Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. Baseline Characteristics of PCOS Patients Receiving Metformin Treatment Did Not Differ from Control Patients
3.2. HSI Significantly Improved after Seven Months of Metformin Treatment
3.3. Baseline Parameters in BMI Subgroups
3.4. BMI Significantly Improved after Metformin Therapy in All Weight Groups
3.5. Metformin Treatment Significantly Improved HSI in Normal or Overweight but Not in Obese and Very Obese Patients with PCOS
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramezani Binabaj, M.; Motalebi, M.; Karimi-Sari, H.; Rezaee Zavareh, M.S.; Alavian, S.M. Are Women With Polycystic Ovarian Syndrome at a High Risk of Non-Alcoholic Fatty Liver Disease? A Meta-Analysis. Hepat. Mon. 2014, 14, e23235. [Google Scholar] [CrossRef] [Green Version]
- Salva-Pastor, N.; López-Sánchez, G.N.; Chávez-Tapia, N.C.; Audifred-Salomón, J.R.; Niebla-Cárdenas, D.; Topete-Estrada, R.; Pereznuñez-Zamora, H.; Vidaltamayo-Ramírez, R.; Báez-Arellano, M.E.; Uribe, M.; et al. Polycystic Ovary Syndrome with Feasible Equivalence to Overweight as a Risk Factor for Non-Alcoholic Fatty Liver Disease Development and Severity in Mexican Population. Ann. Hepatol. 2020, 19, 251–257. [Google Scholar] [CrossRef]
- Roeb, E.; Steffen, H.M.; Bantel, H.; Baumann, U.; Canbay, A.; Demir, M.; Drebber, U.; Geier, A.; Hampe, J.; Hellerbrand, C.; et al. S2k Guideline non-alcoholic fatty liver disease. Z. Gastroenterol. 2015, 53, 668–723. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targher, G.; Day, C.P.; Bonora, E. Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legro, R.S.; Arslanian, S.A.; Ehrmann, D.A.; Hoeger, K.M.; Murad, M.H.; Pasquali, R.; Welt, C.K. Diagnosis and Treatment of Polycystic Ovary Syndrome: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4565–4592. [Google Scholar] [CrossRef] [Green Version]
- Conway, G.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Franks, S.; Gambineri, A.; Kelestimur, F.; Macut, D.; Micic, D.; Pasquali, R.; et al. The Polycystic Ovary Syndrome: A Position Statement from the European Society of Endocrinology. Eur. J. Endocrinol. 2014, 171, P1–P29. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.; Dominic, N.; Arasoo, J.; Cheang, H. Impact of Ethnicity on the Presentation of Hyperandrogenism in Polycystic Ovarian Syndrome: A Review. Pan Asian J. Obs. Gyn. 2020, 3, 125–140. [Google Scholar]
- Jain, T.; Negris, O.; Brown, D.; Galic, I.; Salimgaraev, R.; Zhaunova, L. Characterization of Polycystic Ovary Syndrome among Flo App Users around the World. Reprod. Biol. Endocrinol. 2021, 19, 36. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 Consensus on Diagnostic Criteria and Long-term Health Risks Related to Polycystic Ovary Syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society Criteria for the Polycystic Ovary Syndrome: The Complete Task Force Report. Fertil. Steril. 2009, 91, 456–488. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Mantovani, A.; Lugari, S.; Targher, G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int. J. Mol. Sci. 2019, 20, 2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caturano, A.; Acierno, C.; Nevola, R.; Pafundi, P.C.; Galiero, R.; Rinaldi, L.; Salvatore, T.; Adinolfi, L.E.; Sasso, F.C. Non-Alcoholic Fatty Liver Disease: From Pathogenesis to Clinical Impact. Processes 2021, 9, 135. [Google Scholar] [CrossRef]
