Bariatric Surgery and Myocardial Mechanics: A Meta-Analysis of Speckle Tracking Echocardiographic Studies
Abstract
:1. Introduction
2. Methods
2.1. Search and Study Selection
2.2. Echocardiographic Methods
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Studies
3.2. BMI and BP Changes
3.3. Echocardiographic Findings
3.4. Publication Bias
3.5. Correlation Analyses
3.6. Sensitivity Analyses
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lavie, C.J.; Laddu, D.; Arena, R.; Ortega, F.B.; Alpert, M.A.; Kushnerw, R.F. Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1506–1531. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 14321, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Sorimachi, H.; Omote, K.; Omar, M.; Popovic, D.; Verbrugge, F.H.; Reddy, Y.N.V.; Lin, G.; Obokata, M.; Miles, J.M.; Jensen, M.D.; et al. Sex and Central Obesity in Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Kim, J.; Arora, P.; Kwon, S.Y.; Parcha, V.; Levitan, E.B.; Jaeger, B.C.; Soliman, E.Z.; Howard, V.J. Relation of abdominal obesity to risk of atrial fibrillation (From the Reasons for Geographic and Racial Differences in Stroke [REGARDS] Study). Am. J. Cardiol. 2022, 162, 116–121. [Google Scholar] [CrossRef]
- Alpert, M.A.; Karthikeyan, K.; Abdullah, O.; Ghadban, R. Obesity and cardiac remodeling in adults: Mechanisms and clinical implications. Prog. Cardiovasc. Dis. 2018, 61, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, F.A.; Ambrosini, S.; Mohammed, S.A.; Kraler, S.; Lüscher, T.F.; Costantino, S.; Paneni, F. Inflammation in metabolic cardiomyopathy. Front. Cardiovasc. Med. 2021, 8, 742178. [Google Scholar] [CrossRef]
- Wharton, S.; Lau, D.C.W.; Vallis, M.; Sharma, A.M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boulé, N.; et al. Obesity in adults: A clinical practice guideline. CMAJ 2020, 19231, E875–E891. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, N.; Antoniou, S.A.; Batterham, R.L.; Busetto, L.; Godoroja, D.; Iossa, A.; Carrano, F.M.; Agresta, F.; Alarçon, I.; Azran, C.; et al. Clinical practice guidelines of the European Association for Endoscopic Surgery (EAES) on bariatric surgery: Update 2020 endorsed by IFSO-EC, EASO and ESPCOP. Surg. Endosc. 2020, 34, 2332–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Wong, S.K.H.; Law, B.T.T.; Grieve, E.; Wu, O.; Tong, D.K.H.; Leung, D.K.W.; Ng, E.K.W.; Lam, C.L.K.; Wong, C.K.H. Bariatric surgery is expensive but improves co-morbidity: 5-year assessment of patients with obesity and type 2 diabetes. Br. J. Surg. 2021, 108, 554–565. [Google Scholar] [CrossRef]
- van Veldhuisen, S.L.; Gorter, T.M.; van Woerden, G.; de Boer, R.A.; Rienstra, M.; Hazebroek, E.J.; van Veldhuisen, D.J. Bariatric surgery and cardiovascular disease: A systematic review and meta-analysis. Eur. Heart J. 2022, 43, 1955–1969. [Google Scholar] [CrossRef]
- Vest, A.R.; Heneghan, H.M.; Agarwal, S.; Schauer, P.R.; Young, J.B. Bariatric surgery and cardiovascular outcomes: A systematic review. Heart 2012, 98, 1763–1777. [Google Scholar] [CrossRef]
- Cuspidi, C.; Rescaldani, M.; Tadic, M.; Sala, C.; Grassi, G. Effects of bariatric surgery on cardiac structure and function: A systematic review and meta-analysis. Am. J. Hypertens 2014, 27, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, R.; Harling, L.; Efthimiou, E.; Darzi, A.; Athanasiou, T.; Ashrafian, H. The effects of bariatric surgery on cardiac structure and function: A systematic review of cardiac imaging outcomes. Obes. Surg. 2016, 26, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Iskander, J.; Kelada, P.; Rashad, L.; Massoud, D.; Afdal, P.; Abdelmassih, A.F. Advanced echocardiography techniques: The future stethoscope of systemic diseases. Curr. Probl. Cardiol. 2022, 476, 100847. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (ClinicalResearch ed.) 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshino, Y.; Villarraga, H.R.; Somers, V.K.; Miranda, W.R.; Garza, C.A.; Hsiao, J.F.; Yu, Y.; Saleh, H.K.; Lopez-Jimenez, F. Changes in myocardial mechanics in patients with obesity following major weight loss after bariatric surgery. Obesity 2013, 21, 1111–1118. [Google Scholar] [CrossRef]
