Post-COVID Pain Is Not Associated with Inflammatory Polymorphisms in People Who Had Been Hospitalized by COVID-19
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Defining Post-COVID Pain
2.3. DNA Collection and Genotyping
2.4. Post-COVID Pain Phenotyping
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Ji, P.; Pang, J.; Zhong, Z.; Li, H.; He, C.; Zhang, J.; Zhao, C. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J. Med. Virol. 2020, 92, 1902–1914. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C. Long COVID: Current definition. Infection 2022, 50, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet. Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Visco, V.; Vitale, C.; Rispoli, A.; Izzo, C.; Virtuoso, N.; Ferruzzi, G.J.; Santopietro, M.; Melfi, A.; Rusciano, M.R.; Maglio, A.; et al. Post-COVID-19 syndrome: Involvement and interactions between respiratory, cardiovascular and nervous systems. J. Clin. Med. 2022, 11, 524. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Navarro-Santana, M.; Plaza-Manzano, G.; Palacios-Ceña, D.; Arendt-Nielsen, L. Time course prevalence of Post-COVID pain symptoms of musculoskeletal origin in patients who had survived to SARS-CoV-2 infection: A systematic review and meta-analysis. Pain 2022, 163, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Lyngdoh, T.; Kakkar, A.K. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis. Eur. J. Clin. Investig. 2021, 51, e13429. [Google Scholar] [CrossRef]
- Coomes, E.A.; Haghbayan, H. Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev. Med. Virol. 2020, 30, 1–9. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold. Spring. Harbor. Perspect. Biol. 2014, 6, a01629. [Google Scholar] [CrossRef]
- Magro, G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X 2020, 2, 100029. [Google Scholar] [CrossRef]
- Gong, J.; Dong, H.; Xia, Q.S.; Huang, Z.Y.; Wang, D.K.; Zhao, Y.; Liu, W.H.; Tu, S.H.; Zhang, M.M.; Wang, Q.; et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19: A retrospective study. BMC Infect. Dis. 2020, 20, 963. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.E.; Katsaounou, P.; et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell. Host. Microbe. 2020, 27, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, H.; Dauphars, D.J.; He, Y.W. A potential role of interleukin 10 in COVID-19 pathogenesis. Trends. Immunol. 2021, 42, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Iwamura, A.P.D.; Tavares da Silva, M.R.; Hümmelgen, A.L.; Soeiro Pereira, P.V.; Falcai, A.; Grumach, A.S.; Goudouris, E.; Neto, A.C.; Prando, C. Immunity and inflammatory biomarkers in COVID-19: A systematic review. Rev. Med. Virol. 2021, 31, e2199. [Google Scholar] [CrossRef] [PubMed]
- Han, H. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes. Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Baud, V.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends. Cell. Biol. 2001, 11, 372–377. [Google Scholar] [CrossRef]
