The Impact of Perioperative Fluid Balance on Postoperative Complications after Esophagectomy for Esophageal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Fluid Balance
2.3. Neoadjuvant Therapy and Surgical Procedure
2.4. Perioperative Management
2.5. Postoperative Complications
2.6. Statistical Analysis
3. Results
3.1. Perioperative Fluid Management
3.2. Influence of Perioperative Fluid Management on Postoperative Complications
3.3. Patient Characteristics
3.4. Fluid Balance and Surgical Factors
3.5. Fluid Balance and Postoperative Course
3.6. The Association between Perioperative Fluid Management and Postoperative Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bollschweiler, E.; Plum, P.; Mönig, S.P.; Hölscher, A.H. Current and future treatment options for esophageal cancer in the elderly. Expert Opin. Pharmacother. 2017, 18, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, L.R.; Busweiler, L.A.D.; van Sandick, J.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L. Reporting National Outcomes After Esophagectomy and Gastrectomy According to the Esophageal Complications Consensus Group (ECCG). Ann. Surg. 2020, 271, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, R.; Kuhry, E.; Hop, W.C.; Jeekel, J.; Kazemier, G.; Bonjer, H.J.; Haglind, H.J.; Påhlman, E.; Cuesta, L.; Msika, M.A.; et al. Laparoscopic surgery versus open surgery for colon cancer: Short-term outcomes of a randomised trial. Lancet Oncol. 2005, 6, 477–484. [Google Scholar] [PubMed]
- Walker, K.G.; Bell, S.W.; Rickard, M.J.; Mehanna, D.; Dent, O.F.; Chapuis, P.H.; Bokey, E.L. Anastomotic leakage is predictive of diminished survival after potentially curative resection for colorectal cancer. Ann. Surg. 2004, 240, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, M.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Terashima, M. Poor survival rate in patients with postoperative intra-abdominal infectious complications following curative gastrectomy for gastric cancer. Ann. Surg. Oncol. 2013, 20, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Takeuchi, H.; Mizusawa, J.; Igaki, H.; Ozawa, S.; Abe, T.; Nakamura, K.; Kato, K.; Ando, N.; Kitagawa, Y. Prognostic Impact of Postoperative Morbidity After Esophagectomy for Esophageal Cancer: Exploratory Analysis of JCOG9907. Ann. Surg. 2017, 265, 1152–1157. [Google Scholar] [CrossRef]
- Wei, S.; Tian, J.; Song, X.; Chen, Y. Association of perioperative fluid balance and adverse surgical outcomes in esophageal cancer and esophagogastric junction cancer. Ann. Thorac. Surg. 2008, 86, 266–272. [Google Scholar] [CrossRef]
- Casado, D.; López, F.; Martí, R. Perioperative fluid management and major respiratory complications in patients undergoing esophagectomy. Dis. Esophagus. 2010, 23, 523–528. [Google Scholar] [CrossRef]
- Glatz, T.; Kulemann, B.; Marjanovic, G.; Bregenzer, S.; Makowiec, F.; Hoeppner, J. Postoperative fluid overload is a risk factor for adverse surgical outcome in patients undergoing esophagectomy for esophageal cancer: A retrospective study in 335 patients. BMC Surg. 2017, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- Schoppmann, S.F.; Prager, G.; Langer, F.B.; Riegler, F.M.; Kabon, B.; Fleischmann, E.; Zacherl, J. Open versus minimally invasive esophagectomy: A single-center case controlled study. Surg. Endosc. 2010, 24, 3044–3053. [Google Scholar] [CrossRef]
- Biere, S.S.; van Berge Henegouwen, M.I.; Maas, K.W.; Bonavina, L.; Rosman, C.; Garcia, J.R.; Gisbertz, S.S.; Klinkenbijl, J.H.; Hollmann, M.W.; de Lange, E.S.; et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: A multicentre, open-label, randomised controlled trial. Lancet 2012, 379, 1887–1892. [Google Scholar] [CrossRef]
- Yibulayin, W.; Abulizi, S.; Lv, H.; Sun, W. Minimally invasive oesophagectomy versus open esophagectomy for resectable esophageal cancer: A meta-analysis. World J. Surg. Oncol. 2016, 14, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classifi- Cation of Malignant Tumors, 8th ed.; Wiley: New York, NY, USA, 2017. [Google Scholar]