- KemaloğluÖz, T.; ÜnalDayı, Ş.; Seyit, H.; Öz, A.; Ösken, A.; Atasoy, I.; Yıldız, U.; ÖzpamukKaradeniz, F.; İpek, G.; Köneş, O.; et al. The effects of weight loss after sleeve gastrectomy on left ventricular systolic function in men versus women. J. Clin. Ultrasound. 2016, 44, 492–499. [Google Scholar] [CrossRef]
- Leung, M.; Wong, V.W.; Durmush, E.; Phan, V.; Xie, M.; Leung, D.Y. Cardiac dysfunction in type II diabetes: A bittersweet, weighty problem, or both? Acta Diabetol. 2017, 54, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.H.; Lee, Y.J.; Heo, Y.S.; Park, S.D.; Kwon, S.W.; Woo, S.I.; Kim, D.H.; Park, K.S.; Kwan, J. Beneficial Effects of Bariatric Surgery on Cardiac Structure and Function in Obesity. Obes. Surg. 2017, 27, 620–625. [Google Scholar] [CrossRef]
- Tuluce, K.; Kara, C.; Tuluce, S.Y.; Cetin, N.; Topaloglu, C.; Bozkaya, Y.T.; Saklamaz, A.; Cinar, C.S.; Ergene, O. Early reverse cardiac remodeling effect of laparoscopic sleeve gastrectomy. Obes. Surg. 2017, 27, 364–375. [Google Scholar] [CrossRef]
- Mostfa, S.A. Impact of obesity and surgical weight reduction on cardiac remodeling. Indian Heart J. 2018, 70, S224–S228. [Google Scholar] [CrossRef]
- Inci, S.; Gül, M.; Alsancak, Y.; Ozkan, N. Short- and mid-term effects of sleeve gastrectomy on left ventricular function with two-dimensional speckle tracking echocardiography in obese patients. Echocardiography 2019, 36, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Frea, S.; Andreis, A.; Scarlatta, V.; Rovera, C.; Vairo, A.; Pistone, E.; Anselmino, M.; Golzio, P.G.; Toppino, M.; Giustetto, C.; et al. Subclinical left ventricular dysfunction in severe obesity and reverse cardiac remodeling after bariatric surgery. J. Cardiovasc. Echogr. 2020, 30, 22–28. [Google Scholar] [PubMed]
- Oliveras, A.; Molina, L.; Goday, A.; Sans, L.; Riera, M.; Vazquez, S.; Benaiges, D.; Granados, A.M.; Ramon, J.M.; Pascual, J.J. Effect of bariatric surgery on cardiac structure and function in obese patients: Role of the renin-angiotensin system. Clin. Hypertens. 2021, 23, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.C.L.; Del Castillo, J.M.; Parente, G.B.O.; Pedrosa, R.P.; Gadelha, P.S.; Lopes, R.D.; Kreimer, F.; Neto, F.R.M. Changes in left ventricular mechanics after sleeve gastrectomy. Obes. Surg. 2020, 30, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Grymyr, L.M.D.; Nadirpour, S.; Gerdts, E.; Nedrebø, B.G.; Hjertaas, J.J.; Matre, K.; Cramariuc, D. One-year impact of bariatric surgery on leftventricular mechanics: Results from the prospective FatWest study. Eur. Heart J. Open 2021, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.E.; Clavel, M.A.; Auclair, A.; Rodríguez-Flores, M.; O’Connor, K.; Garceau, P.; Rakowski, H.; Poirier, P. Early benefits of bariatric surgery on subclinical cardiac function: Contribution of visceral fat mobilization. Metabolism 2021, 119, 154773. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Campos, A.; Cruz-Utrilla, A.; López-Antoñanzas, L.; Luaces, M.; Pérez de Isla, L.; Rubio Herrera, M.Á.; Torres García, A.; Sánchez-Pernaute, A. Evaluation of myocardial function following SADI-S. Obes. Surg. 2021, 31, 3109–3115. [Google Scholar] [CrossRef]
- Wells, G. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non-Randomised Studies in Meta-Analysis. 2004. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 1 August 2022).
