Evaluating the Link between BAFF System Gene Expression and Acute Rejection Development in Kidney Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographic Data, Clinical Characteristics, and Study Design
2.2. Immunosuppressive Treatment
2.3. Kidney Rejection Diagnosis
2.4. Design of the Study of Gene Expression of Molecules of the BAFF System
2.5. Total RNA Extraction
2.6. mRNA Reverse Transcription
2.7. Gene Expression of the BAFF System Molecules
2.8. Meta-Analysis of Transcriptomic Data from the GEO Database
2.8.1. Inclusion Criteria for Gene Expression Studies
2.8.2. Analysis of GEO Studies
2.9. Statistical Analysis
3. Results
3.1. Dynamics of Gene Expression during the Post-Transplantation Period
3.2. Gene Expression of BAFF, APRIL, and Their Receptors in Kidney Recipients with AR
3.3. Association of the Pre-Transplant Expression Levels of the BAFF System with Graft Function
3.4. Gene Expression of BAFF, APRIL, and Their Receptors in GEO Database Studies: Biopsy Samples and Peripheral Blood
3.5. Gene Expression of BAFF, APRIL, and Their Receptors: Influence of the Presence of Anti-HLA and DSA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Luu, V.P.; Vazquez, M.I.; Zlotnik, A. B cells participate in tolerance and autoimmunity through cytokine production. Autoimmunity 2014, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.P.; Haynes, L.; Sayles, P.C.; Duso, D.K.; Eaton, S.M.; Lepak, N.M.; Johnson, L.L.; Swain, S.L.; Lund, F.E. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 2000, 1, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Bossen, C.; Schneider, P. BAFF, APRIL and their receptors: Structure, function and signaling. Semin. Immunol. 2006, 18, 263–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, J.; Akkoyunlu, M. The role of BAFF system molecules in host response to pathogens. Clin. Microbiol. Rev. 2017, 30, 991–1014. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A. Targeting BAFF in autoimmunity. Curr. Opin. Immunol. 2010, 22, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Meinl, E.; Thaler, F.S.; Lichtenthaler, S.F. Shedding of BAFF/APRIL Receptors Controls B Cells. Trends Immunol. 2018, 39, 673–676. [Google Scholar] [CrossRef]
- Sanchez, E.; Li, M.; Kitto, A.; Li, J.; Wang, C.S.; Kirk, D.T.; Yellin, O.; Nichols, C.M.; Dreyer, M.P.; Ahles, C.P.; et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br. J. Haematol. 2012, 158, 727–738. [Google Scholar] [CrossRef]
- Hoffmann, F.S.; Kuhn, P.-H.; Laurent, S.A.; Hauck, S.M.; Berer, K.; Wendlinger, S.A.; Krumbholz, M.; Khademi, M.; Olsson, T.; Dreyling, M.; et al. The Immunoregulator Soluble TACI Is Released by ADAM10 and Reflects B Cell Activation in Autoimmunity. J. Immunol. 2015, 194, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Thibault-Espitia, A.; Foucher, Y.; Danger, R.; Migone, T.; Pallier, A.; Castagnet, S.; G.-Gueguen, C.; Devys, A.; C.-Gautier, A.; Giral, M.; et al. BAFF and BAFF-R levels are associated with risk of long-term kidney graft dysfunction and development of donor-specific antibodies. Am. J. Transplant. 2012, 12, 2754–2762. [Google Scholar] [CrossRef]
- Chhabra, M.; Conlon, T.M.; Saeb-Parsy, K.; Pettigrew, G.J. BAFF and associated tnf superfamily members in renal transplantation: An end to blysful ignorance. Transplantation 2013, 96, 853–859. [Google Scholar] [CrossRef]