- Ollivier, L.; Leclere, J. International criteria for measurement of tumour response. Cancer Imaging 2001, 2, 31–32. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Yamasaki, M.; Yasuda, T.; Yano, M.; Hirao, M.; Kobayashi, K.; Fujitani, K.; Tamura, S.; Kimura, Y.; Miyata, H.; Motoori, M.; et al. Multicenter randomized phase II study of cisplatin and fluorouracil plus docetaxel (DCF) compared with cisplatin and fluorouracil plus Adriamycin (ACF) as preoperative chemotherapy for resectable esophageal squamous cell carcinoma (OGSG1003). Ann. Oncol. 2017, 28, 116–120. [Google Scholar] [CrossRef]
- Tanaka, K.; Makino, T.; Yamasaki, M.; Nishigaki, T.; Miyazaki, Y.; Takahashi, T.; Kurokawa, Y.; Nakajima, K.; Takiguchi, S.; Mori, M.; et al. An analysis of the risk factors of anastomotic stricture after esophagectomy. Surg. Today 2018, 48, 449–454. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Low, D.E.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.E.; DʼJourno, X.B.; Griffin, S.M.; Hölscher, A.H.; Hofstetter, W.L.; Jobe, B.A.; et al. International Consensus on Standardization of Data Collection for Complications Associated With Esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann. Surg. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Tanaka, K.; Yamasaki, M.; Kobayashi, T.; Yamashita, K.; Makino, T.; Saitoh, T.; Takahashi, T.; Kurokawa, Y.; Nakajima, K.; Motoori, M.; et al. Postoperative pneumonia in the acute phase is an important prognostic factor in patients with esophageal cancer. Surgery 2021, 170, 469–477. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, H.S.; Jang, H.J.; Joo, J.; Zo, J.I. Efficacy of intraoperative, single-bolus corticosteroid administration to prevent postoperative acute respiratory failure after oesophageal cancer surgery. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Ojima, T.; Iwahashi, M.; Nakamori, M.; Nakamura, M.; Katsuda, M.; Iida, T.; Hayata, K.; Yamaue, H. Atrial fibrillation after esophageal cancer surgery: An analysis of 207 consecutive patients. Surg. Today 2014, 44, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Tokairin, Y.; Nakajima, Y.; Kawada, K.; Hoshino, A.; Okada, T.; Ryotokuji, T.; Ogo, T.; Okuda, M.; Kume, Y.; Kawamura, Y.; et al. A feasibility study of mediastinoscopic radical esophagectomy for thoracic esophageal cancer from the viewpoint of the dissected mediastinal lymph nodes validated with thoracoscopic procedure: A prospective clinical trial. Esophagus 2019, 16, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, S.; Schroeder, W.; Junggeburth, K.; Gutschow, C.A.; Bludau, M.; Hoelscher, A.H.; Leers, J.M. Incidence and management of chylothorax after Ivor Lewis esophagectomy for cancer of the esophagus. J. Thorac. Cardiovasc. Surg. 2016, 151, 1398–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righini, M.; Robert-Ebadi, H. Diagnosis of acute Pulmonary Embolism. Hamostaseologie 2018, 38, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, 179–184. [Google Scholar] [CrossRef]
- Yamashita, K.; Watanabe, M.; Mine, S.; Toihata, T.; Fukudome, I.; Okamura, A.; Yuda, M.; Hayami, M.; Ishizuka, N.; Imamura, Y. Minimally invasive esophagectomy attenuates the postoperative inflammatory response and improves survival compared with open esophagectomy in patients with esophageal cancer: A propensity score matched analysis. Surg. Endosc. 2018, 32, 4443–4450. [Google Scholar] [CrossRef]