- Blomstrand, P.; Sjöblom, P.; Nilsson, M.; Wijkman, M.; Engvall, M.; Länne, T.; Nyström, F.H.; Östgren, C.J.; Engvall, J. Overweight and obesity impair left ventricular systolic function as measured by left ventricular ejection fraction and global longitudinal strain. Cardiovasc. Diabetol. 2018, 171, 113. [Google Scholar] [CrossRef]
- Pouwels, S.; Lascaris, B.; Nienhuijs, S.W.; Bouwman, A.R.; Buise, M.P. Short-term changes in cardiovascular hemodynamics in response to bariatric surgery and weight loss using the Nexfin® non-invasive continuous monitoring device: A pilot study. Obes. Surg. 2017, 27, 1835–1841. [Google Scholar] [CrossRef]
- Snelder, S.M.; Pouw, N.; Aga, Y.; Castro Cabezas, M.; Biter, L.U.; Zijlstra, F.; Kardys, I.; van Dalen, B.M. Cardiovascular biomarker profiles in obesity and relation to normalization of subclinical cardiac dysfunction after bariatric surgery. Cells 2022, 11, 422. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Anantha-Narayanan, M.; Obokata, M.; Koepp, K.E.; Erwin, P.; Carter, R.E.; Borlaug, B.A. Hemodynamic effects of weight loss in obesity: A systematic review and meta-analysis. JACC Heart Fail. 2019, 7, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Potter, E.; Marwick, T.H. Assessment of left ventricular function by echocardiography: The case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc. Imaging 2018, 11, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Daraban, A.M.; Ünlü, S.; Thomas, J.D.; Badano, L.P.; Voigt, J.U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: The EACVI/ASE Inter-Vendor Comparison Study. J. Am. Soc. Echocardiogr. 2015, 28, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
Author [Reference] Publication Year | Sample Size (n) | Age (Years) | Sex (% Male) | BMI Pre (kg/mq) | BMI Post Surgery (kg/mq) | GLS Pre (%) | GLS Post Surgery (%) | Type of Surgery | Mean Follow-Up (Months) | STE Method | Comorbidities |
---|---|---|---|---|---|---|---|---|---|---|---|
Koshino [16] 2013 | 28 | 52 ± 12 | 29 | 51 ± 9 | 37 ± 10 | −11.3 ± 4.3 | −14.1 ± 3.9 | Gastric banding, biliopancreatic diversion with duodenal switch or Roux-en-Y surgery | 23 | 2D | Prevalent hypertension and type 2 diabetes |
Kemaloglu Oz [17] 2016 | 53 | 37 ± 11 | 38 | 49.1 ± 8 | 36.9 ± 6.0 | −21 ± 2.3 | −26 ± 3 | Sleeve gastrectomy | 6 | 2D | None |
Leung [18] 2017 | 10 | na | na | 44.3 ± na | 34.5 ± na | −13 ± na | −19.3 ± na | Sleeve gastrectomy | 12 | 2D | Type 2 diabetes |
Shin [19] 2017 | 37 | 36 ± 10 | 30 | 39.7 ± 6 | 27.9 ± 4.0 | −14.1 ± 1.9 | −16.2 ± 1.4 | Sleeve gastrectomy | 15.6 | 2D | None |
