Sarcopenia Is an Independent Risk Factor for Subsequent Osteoporotic Vertebral Fractures Following Percutaneous Cement Augmentation in Elderly Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Radiological Analysis
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lane, J.M.; Russell, L.; Khan, S.N. Osteoporosis. Clin. Orthop. Relat. Res. 2000, 372, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Ahn, S.H.; Kim, H.-Y.; Jang, S.; Ha, Y.-C.; Lee, Y.-K.; Chung, H.-Y. Incidence and mortality of subsequent vertebral fractures: Analysis of claims data of the Korea National Health Insurance Service from 2007 to 2016. Spine J. 2020, 20, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Liang, C.-L.; Hsieh, C.-H.; Tsai, Y.-D.; Chen, H.-J.; LiLiang, P.-C. Risk Factors of Subsequent Vertebral Compression Fractures after Vertebroplasty. Pain Med. 2012, 13, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Bao, L.-H.; Zhu, X.-F.; Qian, C.; Chen, X.; Han, Z.-B. Analysis of recurrent fracture of a new vertebral body after percutaneous vertebroplasty in patients with osteoporosis. Orthop. Surg. 2010, 2, 119–123. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Tsekoura, M.; Kastrinis, A.; Katsoulaki, M.; Billis, E.; Gliatis, J. Sarcopenia and Its Impact on Quality of Life. GeNeDis 2017, 2016, 213–218. [Google Scholar] [CrossRef]
- Cooper, C.; Dere, W.; Evans, W.; Kanis, J.A.; Rizzoli, R.; Sayer, A.A.; Sieber, C.C.; Kaufman, J.-M.; Van Kan, G.A.; Boonen, S.; et al. Frailty and sarcopenia: Definitions and outcome parameters. Osteoporos. Int. 2012, 23, 1839–1848. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Fortin, M.; Battié, M.C. Quantitative Paraspinal Muscle Measurements: Inter-Software Reliability and Agreement Using OsiriX and ImageJ. Phys. Ther. 2012, 92, 853–864. [Google Scholar] [CrossRef]
- Zuckerman, J.; Ades, M.; Mullie, L.; Trnkus, A.; Morin, J.-F.; Langlois, Y.; Ma, F.; Levental, M.; Morais, J.A.; Afilalo, J. Psoas Muscle Area and Length of Stay in Older Adults Undergoing Cardiac Operations. Ann. Thorac. Surg. 2017, 103, 1498–1504. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, H.M.; Schultz, L.; Mossa-Basha, F.; Griffith, B.; Chang, V. Morphometrics as a predictor of perioperative morbidity after lumbar spine surgery. Neurosurg. Focus 2015, 39, E5. [Google Scholar] [CrossRef] [PubMed]
- Bokshan, S.L.; Han, A.L.; DePasse, J.M.; Eltorai, A.E.M.; Marcaccio, S.E.; Palumbo, M.A.; Daniels, A.H. Effect of Sarcopenia on Postoperative Morbidity and Mortality after Thoracolumbar Spine Surgery. Orthopedics 2016, 39, e1159–e1164. [Google Scholar] [CrossRef] [PubMed]
- Druckmann, I.; Yashar, H.; Schwartz, D.; Schwartz, I.F.; Goykhman, Y.; Ben-Bassat, O.K.; Baruch, R.; Tzadok, R.; Shashar, M.; Cohen-Hagai, K.; et al. Presence of Sarcopenia before Kidney Transplantation Is Associated with Poor Outcomes. Am. J. Nephrol. 2022, 53, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Gakhar, H.; Dhillon, A.; Blackwell, J.; Hussain, K.; Bommireddy, R.; Klezl, Z.; Williams, J. Study investigating the role of skeletal muscle mass estimation in metastatic spinal cord compression. Eur. Spine J. 2015, 24, 2150–2155. [Google Scholar] [CrossRef]
- Ebbeling, L.; Grabo, D.J.; Shashaty, M.; Dua, R.; Sonnad, S.S.; Sims, C.A.; Pascual, J.L.; Schwab, C.W.; Holena, D.N. Psoas:lumbar vertebra index: Central sarcopenia independently predicts morbidity in elderly trauma patients. Eur. J. Trauma Emerg. Surg. 2013, 40, 57–65. [Google Scholar] [CrossRef]