- Galián, J.A.; Mrowiec, A.; Muro, M. Molecular targets on B-cells to prevent and treat antibody-mediated rejection in organ transplantation. Present and Future. Expert Opin. Ther. Targets 2016, 20, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, A.; Tsuchiya, N.; Ohashi, J.; Murakami, Y.; Fukazawa, T.; Kusaoi, M.; Morimoto, S.; Matsuta, K.; Hashimoto, H.; Takasaki, Y.; et al. Role of APRIL (TNFSF13) polymorphisms in the susceptibility to systemic lupus erythematosus in Japanese. Rheumatology 2007, 46, 776–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banham, G.; Prezzi, D.; Harford, S.; Taylor, C.J.; Hamer, R.; Higgins, R.; Bradley, J.A.; Clatworthy, M.R. Elevated pretransplantation soluble BAFF is associated with an increased risk of acute antibody-mediated rejection. Transplantation 2013, 96, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, K.A.; Asare, A.; Sanz, I.; Wei, C.; Rosenberg, A.; Gao, Z.; Kanaparthi, S.; Asare, S.; Lim, N.; Stahly, M.; et al. Longitudinal studies of a B cell-derived signature of tolerance in renal transplant recipients. Am. J. Transplant. 2015, 15, 2908–2920. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.; Roedder, S.; Kimura, N.; De Vusser, K.; Morgan, A.A.; Gong, Y.; Fischbein, M.P.; Robbins, R.C.; Naesens, M.; Butte, A.J.; et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J. Exp. Med. 2013, 210, 2205–2221. [Google Scholar] [CrossRef] [Green Version]
- O’Halloran, C.; Cullen, K.; Njoroge, J.; Jessop, L.; Smith, J.; Hope, V.; Ncube, F. The extent of and factors associated with self-reported overdose and self-reported receipt of naloxone among people who inject drugs (PWID) in England, Wales and Northern Ireland. Int. J. Drug Policy 2017, 46, 34–40. [Google Scholar] [CrossRef]
- Haas, M.; Loupy, A.; Lefaucheur, C.; Roufosse, C.; Glotz, D.; Seron, D.; Nankivell, B.J.; Halloran, P.F.; Colvin, R.B.; Akalin, E.; et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 2018, 18, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets-Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, N.; Hastings, E.; Keays, M.; Melnichuk, O.; Tang, Y.A.; Williams, E.; Dylag, M.; Kurbatova, N.; Brandizi, M.; Burdett, T.; et al. ArrayExpress update-simplifying data submissions. Nucleic Acids Res. 2015, 43, D1113–D1116. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Li, L.; Khatri, P.; Sigdel, T.K.; Tran, T.; Ying, L.; Vitalone, M.J.; Chen, A.; Hsieh, S.; Dai, H.; Zhang, M.; et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am. J. Transplant. 2012, 12, 2710–2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurian, S.M.; Williams, A.N.; Gelbart, T.; Campbell, D.; Mondala, T.S.; Head, S.R.; Horvath, S.; Gaber, L.; Thompson, R.; Whisenant, T.; et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling. Am. J. Transplant. 2014, 14, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Günther, O.P.; Shin, H.; Ng, R.T.; McMaster, W.R.; McManus, B.M.; Keown, P.A.; Tebbutt, S.J.; Lê Cao, K.A. Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study. Omi. A J. Integr. Biol. 2014, 18, 682–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halloran, P.F.; Chang, J.; Famulski, K.; Hidalgo, L.G.; Salazar, I.D.R.; Lopez, M.M.; Matas, A.; Picton, M.; De Freitas, D.; Bromberg, J.; et al. Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J. Am. Soc. Nephrol. 2015, 26, 1711–1720. [Google Scholar] [CrossRef] [Green Version]
- Einecke, G.; Reeve, J.; Sis, B.; Mengel, M.; Hidalgo, L.; Famulski, K.S.; Matas, A.; Kasiske, B.; Kaplan, B.; Halloran, P.F. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J. Clin. Investig. 2010, 120, 1862–1872. [Google Scholar] [CrossRef] [Green Version]
- GEO Accession Viewer. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115816 (accessed on 26 April 2021).