- Everitt, A.R.; Clare, S.; Pertel, T.; John, S.P.; Wash, R.S.; Smith, S.E.; Chin, C.R.; Feeley, E.M.; Sims, J.S.; Adams, D.J.; et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012, 484, 519–523. [Google Scholar] [CrossRef]
- Wakim, L.M.; Gupta, N.; Mintern, J.D.; Villadangos, J.A. Enhanced survival of lung tissue-resident memory CD8⁺ T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol. 2013, 14, 238–245. [Google Scholar] [CrossRef]
- Kaltoum, A.B.O. Mutations and polymorphisms in genes involved in the infections by COVID-19: A review. Gene. Rep. 2021, 23, 101062. [Google Scholar] [CrossRef]
- Chen, T.; Lin, Y.X.; Zha, Y.; Sun, Y.; Tian, J.; Yang, Z.; Lin, S.W.; Yu, F.; Chen, Z.S.; Kuang, B.H.; et al. A low-producing haplotype of interleukin-6 disrupting CTCF binding is protective against severe COVID-19. MBio 2021, 12, e0137221. [Google Scholar] [CrossRef]
- Falahi, S.; Zamanian, M.H.; Feizollahi, P.; Rezaiemanesh, A.; Salari, F.; Mahmoudi, Z.; Gorgin Karaji, A. Evaluation of the relationship between IL-6 gene single nucleotide polymorphisms and the severity of COVID-19 in an Iranian population. Cytokine 2022, 154, 155889. [Google Scholar] [CrossRef]
- Karcioglu Batur, L.; Hekim, N. Correlation between interleukin gene polymorphisms and current prevalence and mortality rates due to novel coronavirus disease 2019 (COVID-2019) in 23 countries. J. Med. Virol. 2021, 93, 5853–5863. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Sultan, A.; Elashry, M.A.; Farag, A.; Mortada, M.I.; Ghannam, M.A.; Saed, A.M.; Ghoneem, E. Association of TNF-α G-308 a Promoter Polymorphism with the Course and Outcome of COVID-19 Patients. Immunol. Investig. 2022, 51, 546–557. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, J.L.F.; Menezes, D.; de Aguiar, R.S.; de Souza, R.P. IFITM3, FURIN, ACE1, and TNF-α genetic association with COVID-19 outcomes: Systematic review and meta-analysis. Front. Genet. 2022, 13, 775246. [Google Scholar] [CrossRef]
- Li, Y.; Wei, L.; He, L.; Sun, J.; Liu, N. Interferon-induced transmembrane protein 3 gene polymorphisms are associated with COVID-19 susceptibility and severity: A meta-analysis. J. Infect. 2022, 84, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D.; IASP Taskforce for the Classification of Chronic Pain. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain 2019, 160, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Giordano, R.; Díaz-Gil, G.; Gil-Crujera, A.; Gómez-Sánchez, S.M.; Ambite-Quesada, S.; Arendt-Nielsen, L. Are pain polymorphisms associated with the risk and phenotype of post-COVID pain in previously hospitalized COVID-19 survivors? Genes 2022, 13, 1336. [Google Scholar] [CrossRef]
- Mayer, T.G.; Neblett, R.; Cohen, H.; Howard, K.J.; Choi, Y.H.; Williams, M.J.; Perez, Y.; Gatchel, R.J. The development and psychometric validation of the central sensitization inventory. Pain. Pract. 2012, 12, 276–285. [Google Scholar] [CrossRef]