- Chua, M.; Hochberg, U.; Regev, G.; Ophir, D.; Salame, K.; Lidar, Z.; Khashan, M. Gender differences in multifidus fatty infiltration, sarcopenia and association with preoperative pain and functional disability in patients with lumbar spinal stenosis. Spine J. 2021, 22, 58–63. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, S.; Jiang, Y.; Xi, Q.; Meng, Q.; Zhuang, Q.; Han, Y.; Sui, X.; Wu, G. Sarcopenia as a predictor of poor surgical and oncologic outcomes after abdominal surgery for digestive tract cancer: A prospective cohort study. Clin. Nutr. 2018, 38, 2881–2888. [Google Scholar] [CrossRef]
- Flexman, A.M.; Street, J.; Charest-Morin, R. The impact of frailty and sarcopenia on patient outcomes after complex spine surgery. Curr. Opin. Anaesthesiol. 2019, 32, 609–615. [Google Scholar] [CrossRef]
- Hida, T.; Shimokata, H.; Sakai, Y.; Ito, S.; Matsui, Y.; Takemura, M.; Kasai, T.; Ishiguro, N.; Harada, A. Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur. Spine J. 2015, 25, 3424–3431. [Google Scholar] [CrossRef]
- Anand, A.; Shetty, A.P.; Renjith, K.R.; KS, S.V.A.; Kanna, R.M.; Rajasekaran, S. Does Sarcopenia Increase the Risk for Fresh Vertebral Fragility Fractures?: A Case-Control Study. Asian Spine J. 2020, 14, 17–24. [Google Scholar] [CrossRef]
- Van Der Jagt-Willems, H.C.; De Groot, M.H.; Van Campen, J.P.C.M.; Lamoth, C.J.C.; Lems, W.F. Associations between vertebral fractures, increased thoracic kyphosis, a flexed posture and falls in older adults: A prospective cohort study. BMC Geriatr. 2015, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Lee, A.S.; Min, S.-H.; Yoon, S.-H. Risk Factors of New Compression Fractures in Adjacent Vertebrae after Percutaneous Vertebroplasty. Asian Spine J. 2011, 5, 180–187. [Google Scholar] [CrossRef]
- Bae, J.S.; Park, J.H.; Kim, K.J.; Kim, H.-S.; Jang, I.-T. Analysis of Risk Factors for Secondary New Vertebral Compression Fracture Following Percutaneous Vertebroplasty in Patients with Osteoporosis. World Neurosurg. 2017, 99, 387–394. [Google Scholar] [CrossRef]
- Vaccaro, A.R.; Oner, F.; Kepler, C.K.; Dvorak, M.; Schnake, K.; Bellabarba, C.; Reinhold, M.; Aarabi, B.; Kandziora, F.; Chapman, J.; et al. AOSpine Thoracolumbar Spine Injury Classification System. Spine 2013, 38, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Ebert, K.; Rolvien, T.; Oehler, N.; Lohmann, J.; Papavero, L.; Kothe, R.; Amling, M.; Barvencik, F.; Mussawy, H. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet. Disord. 2018, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, J.J.; Hughes, A.P.; Taher, F.; Girardi, F.P. An Association Can Be Found between Hounsfield Units and Success of Lumbar Spine Fusion. HSS Journal®: Musculoskelet. J. Hosp. Spéc. Surg. 2013, 10, 25–29. [Google Scholar] [CrossRef]
- Wang, W.-F.; Lin, C.-W.; Xie, C.-N.; Liu, H.-T.; Zhu, M.-Y.; Huang, K.-L.; Teng, H.-L. The association between sarcopenia and osteoporotic vertebral compression refractures. Osteoporos. Int. 2019, 30, 2459–2467. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Rhyu, K.-W. Recompression of vertebral body after balloon kyphoplasty for osteoporotic vertebral compression fracture. Eur. Spine J. 2010, 19, 1907–1912. [Google Scholar] [CrossRef]
