25) | 0.4 ± 0.3 (1.32) | 0.01 |
t-IVT (s/min) | Δ (%) | −3.6 ± 1.8 (−40.6) | −4.1 ± 0.9 (−56.2) | −3.1 ± 2.0 (−29.8) | 0.03 |
Tei index (s/min) | Δ (%) | 0.13 ± 0.1 (−31.7) | 0.11 ± 0.1 (−34.4) | 0.16 ± 0.1 (−31.3) | 0.01 |
WMSI (score) | Δ (%) | 0.08 ± 0.03 (7.34) | 0.02 ± 0.02 (2.0) | 0.14 ± 0.1 (11.8) | 0.001 |
Variable | Patients with CAD + (n = 59) | Patients with Non Sig CAD (n = 29) | Patients with Sig CAD (n = 30) | p Value | |
---|---|---|---|---|---|
LV dimensions | |||||
LVEDD (cm) | Δ (%) | −0.53 ± 0.3 (−11.1) | −0.51 ± 0.3 (−11.1) | −0.55 ± 0.06 (−11.2) | 0.60 |
IVSd (cm) | Δ (%) | 0.11 ± 0.2 (10.5) | 0.12 ± 0.04 (11.4) | 0.11 ± 0.03 (10.4) | 0.85 |
LVPWd (cm) | Δ (%) | 0.08 ± 0.2 (9.0) | 0.09 ± 0.3 (9.7) | 0.08 ± 0.03 (9.2) | 0.11 |
LV systolic function | |||||
LV EF (%) | Δ (%) | 5.7 ± 6.4 (9.9) | 6.8 ± 1.3 (13.0) | 5.3 ± 1.2 (7.7) | 0.04 |
Lateral s’ (cm/s) | Δ (%) | 2.6 ± 1.8 (29.8) | 3.6 ± 1.6 (38.7) | 1.8 ± 2.2 (21.9) | 0.01 |
Septal s’ (cm/s) | Δ (%) | 2.2 ± 2.5 (29.7) | 2.8 ± 2.6 (35.9) | 1.7 ± 2.3 (24.7) | 0.02 |
Posterior s’(cm/s) | Δ (%) | 4.1 ± 3.9 (46.1) | 5.6 ± 3.4 (56.7) | 2.5 ± 3.7 (31.5) | 0.01 |
MAPSEl (cm) | Δ (%) | 0.12 ± 0.2 (9.2) | 0.17 ± 0.2 (12.3) | 0.09 ± 0.2 (7.4) | 0.02 |
MAPSEs (cm) | Δ (%) | 0.12 ± 0.2 (10.9) | 0.15 ± 0.03 (13.4) | 0.10 ± 0.2 (9.3) | 0.01 |
MAPSEp (cm) | Δ (%) | 0.18 ± 0.2 (14.7) | 0.23 ± 0.2 (18.4) | 0.16 ± 0.3 (13.9) | 0.03 |
LV diastolic function | |||||
E wave (cm/s) | Δ (%) | 6.11 ± 4.3 (9.1) | 8.5 ± 3.9 (14.9) | 6.4 ± 4.1 (10.2) | 0.02 |
A wave (cm/s) | Δ (%) | 5.40 ± 5.2 (8.1) | 8.5 ± 2.8 (12.3) | 4.4 ± 2.0 (6.8) | 0.001 |
E/A ratio | Δ (%) | 0.02 ± 0.3 (2.0) | 0.03 ± 0.2 (3.1) | 0.02 ± 0.1 (1.0) | 0.09 |
E/e’ ratio | Δ (%) | 0.23 ± 2.6 (2.6) | 0.11 ± 0.5 (1.3) | 0.96 ± 0.8 (10.4) | 0.001 |
Lateral e’ (cm/s) | Δ (%) | 0.50 ± 1.6 (5.9) | 1.1 ± 1.5 (12.7) | 0.09 ± 0.6 (1.1) | 0.02 |
Lateral a’ (cm/s) | Δ (%) | 2.6 ± 3.1 (24.3) | 2.92 ± 2.1 (26.3) | 2.25 ± 0.8 (21.6) | 0.09 |
Septal e’ (cm/s) | Δ (%) | 0.5 ± 1.6 (7.7) | 0.9 ± 1.8 (13.8) | 0.06 ± 1.1 (0.9) | 0.01 |
Septal a’ (cm/s) | Δ (%) | 3.0 ± 2.2 (33.3) | 3.33 ± 2.4 (35.9) | 2.65 ± 0.5 (30.3) | 0.57 |