- Bennett, M.I.; Smith, B.H.; Torrance, N.; Potter, J. The S-LANSS score for identifying pain of predominantly neuropathic origin: Validation for use in clinical and postal research. J. Pain. 2005, 6, 149–158. [Google Scholar] [CrossRef]
- García Campayo, J.; Rodero, B.; Alda, M.; Sobradiel, N.; Montero, J.; Moreno, S. Validation of the Spanish version of the Pain Catastrophizing Scale in fibromyalgia. Med. Clin. 2008, 131, 487–492. [Google Scholar] [CrossRef]
- Woby, S.R.; Roach, N.K.; Urmston, M.; Watson, P.J. Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia. Pain 2005, 117, 137–144. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Rodríguez-Jiménez, J.; Palacios-Ceña, M.; de-la-Llave-Rincón, A.I.; Fuensalida-Novo, S.; Florencio, L.L.; Ambite-Quesada, S.; Ortega-Santiago, R.; Arias-Buría, J.L.; Liew, B.X.W.; et al. Psychometric properties of the Hospital Anxiety and Depression Scale (HADS) in previously hospitalized COVID-19 patients. Int. J. Environ. Res. Public Health 2022, 19, 9273. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry. Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Khoja, O.; Silva Passadouro, B.; Mulvey, M.; Delis, I.; Astill, S.; Tan, A.L.; Sivan, M. Clinical characteristics and mechanisms of musculoskeletal pain in long COVID. J. Pain Res. 2022, 15, 1729–1748. [Google Scholar] [CrossRef] [PubMed]
- Batur, E.B.; Korez, M.K.; Gezer, I.A.; Levendoglu, F.; Ural, O. Musculoskeletal symptoms and relationship with laboratory findings in patients with COVID-19. Int. J. Clin. Pract. 2021, 75, e14135. [Google Scholar] [CrossRef]
- Bakılan, F.; Gökmen, İ.G.; Ortanca, B.; Uçan, A.; Eker Güvenç, Ş.; Şahin Mutlu, F.; Gökmen, H.M.; Ekim, A. Musculoskeletal symptoms and related factors in postacute COVID-19 patients. Int. J. Clin. Pract. 2021, 75, e14734. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Ryan-Murua, P.; de-la-Llave-Rincón, A.I.; Gómez-Mayordomo, V.; Arendt-Nielsen, L.; Torres-Macho, J. Serological biomarkers of COVID-19 severity at hospital admission are not related to long-term post-COVID pain symptoms in hospitalized COVID-19 survivors. Pain 2022. [Google Scholar] [CrossRef]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Tamariz, L.; Bast, E.; Abad, M.; Klimas, N.; Caralis, P.; Palacio, A. Post COVID-19 joint pain: Preliminary report of the relationship with antinuclear antibodies and inflammation. J. Med. Virol. 2022, 94, 3479–3481. [Google Scholar] [CrossRef]
- Florencio, L.L.; Fernández-de-las-Peñas, C. Long COVID: Systemic inflammation and obesity as therapeutic targets. Lancet. Respir. Med. 2022, 10, 726–727. [Google Scholar] [CrossRef]