- Legaz, I.; Bernardo, M.V.; Alfaro, R.; Martínez-Banaclocha, H.; Galián, J.A.; Jimenez-Coll, V.; Boix, F.; Mrowiec, A.; Salmeron, D.; Botella, C.; et al. PCR Array Technology in Biopsy Samples Identifies Up-Regulated mTOR Pathway Genes as Potential Rejection Biomarkers After Kidney Transplantation. Front. Med. 2021, 8, 547849. [Google Scholar] [CrossRef]
- Cohen, D.; Colvin, R.B.; Daha, M.R.; Drachenberg, C.B.; Haas, M.; Nickeleit, V.; Salmon, J.E.; Sis, B.; Zhao, M.H.; Bruijn, J.A.; et al. Pros and cons for C4d as a biomarker. Kidney Int. 2012, 81, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; He, X.; Liu, Q.; Shi, D.; Chen, Y.; Zhu, Y.; Zhang, X. Abnormal High Expression of B-Cell Activating Factor Belonging to the TNF Superfamily (BAFF) Associated With Long-Term Outcome in Kidney Transplant Recipients. Transplant. Proc. 2009, 41, 1552–1556. [Google Scholar] [CrossRef]
- Baert, L.; Manfroi, B.; Casez, O.; Sturm, N.; Huard, B. The role of APRIL-A proliferation inducing ligand-In autoimmune diseases and expectations from its targeting. J. Autoimmun. 2018, 95, 179–190. [Google Scholar] [CrossRef]
- Brennan, T.V.; Lunsford, K.E.; Kuo, P.C. Innate Pathways of Immune Activation in Transplantation. J. Transplant. 2010, 2010, 826240. [Google Scholar] [CrossRef] [Green Version]
- Modena, B.D.; Kurian, S.M.; Gaber, L.W.; Waalen, J.; Su, A.I.; Gelbart, T.; Mondala, T.S.; Head, S.R.; Papp, S.; Heilman, R.; et al. Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long-Term Outcomes. Am. J. Transplant. 2016, 16, 1982–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huard, B.; Arlettaz, L.; Ambrose, C.; Kindler, V.; Mauri, D.; Roosnek, E.; Tschopp, J.; Schneider, P.; French, L.E. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int. Immunol. 2004, 16, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Mackay, F.; Leung, H. The role of the BAFF/APRIL system on T cell function. Semin. Immunol. 2006, 18, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Moreaux, J.; Sprynski, A.C.; Dillon, S.R.; Mahtouk, K.; Jourdan, M.; Ythier, A.; Moine, P.; Robert, N.; Jourdan, E.; Rossi, J.F.; et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur. J. Haematol. 2009, 83, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Castigli, E.; Wilson, S.A.; Elkhal, A.; Ozcan, E.; Garibyan, L.; Geha, R.S. Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation. J. Allergy Clin. Immunol. 2007, 120, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Kwun, J.; Page, E.; Hong, J.J.; Gibby, A.; Yoon, J.; Farris, A.B.; Villinger, F.; Knechtle, S.J. Neutralizing BAFF/APRIL with atacicept prevents early DSA formation and AMR development in T cell depletion induced non-human primate AMR model. Am. J. Transplant. 2015, 15, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Bath, N.M.; Ding, X.; Wilson, N.A.; Verhoven, B.M.; Boldt, B.A.; Sukhwal, A.; Reese, S.R.; Panzer, S.E.; Djamali, A.; Redfield, R.R. Desensitization and treatment with April/BLyS blockade in rodent kidney transplant model. PLoS ONE 2019, 14, e0211865. [Google Scholar] [CrossRef]
- Dos Santos, D.C.; De Andrade, L.G.M.; De Carvalho, M.F.C.; Neto, F.A.M.; Viero, R.M. Mononuclear inflammatory infiltrate and microcirculation injury in acute rejection: Role in renal allograft survival. Ren. Fail. 2013, 35, 601–606. [Google Scholar] [CrossRef]
- Schwarting, A.; Relle, M.; Meineck, M.; Föhr, B.; Triantafyllias, K.; Weinmann, A.; Roth, W.; Weinmann-Menke, J. Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus 2018, 27, 243–256. [Google Scholar] [CrossRef]
- Zarkhin, V.; Kambham, N.; Li, L.; Kwok, S.; Hsieh, S.C.; Salvatierra, O.; Sarwal, M.M. Characterization of intra-graft B cells during renal allograft rejection. Kidney Int. 2008, 74, 664–673. [Google Scholar] [CrossRef] [Green Version]