Posterior e’ (cm/s) | Δ (%) | 3.0 ± 2.5 (35.9) | 4.3 ± 2.3 (51.8) | 2.39 ± 2.5 (28.5) | 0.03 |
Posterior a’ (cm/s) | Δ (%) | 3.3 ± 2.1 (31.4) | 3.30 ± 2.6 (26.2) | 3.38 ± 2.6 (36.2) | 0.47 |
LV global function | |||||
Ejection time (ms) | Δ (%) | −100 ± 41 (−33.3) | −79 ± 40 (−27.8) | −114 ± 36 (−36.8) | 0.01 |
Ejection time (ms) (s/min) | Δ (%) | −100 ± 41 (−33.4) | −79 ± 40 (−27.8) | −114 ± 36 (−36.8) | 0.001 |
Filling time (ms) | Δ (%) | −169 ± 100 (−37.8) | −125 ± 80 (−30.7) | −199 ± 90 (−41.9) | 0.001 |
Filling time (s/min) | Δ (%) | 0.4 ± 0.3 (4.65) | 1.8 ± 1.2 (5.9) | 0.9 ± 0.4 (2.9) | 0.08 |
t-IVT (s/min) | Δ (%) | −3.1 ± 2.0 (−29.8) | −3.6 ± 2.3 (−37.1) | −2.7 ± 1.9 (−24.1) | 0.01 |
Tei index (s/min) | Δ (%) | −0.16 ± 0.1 (−31.4) | −0.16 ± 0.1 (−32.6) | −0.12 ± 0.1 (−23.5) | 0.01 |
WMSI score | Δ (%) | 0.14 ± 0.1 (11.8) | 0.09 ± 0.01 (8.25) | 0.19 ± 0.02 (14.9) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bytyçi, I.; Alves, L.; Alves, O.; Lopes, C.; Bajraktari, G.; Henein, M.Y. Left Ventricular Myocardial and Cavity Velocity Disturbances Are Powerful Predictors of Significant Coronary Artery Stenosis. J. Clin. Med. 2022, 11, 6185. https://doi.org/10.3390/jcm11206185
Bytyçi I, Alves L, Alves O, Lopes C, Bajraktari G, Henein MY. Left Ventricular Myocardial and Cavity Velocity Disturbances Are Powerful Predictors of Significant Coronary Artery Stenosis. Journal of Clinical Medicine. 2022; 11(20):6185. https://doi.org/10.3390/jcm11206185
Chicago/Turabian StyleBytyçi, Ibadete, Liliana Alves, Oscar Alves, Carla Lopes, Gani Bajraktari, and Michael Y. Henein. 2022. "Left Ventricular Myocardial and Cavity Velocity Disturbances Are Powerful Predictors of Significant Coronary Artery Stenosis" Journal of Clinical Medicine 11, no. 20: 6185. https://doi.org/10.3390/jcm11206185
APA StyleBytyçi, I., Alves, L., Alves, O., Lopes, C., Bajraktari, G., & Henein, M. Y. (2022). Left Ventricular Myocardial and Cavity Velocity Disturbances Are Powerful Predictors of Significant Coronary Artery Stenosis. Journal of Clinical Medicine, 11(20), 6185. https://doi.org/10.3390/jcm11206185