- Rinaldi, L.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Morone, M.V.; Silvestri, C.; Giordano, M.; Salvatore, T.; Sasso, F.C. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants 2021, 10, 270. [Google Scholar] [CrossRef]
- Fedchuk, L.; Nascimbeni, F.; Pais, R.; Charlotte, F.; Housset, C.; Ratziu, V. Performance and Limitations of Steatosis Biomarkers in Patients with Nonalcoholic Fatty Liver Disease. Aliment. Pharmacol. Ther. 2014, 40, 1209–1222. [Google Scholar] [CrossRef]
- Dasarathy, S.; Dasarathy, J.; Khiyami, A.; Joseph, R.; Lopez, R.; McCullough, A.J. Validity of Real Time Ultrasound in the Diagnosis of Hepatic Steatosis: A Prospective Study. J. Hepatol. 2009, 51, 1061–1067. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic Steatosis Index: A Simple Screening Tool Reflecting Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- de los Ángeles Segura-Azuara, N.; Varela-Chinchilla, C.D.; Trinidad-Calderón, P.A. MAFLD/NAFLD Biopsy-Free Scoring Systems for Hepatic Steatosis, NASH, and Fibrosis Diagnosis. Front. Med. 2022, 8, 774079. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Morgillo, F.; Di Liello, R.; Galiero, R.; Nevola, R.; Marfella, R.; Monaco, L.; Rinaldi, L.; Adinolfi, L.E.; et al. Metformin: An Old Drug against Old Age and Associated Morbidities. Diabetes Res. Clin. Pract. 2020, 160, 108025. [Google Scholar] [CrossRef]
- Lachin, J.M.; Christophi, C.A.; Edelstein, S.L.; Ehrmann, D.A.; Hamman, R.F.; Kahn, S.E.; Knowler, W.C.; Nathan, D.M.; DDK Research Group. Factors Associated with Diabetes Onset during Metformin versus Placebo Therapy in the Diabetes Prevention Program. Diabetes 2007, 56, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; International PCOS Network. Recommendations from the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Clin. Endocrinol. 2018, 89, 251–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, A.; Akhter, A. Meta-Analysis of Randomized Controlled Trials of Pharmacologic Agents in Non-Alcoholic Steatohepatitis. Ann. Hepatol. 2017, 16, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Gentilcore, E.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.; David, E.; Rizzetto, M.; Marchesini, G. A Randomized Controlled Trial of Metformin versus Vitamin E or Prescriptive Diet in Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2005, 100, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Lutchman, G.; Kleiner, D.E.; Ricks, M.; Feld, J.J.; Borg, B.B.; Modi, A.; Nagabhyru, P.; Sumner, A.E.; Liang, T.J.; et al. Clinical Trial: Pilot Study of Metformin for the Treatment of Non-Alcoholic Steatohepatitis. Aliment. Pharmacol. Ther. 2009, 29, 172–182. [Google Scholar] [CrossRef]
- Jennings, J.; Faselis, C.; Yao, M.D. NAFLD-NASH: An Under-Recognized Epidemic. Curr. Vasc. Pharmacol. 2018, 16, 209–213. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; DeFronzo, R.A. Insulin Sensitivity Indices Obtained from Oral Glucose Tolerance Testing: Comparison with the Euglycemic Insulin Clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Shengir, M.; Krishnamurthy, S.; Ghali, P.; Deschenes, M.; Wong, P.; Chen, T.; Sebastiani, G. Prevalence and Predictors of Nonalcoholic Fatty Liver Disease in South Asian Women with Polycystic Ovary Syndrome. World J. Gastroenterol. 2020, 26, 7046–7060. [Google Scholar] [CrossRef]