- The PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: A prospective observational study. Lancet Respir Med. 2022, 10, 761–775. [Google Scholar] [CrossRef]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Peligro, P.J.; Casimiro, M.; Guerrero, J.J.; Gellaco, M.M.L.; et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. E Clin. Med. 2022, 53, 201624. [Google Scholar] [CrossRef] [PubMed]
Post-COVID Pain | No Post-COVID | p Value | |
---|---|---|---|
IL6 rs1800796 (n = 291) | |||
G/G (n = 226) | 91 (77.7%) | 135 (77.5%) | χ2 = 0.903; p = 0.637 |
C/G (n = 60) | 23 (19.7%) | 37 (21.3%) | |
C/C (n = 5) | 3 (2.6%) | 2 (1.2%) | |
IL-10 rs1800896 (n = 290) | |||
T/T (n = 112) | 46 (39.3%) | 66 (38.2%) | χ2 = 0.793; p = 0.673 |
T/C (n = 134) | 51 (43.6%) | 83 (47.9%) | |
C/C (n = 44) | 20 (17.1%) | 24 (13.9%) | |
TNF-α rs1800629 (n = 290) | |||
G/G (n = 229) | 95 (81.2%) | 134 (77.5%) | χ2 = 1.125; p = 0.570 |
A/G (n = 55) | 19 (16.2%) | 36 (20.8%) | |
A/A (n = 6) | 3 (2.6%) | 3 (1.7%) | |
IFITM3 rs12252 (n = 290) | |||
A/A (n = 243) | 95 (81.2%) | 148 (85.5%) | χ2 = 1.499; p = 0.473 |
A/G (n = 44) | 20 (17.1%) | 24 (13.9%) | |
G/G (n = 3) | 2 (1.7%) | 1 (0.6%) |
G/G (n = 91) | C/G (n = 23) | C/C (n = 3) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 55.3 ± 12.5 | 55.6 ± 11.9 | 55.0 ± 7.8 |
Height (m) | 1.63 ± 0.2 | 1.65 ± 0.1 | 1.63 ± 0.1 |
Weight (kg) | 81.4 ± 17.6 | 79.3 ± 20.3 | 80.7 ± 7.5 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.7 ± 1.6 | 5.4 ± 2.0 | 5.0 ± 1.8 |
Post-COVID Symptoms (months) | 17.9 ± 4.83 | 17.6 ± 5.9 | 16.3 ± 6.1 |
Sensory-Related Variables | |||
CSI (0–100) | 35.0 ± 18.7 | 34.5 ± 15.7 | 40.2 ± 16.4 |
S-LANSS (0–24) | 7.2 ± 6.7 | 6.3 ± 5.9 | 8.3 ± 2.5 |
Cognitive Variables | |||
PCS (0–52) | 8.6 ± 7.8 | 7.0 ± 6.7 | 8.3 ± 3.4 |
TSK-11 (0–44) | 22.7 ± 8.5 | 23.8 ± 9.8 | 26.0 ± 7.5 |
Psychological Variables | |||
HADS-A (0–21) | 4.7 ± 4.1 | 4.8 ± 4.9 | 4.3 ± 6.0 |
HADS-D (0–21) | 3.7 ± 4.2 | 4.8 ± 5.0 | 4.4 ± 3.0 |
PSQI (0–21) | 7.6 ± 3.9 | 6.7 ± 3.2 | 7.0 ± 7.1 |
T/T (n = 46) | T/C (n = 51) | C/C (n = 20) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 53.9 ± 12.2 | 57.1 ± 12.6 | 52.7 ± 11.8 |
Height (m) | 1.65 ± 0.1 | 1.64 ± 0.07 | 1.69 ± 0.1 |
Weight (kg) | 80.7 ± 16.9 | 79.1 ± 11.0 | 82.9 ± 15.7 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.3 ± 1.4 | 5.9 ± 1.9 | 5.5 ± 1.6 |
Post-COVID Symptoms (months) | 18.5 ± 4.7 | 16.8 ± 5.9 | 18.1 ± 3.8 |
Sensory-Related Variables | |||
CSI (0–100) | 38.7 ± 18.6 | 34.6 ± 18.4 | 37.8 ± 17.3 |
S-LANSS (0–24) | 7.0 ± 6.5 | 7.8 ± 6.2 | 7.9 ± 4.3 |
Cognitive Variables | |||
PCS (0–52) | 9.9 ± 9.5 | 8.8 ± 8.0 | 8.7 ± 6.5 |
TSK-11 (0–44) | 25.1 ± 9.5 | 23.5 ± 8.1 | 23.4 ± 6.8 |
Psychological Variables | |||
HADS-A (0–21) | 5.1 ± 4.4 | 4.6 ± 4.1 | 4.7 ± 4.7 |
HADS-D (0–21) | 4.1 ± 4.3 | 4.1 ± 4.4 | 4.3 ± 4.1 |
PSQI (0–21) | 7.5 ± 3.6 | 7.6 ± 3.9 | 7.3 ± 4.5 |
G/G (n = 95) | A/G (n = 19) | A/A (n = 3) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 55.1 ± 12.1 | 54.7 ± 14.7 | 56.0 ± 4.5 |
Height (m) | 1.63 ± 0.1 | 1.64 ± 0.1 | 1.68 ± 0.15 |