- Iolascon, G.; Giamattei, M.T.; Moretti, A.; Di Pietro, G.; Gimigliano, F. Sarcopenia in women with vertebral fragility fractures. Aging Clin. Exp. Res. 2013, 25, 129–131. [Google Scholar] [CrossRef]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- Zhang, Z.-L.; Yang, J.-S.; Hao, D.-J.; Liu, T.-J.; Jing, Q.-M. Risk Factors for New Vertebral Fracture after Percutaneous Vertebroplasty for Osteoporotic Vertebral Compression Fractures. Clin. Interv. Aging 2021, ume16, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, Z.; Li, W.; Chen, Z. The effect of paraspinal muscle on functional status and recovery in patients with lumbar spinal stenosis. J. Orthop. Surg. Res. 2020, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.N.; Berger, C.; Liu, W.; Prior, J.C.; Cheung, A.M.; Hanley, D.A.; Boyd, S.K.; Wong, A.K.O.; Papaioannou, A.; Rahme, E.; et al. Differences in fracture prevalence and in bone mineral density between Chinese and White Canadians: The Canadian Multicentre Osteoporosis Study (CaMos). Arch. Osteoporos. 2020, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
No Adjacent Level Fracture | Adjacent Level Fracture | p | |
---|---|---|---|
N = 63 | N = 26 | ||
Age (years) | 80.2 ± 7.2 | 80.1 ± 7.1 | 0.986 |
Male | 26 (41.3%) | 5 (19.2%) | 0.054 |
Female | 37 (58.7%) | 21 (80.8%) | |
Use of corticosteroids | 3 (4.8%) | 2 (8.0%) | 0.62 |
No Adjacent Level Fracture N = 63 | Adjacent Level Fracture N = 26 | p | |
---|---|---|---|
PVA Procedure | |||
Kyphoplasty | 38 | 20 | |
Vertboplasty | 9 | 4 | 0.99 |
Not Available | 16 | 2 | |
AO Spine Thoracolumbar Injury Classification System | |||
A0 | 10 | 2 | |
A1 | 27 | 12 | |
A2 | 2 | 1 | 0.51 |
A3 | 8 | 4 | |
Not Available | 0 | 1 | |
Psoas tCSA (cm2) Psoas nCSA | 8.3 ± 2.5 0.75 ± 0.20 | 7.6 ± 1.8 0.67 ± 0.14 | 0.435 0.064 |
Psoas nCSA < Q2 Psoas nCSA ≥ Q2 | 24 (38.1%) 39 (61.9%) | 17 (65.4%) 9 (34.6%) | 0.054 |
Local kyphosis (degrees) | 8.6 (2.0–15.6) | 6.4 (−2.0–16.5) | 0.642 |
BMD (HU) | 71.9 ± 35.7 | 71.0 ± 41.0 | 0.875 |
Predictor | OR (95% CI) | p | |
---|---|---|---|
Adjacent level fracture | Psoas nCSA < Q2 | 2.79 (1.05–7.41) | 0.039 |
Age | 1.00 (0.93–1.07) | 0.986 | |
Male gender | 0.35 (0.11–1.08) | 0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lidar, S.; Salame, K.; Chua, M.; Khashan, M.; Ofir, D.; Grundstein, A.; Hochberg, U.; Lidar, Z.; Regev, G.J. Sarcopenia Is an Independent Risk Factor for Subsequent Osteoporotic Vertebral Fractures Following Percutaneous Cement Augmentation in Elderly Patients. J. Clin. Med. 2022, 11, 5778. https://doi.org/10.3390/jcm11195778
Lidar S, Salame K, Chua M, Khashan M, Ofir D, Grundstein A, Hochberg U, Lidar Z, Regev GJ. Sarcopenia Is an Independent Risk Factor for Subsequent Osteoporotic Vertebral Fractures Following Percutaneous Cement Augmentation in Elderly Patients. Journal of Clinical Medicine. 2022; 11(19):5778. https://doi.org/10.3390/jcm11195778
Chicago/Turabian StyleLidar, Shira, Khalil Salame, Michelle Chua, Morsi Khashan, Dror Ofir, Alon Grundstein, Uri Hochberg, Zvi Lidar, and Gilad J. Regev. 2022. "Sarcopenia Is an Independent Risk Factor for Subsequent Osteoporotic Vertebral Fractures Following Percutaneous Cement Augmentation in Elderly Patients" Journal of Clinical Medicine 11, no. 19: 5778. https://doi.org/10.3390/jcm11195778
APA StyleLidar, S., Salame, K., Chua, M., Khashan, M., Ofir, D., Grundstein, A., Hochberg, U., Lidar, Z., & Regev, G. J. (2022). Sarcopenia Is an Independent Risk Factor for Subsequent Osteoporotic Vertebral Fractures Following Percutaneous Cement Augmentation in Elderly Patients. Journal of Clinical Medicine, 11(19), 5778. https://doi.org/10.3390/jcm11195778