Tuluce [20] 2017 | 32 | 34 ± 9 | 22 | 44 ± 4 | 38.9 ± 4 | −14.5 ± 3.2 | −15.9 ± 2.8 | Sleeve gastrectomy | 1 | 2D | None |
Mostfa [21] 2018 | 52 | 38 ± 6 | 35 | 42.3 ± 3 | 28.5 ± na | −17.2 ± 2.1 | −22,7 ± 3.9 | Gastric bending | 6 | 2D | None |
Inci [22] 2019 | 37 | na | 27 | 44.1 ± 3 | 33.5 ± na | −16.1 ± 1.3 | −17.5 ± 1.1 | Sleeve gastrectomy | 6 | 2D | None |
Frea [23] 2020 | 40 | 42 ± 11 | 28 | 44 ± 5 | 31 ± 5 | −17 ± 2 | −20 ± 1 | Sleeve gastrectomy or Roux-en-Y surgery | 10 | 2D | Prevalent LVH |
Oliveras [24] 2020 | 45 | 44 ± 9 | 24 | 42.5 ± 6 | 29.8 ± na | −19.1 ± 2.8 | −18.4 ± na | Sleeve gastrectomy or Roux-en-Y surgery | 12 | 2D | Prevalent hypertension and OSA |
Santos [25] 2020 | 25 | 35 ± 8 | 6 | 46.8 ± 6 | 38.4 ± 5.0 | −17.4 ± 3.2 | −19.2 ± 2.7 | Sleeve gastrectomy | 3.6 | 2D | Prevalent hypertension |
Grymyr [26] 2021 | 94 | 43 ± 10 | 29 | 41.8 ± 5 | 28.5 ± 5.0 | −15.8 ± 4.8 | −20.4 ± 2.8 | Roux-en-Y surgery | 12 | 2D | Prevalent hypertension and type 2 diabetes |
Piché [27] 2021 | 38 | 42 ± 11 | 11 | 48.4 ± 7 | 35.4 ± 6.0 | −16.3 ± 2.5 | −18.2 ± 1.9 | Biliopancreatic diversion with duodenal switch | 6 | 2D | Prevalent hypertension, type 2 diabetes and OSA |
Ruano-Campos [28] 2021 | 21 | 47 ± 2 | 33 | 46.8 ± 1 | 29.6 ± 1.0 | −19.8 ± 0.5 | −22.2 ± 0.4 | Single anastomosis duodeno-ileal bypass with sleeve gastrectomy | 9.2 | 2D | Prevalent hypertension and type 2 diabetes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherbesi, E.; Cuspidi, C.; Faggiano, A.; Sala, C.; Carugo, S.; Tadic, M. Bariatric Surgery and Myocardial Mechanics: A Meta-Analysis of Speckle Tracking Echocardiographic Studies. J. Clin. Med. 2022, 11, 4655. https://doi.org/10.3390/jcm11164655
Gherbesi E, Cuspidi C, Faggiano A, Sala C, Carugo S, Tadic M. Bariatric Surgery and Myocardial Mechanics: A Meta-Analysis of Speckle Tracking Echocardiographic Studies. Journal of Clinical Medicine. 2022; 11(16):4655. https://doi.org/10.3390/jcm11164655
Chicago/Turabian StyleGherbesi, Elisa, Cesare Cuspidi, Andrea Faggiano, Carla Sala, Stefano Carugo, and Marijana Tadic. 2022. "Bariatric Surgery and Myocardial Mechanics: A Meta-Analysis of Speckle Tracking Echocardiographic Studies" Journal of Clinical Medicine 11, no. 16: 4655. https://doi.org/10.3390/jcm11164655
APA StyleGherbesi, E., Cuspidi, C., Faggiano, A., Sala, C., Carugo, S., & Tadic, M. (2022). Bariatric Surgery and Myocardial Mechanics: A Meta-Analysis of Speckle Tracking Echocardiographic Studies. Journal of Clinical Medicine, 11(16), 4655. https://doi.org/10.3390/jcm11164655