Weight (kg) | 80.0 ± 16.2 | 81.0 ± 13.9 | 89.3 ± 15.5 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.7 ± 1.8 | 5.4 ± 1.1 | 5.0 ± 0.9 |
Post-COVID Symptoms (months) | 17.4 ± 5.2 | 18.8 ± 4.9 | 19.0 ± 1.7 |
Sensory-Related Variables | |||
CSI (0–100) | 34.6 ± 19.0 | 39.9 ± 14.3 | 40.3. ± 14.9 |
S-LANSS (0–24) | 7.7 ± 8.7 | 8.0 ± 5.8 | 7.6 ± 6.4 |
Cognitive Variables | |||
PSC (0–52) | 8.4 ± 10.2 | 7.9 ± 6.0 | 8.7 ± 6.5 |
TSK-11 (0–44) | 23.3 ± 8.9 | 22.1 ± 7.8 | 25.3 ± 10.0 |
Psychological Variables | |||
HADS-A (0–21) | 4.6 ± 4.4 | 4.1 ± 4.0 | 3.8 ± 2.1 |
HADS-D (0–21) | 4.1 ± 4.5 | 4.0 ± 3.6 | 3.7 ± 1.2 |
PSQI (0–21) | 7.5 ± 3.9 | 8.0 ± 3.5 | 7.0 ± 3.6 |
A/A (n = 95) | A/G (n = 20) | G/G (n = 2) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 55.9 ± 11.9 | 53.4 ± 14.2 | 54.5 ± 10.4 |
Height (m) | 1.66 ± 0.07 | 1.63 ± 0.07 | 1.60 ± 0.06 |
Weight (kg) | 80.1 ± 18.4 | 83.7 ± 17.0 | 78.0 ± 10.1 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.7 ± 1.6 | 5.4 ± 1.8 | 5.3 ± 0.5 |
Post-COVID Symptoms (months) | 17.9 ± 5.3 | 17.0 ± 4.9 | 17.5 ± 3.5 |
Sensory-Related Variables | |||
CSI (0–100) | 34.9 ± 18.4 | 37.2 ± 17.9 | 39.5 ± 11.9 |
S-LANSS (0–24) | 7.0 ± 9.4 | 7.9 ± 7.5 | 7.0 ± 1.4 |
Cognitive Variables | |||
PCS (0–52) | 7.7 ± 8.1 | 9.1 ± 11.1 | 12.5 ± 11.8 |
TSK-11 (0–44) | 22.6 ± 8.2 | 24.6 ± 10.4 | 25.5 ± 4.9 |
Psychological Variables | |||
HADS-A (0–21) | 5.0 ± 4.5 | 3.65 ± 3.3 | 5.5 ± 0.7 |
HADS-D (0–21) | 4.1 ± 3.5 | 4.3 ± 3.7 | 4.5 ± 3.5 |
PSQI (0–21) | 7.8 ± 3.9 | 7.7 ± 2.9 | 9.5 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-de-las-Peñas, C.; Giordano, R.; Díaz-Gil, G.; Gómez-Esquer, F.; Ambite-Quesada, S.; Palomar-Gallego, M.A.; Arendt-Nielsen, L. Post-COVID Pain Is Not Associated with Inflammatory Polymorphisms in People Who Had Been Hospitalized by COVID-19. J. Clin. Med. 2022, 11, 5645. https://doi.org/10.3390/jcm11195645
Fernández-de-las-Peñas C, Giordano R, Díaz-Gil G, Gómez-Esquer F, Ambite-Quesada S, Palomar-Gallego MA, Arendt-Nielsen L. Post-COVID Pain Is Not Associated with Inflammatory Polymorphisms in People Who Had Been Hospitalized by COVID-19. Journal of Clinical Medicine. 2022; 11(19):5645. https://doi.org/10.3390/jcm11195645
Chicago/Turabian StyleFernández-de-las-Peñas, César, Rocco Giordano, Gema Díaz-Gil, Francisco Gómez-Esquer, Silvia Ambite-Quesada, Maria A. Palomar-Gallego, and Lars Arendt-Nielsen. 2022. "Post-COVID Pain Is Not Associated with Inflammatory Polymorphisms in People Who Had Been Hospitalized by COVID-19" Journal of Clinical Medicine 11, no. 19: 5645. https://doi.org/10.3390/jcm11195645
APA StyleFernández-de-las-Peñas, C., Giordano, R., Díaz-Gil, G., Gómez-Esquer, F., Ambite-Quesada, S., Palomar-Gallego, M. A., & Arendt-Nielsen, L. (2022). Post-COVID Pain Is Not Associated with Inflammatory Polymorphisms in People Who Had Been Hospitalized by COVID-19. Journal of Clinical Medicine, 11(19), 5645. https://doi.org/10.3390/jcm11195645