- Thaunat, O.; Patey, N.; Caligiuri, G.; Gautreau, C.; Mamani-Matsuda, M.; Mekki, Y.; Dieu-Nosjean, M.-C.; Eberl, G.; Ecochard, R.; Michel, J.-B.; et al. Chronic Rejection Triggers the Development of an Aggressive Intragraft Immune Response through Recapitulation of Lymphoid Organogenesis. J. Immunol. 2010, 185, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKay, F.; Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viklicky, O.; Krystufkova, E.; Brabcova, I.; Sekerkova, A.; Wohlfahrt, P.; Hribova, P.; Wohlfahrtova, M.; Sawitzki, B.; Slatinska, J.; Striz, I.; et al. B-cell-related biomarkers of tolerance are up-regulated in rejection-free kidney transplant recipients. Transplantation 2013, 95, 148–154. [Google Scholar] [CrossRef]
- Broin, P.O.; Hayde, N.; Bao, Y.; Ye, B.; Calder, R.B.; de Boccardo, G.; Lubetzky, M.; Ajaimy, M.; Pullman, J.; Colovai, A.; et al. A pathogenesis-based transcript signature in donor-specific antibody-positive kidney transplant patients with normal biopsies. Genomics Data 2014, 2, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, M.; Tussiwand, R.; Bosco, N.; Rolink, A.G. Crucial role for BAFF-BAFF-R signaling in the survival and maintenance of mature B cells. PLoS ONE 2009, 4, 5456. [Google Scholar] [CrossRef] [Green Version]
- Legaz, I.; Boix, F.; López, M.; Alfaro, R.; Galián, J.A.; Llorente, S.; Campillo, J.A.; Botella, C.; Ramírez, P.; Sánchez-Bueno, F.; et al. Influence of Preformed Antibodies in Liver Transplantation. J. Clin. Med. 2020, 9, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NAR (n = 35) | AR (n = 5) | pa | |
---|---|---|---|
Age (years) | 56.1 ± 1.59 | 60.0 ± 6.71 | 0.358 |
Gender (male/female) n/(%) | 19 (54.3)/16 (45.7) | 3 (60)/2 (40) | 1.000 |
HLA mismatches b | 4.1 ± 0.17 | 4.5 ± 0.64 | 0.524 |
Live donor (%) | 2 (5.7) | 1 (20) | 0.338 |
Preformed anti-HLA antibodies (%) | 6 (17.1) | 1 (20) | 1.000 |
Induction therapy (Tim/Bas) | 11 (31.4)/5 (14.3) | 3 (60)/0 (0) | 0.386 |
Delayed graft function (%) | 8 (23.5) | 2 (40) | 0.279 |
Type of rejection (cellular/humoral) | - | 3 (60)/2 (40) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaro, R.; Lorente, S.; Jimenez-Coll, V.; Martínez-Banaclocha, H.; Galián, J.A.; Botella, C.; Moya-Quiles, M.R.; Muro-Pérez, M.; de la Peña-Moral, J.; Minguela, A.; et al. Evaluating the Link between BAFF System Gene Expression and Acute Rejection Development in Kidney Transplantation. J. Clin. Med. 2022, 11, 3956. https://doi.org/10.3390/jcm11143956
Alfaro R, Lorente S, Jimenez-Coll V, Martínez-Banaclocha H, Galián JA, Botella C, Moya-Quiles MR, Muro-Pérez M, de la Peña-Moral J, Minguela A, et al. Evaluating the Link between BAFF System Gene Expression and Acute Rejection Development in Kidney Transplantation. Journal of Clinical Medicine. 2022; 11(14):3956. https://doi.org/10.3390/jcm11143956
Chicago/Turabian StyleAlfaro, Rafael, Santiago Lorente, Víctor Jimenez-Coll, Helios Martínez-Banaclocha, José Antonio Galián, Carmen Botella, María Rosa Moya-Quiles, Manuel Muro-Pérez, Jesús de la Peña-Moral, Alfredo Minguela, and et al. 2022. "Evaluating the Link between BAFF System Gene Expression and Acute Rejection Development in Kidney Transplantation" Journal of Clinical Medicine 11, no. 14: 3956. https://doi.org/10.3390/jcm11143956
APA StyleAlfaro, R., Lorente, S., Jimenez-Coll, V., Martínez-Banaclocha, H., Galián, J. A., Botella, C., Moya-Quiles, M. R., Muro-Pérez, M., de la Peña-Moral, J., Minguela, A., Legaz, I., & Muro, M. (2022). Evaluating the Link between BAFF System Gene Expression and Acute Rejection Development in Kidney Transplantation. Journal of Clinical Medicine, 11(14), 3956. https://doi.org/10.3390/jcm11143956