- Spremović Rađenović, S.; Pupovac, M.; Andjić, M.; Bila, J.; Srećković, S.; Gudović, A.; Dragaš, B.; Radunović, N. Prevalence, Risk Factors, and Pathophysiology of Nonalcoholic Fatty Liver Disease (NAFLD) in Women with Polycystic Ovary Syndrome (PCOS). Biomedicines 2022, 10, 131. [Google Scholar] [CrossRef]
- Zhou, J.; Massey, S.; Story, D.; Li, L. Metformin: An Old Drug with New Applications. Int. J. Mol. Sci. 2018, 19, 2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L. Metformin and Systemic Metabolism. Trends Pharmacol. Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef]
- Kita, Y.; Takamura, T.; Misu, H.; Ota, T.; Kurita, S.; Takeshita, Y.; Uno, M.; Matsuzawa-Nagata, N.; Kato, K.; Ando, H.; et al. Metformin Prevents and Reverses Inflammation in a Non-Diabetic Mouse Model of Nonalcoholic Steatohepatitis. PLoS ONE 2012, 7, e43056. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, J.; Xiang, W.; Cui, Y.; Xie, B.; Wang, X.; Xu, Z.; Gan, L. Metformin Increases Hepatic Leptin Receptor and Decreases Steatosis in Mice. J. Endocrinol. 2016, 230, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, T.; Nocon, A.; Fry, J.; Sherban, A.; Rui, X.; Jiang, B.; Xu, X.J.; Han, J.; Yan, Y.; Yang, Q.; et al. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity. Diabetes 2016, 65, 2295–2310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokubuchi, I.; Tajiri, Y.; Iwata, S.; Hara, K.; Wada, N.; Hashinaga, T.; Nakayama, H.; Mifune, H.; Yamada, K. Beneficial Effects of Metformin on Energy Metabolism and Visceral Fat Volume through a Possible Mechanism of Fatty Acid Oxidation in Human Subjects and Rats. PLoS ONE 2017, 12, e0171293. [Google Scholar] [CrossRef]
- Qi, T.; Chen, Y.; Li, H.; Pei, Y.; Woo, S.-L.; Guo, X.; Zhao, J.; Qian, X.; Awika, J.; Huo, Y.; et al. A Role for PFKFB3/IPFK2 in Metformin Suppression of Adipocyte Inflammatory Responses. J. Mol. Endocrinol. 2017, 59, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Hossain, N.; Afendy, A.; Stepanova, M.; Nader, F.; Srishord, M.; Rafiq, N.; Goodman, Z.; Younossi, Z. Independent Predictors of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1224–1229.e2. [Google Scholar] [CrossRef]
- Hadizadeh, F.; Faghihimani, E.; Adibi, P. Nonalcoholic Fatty Liver Disease: Diagnostic Biomarkers. World J. Gastrointest. Pathophysiol. 2017, 8, 11–26. [Google Scholar] [CrossRef]
- Preiss, D.; Sattar, N.; Harborne, L.; Norman, J.; Fleming, R. The Effects of 8 Months of Metformin on Circulating GGT and ALT Levels in Obese Women with Polycystic Ovarian Syndrome. Int. J. Clin. Pract. 2008, 62, 1337–1343. [Google Scholar] [CrossRef]
- Frøssing, S.; Nylander, M.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Kistorp, C.; Skouby, S.O.; Faber, J. Effect of Liraglutide on Ectopic Fat in Polycystic Ovary Syndrome: A Randomized Clinical Trial. Diabetes Obes. Metab. 2018, 20, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A.; NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
Control Group Mean ± SEM or n (%) | Metformin Group Mean ± SEM or n (%) | p-Value | |
---|---|---|---|
Number | 13 | 68 | |
Clinical parameters | |||
Age (years) | 25.3 ± 1.4 | 26.3 ± 0.8 | 0.81 |
Body weight (kg) | 89.4 ± 8.4 | 90.7 ± 2.5 | 0.65 |
Body mass index (kg/m2) | 32.1 ± 3.0 | 33.0 ± 0.9 | 0.64 |
Systolic blood pressure (mmHg) | 137.5 ± 4.6 | 137.7 ± 2.3 | 0.19 |
Diastolic blood pressure (mmHg) | 85.2 ± 2.1 | 89.3 ± 1.4 | 0.98 |
Co-medication | |||
Oral contraceptive | 1/13 (8%) | 9/68 (13%) | 1 |
Laboratory parameters | |||
Triglycerides (mg/dL) | 133.5 ± 29.5 | 115.4 ± 6.9 | 0.93 |
HDL-cholesterol (mg/dL) | 58.3 ± 7.7 | 55.9 ± 2.3 | 0.88 |
Fasting glucose (mg/dL) | 87.9 ± 2.9 | 84.4 ± 2.0 | 0.79 |
Fasting insulin (µU/mL) | 20.2 ± 2.1 | 14.2 ± 2.2 | 0.79 |
HOMA-IR | 4.1 ± 0.6 | 4.1 ± 0.4 | 0.59 |
Matsuda index | 2.9 ± 0.7 | 3.3 ± 0.3 | 0.46 |
ALT (U/L) | 21.6 ± 1.9 | 32.1 ± 3.1 | 0.08 |
AST (U/L) | 22.0 ± 1.2 | 29.6 ± 1.4 | <0.01 * |
HSI | 41.9 ± 3.3 | 43.2 ± 1.0 | 0.51 |
HSI > 36 | 7/13 (53.8%) | 53/68 (77.9%) | 0.07 |
Group I: BMI < 30 kg/m2 | Group II: BMI 30–35 kg/m2 | Group III: BMI > 35 kg/m2 | p-Value * | |
---|---|---|---|---|
Number | 24 | 17 | 27 | |
Observational time (months) | 6.4 ± 0.3 | 7.3 ± 0.3 | 7.3 ± 0.3 | |
Demographic variables | ||||
Age (years) | 25.5 ± 1.5 | 26.4 ± 1.7 | 27.0 ± 1.1 | 0.73 |
Body weight (kg) | 70.8 ± 2.3 | 87.1 ± 1.5 | 110.6 ± 2.2 | <0.001 * |
BMI (kg/m2) | 25.6 ± 0.6 | 32.2 ± 0.4 | 40.2 ± 0.7 | <0.001 * |
Systolic blood pressure (mmHg) | 132 ± 3 | 136 ± 5 | 143 ± 4 | 0.26 |
Diastolic blood pressure (mmHg) | 85 ± 1 | 89 ± 3 | 94 ± 3 | <0.01 * |
Medication | ||||
Metformin dosage (mg/day) | 1507 ± 73 | 1622 ± 71 | 1770 ± 28 | <0.01 * |
Metformin dosage (mg/kg body weight) | 21.5 ± 0.8 | 18.7 ± 0.7 | 16.2 ± 0.4 | <0.001 * |
Oral contraceptive | 3/24 | 2/17 | 4/27 | 1 |
Laboratory parameters | ||||
Triglycerides (mg/dL) | 90.8 ± 8.3 | 119.7 ± 10.5 | 134.8 ± 13.0 | 0.02 * |
HDL-cholesterol (mg/dL) | 62.4 ± 3.5 | 53.6 ± 4.4 | 51.7 ± 4.0 | 0.12 |
Fasting glucose (mg/dL) | 84.4 ± 2.0 | 91.1 ± 3.7 | 87.9 ± 2.9 | 0.31 |
Fasting insulin (µU/mL) | 14.2 ± 2.2 | 20.4 ± 2.1 | 20.2 ± 2.1 | 0.10 |
HOMA index | 2.9 ± 0.5 | 4.8 ± 0.7 | 4.4 ± 0.5 | 0.04 * |
Matsuda index | 3.9 ± 0.7 | 2.5 ± 0.5 | 2.5 ± 0.2 | 0.06 |
ALT (U/L) | 30,2 ± 6.7 | 26.2 ± 3.1 | 37.6 ± 4.6 | 0.06 |
AST (U/L) | 27.3 ± 2.5 | 28.4 ± 1.8 | 32.4 ± 2.4 | 0.17 |
HSI | 35.5 ± 0.9 | 41.2 ± 0.6 | 51.2 ± 0.9 | <0.001 * |
HSI > 36 | 9/24 | 17/17 (100%) | 27/27 (100%) | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riemann, A.; Blaschke, M.; Jauho-Ghadimi, A.; Siggelkow, H.; Gollisch, K.S.C. Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome. J. Clin. Med. 2022, 11, 4294. https://doi.org/10.3390/jcm11154294
Riemann A, Blaschke M, Jauho-Ghadimi A, Siggelkow H, Gollisch KSC. Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome. Journal of Clinical Medicine. 2022; 11(15):4294. https://doi.org/10.3390/jcm11154294
Chicago/Turabian StyleRiemann, Annika, Martina Blaschke, Annukka Jauho-Ghadimi, Heide Siggelkow, and Katja Susanne Claudia Gollisch. 2022. "Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome" Journal of Clinical Medicine 11, no. 15: 4294. https://doi.org/10.3390/jcm11154294
APA StyleRiemann, A., Blaschke, M., Jauho-Ghadimi, A., Siggelkow, H., & Gollisch, K. S. C. (2022). Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome. Journal of Clinical Medicine, 11(15), 4294. https://doi.org/10.3390/jcm11154294