- Babic, B.; Tagkalos, E.; Gockel, I.; Corvinus, F.; Hadzijusufovic, E.; Hoppe-Lotichius, M.; Lang, H.; van der Sluis, P.C.; Grimminger, P.P. C-reactive Protein Levels After Esophagectomy Are Associated With Increased Surgical Trauma and Complications. Ann. Thorac. Surg. 2020, 109, 1574–1583. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Wang, X.; Wei, X.; Ma, M.; Sun, Y.; Ren, D.; Liu, Y.; Guo, Y.; Wang, R.; et al. Application value of goal-directed fluid therapy with ERAS in patients undergoing radical lung cancer surgery. Am. J. Transl. Res. 2021, 13, 8186–8192. [Google Scholar]
- Wrzosek, A.; Jakowicka-Wordliczek, J.; Zajaczkowska, R.; Serednicki, W.T.; Jankowski, M.; Bala, M.M.; Swierz, M.J.; Polak, M.; Wordliczek, J. Perioperative restrictive versus goal-directed fluid therapy for adults undergoing major non-cardiac surgery. Cochrane Database Syst. Rev. 2019, 12, Cd012767. [Google Scholar] [CrossRef]
- Brandstrup, B.; Tønnesen, H.; Beier-Holgersen, R.; Hjortsø, E.; Ørding, H.; Lindorff-Larsen, K.; Rasmussen, M.S.; Lanng, C.; Wallin, L.; Iversen, L.H.; et al. Effects of intravenous fluid restriction on postoperative complications: Comparison of two perioperative fluid regimens: A randomized assessor-blinded multicenter trial. Ann. Surg. 2003, 238, 641–648. [Google Scholar] [CrossRef]
- Nisanevich, V.; Felsenstein, I.; Almogy, G.; Weissman, C.; Einav, S.; Matot, I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 2005, 103, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, N.N.; Zimmermann, J.B.; Schmidt, T.; Koch, M.; Weigand, M.A.; Weitz, J. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br. J. Surg. 2009, 96, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Feldheiser, A.; Aziz, O.; Baldini, G.; Cox, B.P.; Fearon, K.C.; Feldman, L.S.; Gan, T.J.; Kennedy, R.H.; Ljungqvist, O.; Lobo, D.N.; et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: Consensus statement for anaesthesia practice. Acta Anaesthesiol. Scand. 2016, 60, 289–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holte, K.; Sharrock, N.E.; Kehlet, H. Pathophysiology and clinical implications of perioperative fluid excess. Br. J. Anaesth. 2002, 89, 622–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boesen, A.K.; Maeda, Y.; Rørbaek Madsen, M. Perioperative fluid infusion and its influence on anastomotic leakage after rectal cancer surgery: Implications for prevention strategies. Colorectal Dis. 2013, 15, e522–e527. [Google Scholar] [CrossRef]
- Aoyama, T.; Kazama, K.; Atsumi, Y.; Tamagawa, H.; Tamagawa, A.; Komori, K.; Machida, D.; Maezawa, Y.; Kano, K.; Hara, K.; et al. Clinical Influence of Anastomotic Leakage on Esophageal Cancer Survival and Recurrence. Anticancer Res. 2020, 40, 443–449. [Google Scholar] [CrossRef]
- O’Sullivan, K.E.; Phelan, J.J.; O’Hanlon, C.; Lysaght, J.; O’Sullivan, J.N.; Reynolds, J.V. The role of inflammation in cancer of the esophagus. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 749–760. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Kurokawa, Y.; Hagi, T.; Takahashi, T.; Miyazaki, Y.; Tanaka, K.; Makino, T.; Yamasaki, M.; Nakajima, K.; Mori, M.; et al. Methylprednisolone Inhibits Tumor Growth and Peritoneal Seeding Induced by Surgical Stress and Postoperative Complications. Ann. Surg. Oncol. 2019, 26, 2831–2838. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kawakubo, H.; Mayanagi, S.; Irino, T.; Fukuda, K.; Nakamura, R.; Wada, N.; Takeuchi, H.; Kitagawa, Y. Influence of Neoadjuvant Therapy on Poor Long-Term Outcomes of Postoperative Complications in Patients with Esophageal Squamous Cell Carcinoma: A Retrospective Cohort Study. Ann. Surg. Oncol. 2019, 26, 2081–2089. [Google Scholar] [CrossRef]
Intraoperative Fluid Balance | p Value | POD 1 Fluid Balance | p Value | POD 2 Fluid Balance | p Value | ||||
---|---|---|---|---|---|---|---|---|---|
Lower | Higher | Lower | Higher | Lower | Higher | ||||
No. of patients | 58 (50.4%) | 57 (49.6%) | 56 (48.7%) | 59 (51.3%) | 55 (47.8%) | 60 (52.2%) | |||
Postoperative complication * | 34 (58.6%) | 28 (49.1%) | 0.307 | 31 (55.4%) | 31 (52.5%) | 0.762 | 32 (48.1%) | 30 (50.0%) | 0.379 |
pneumonia | 17 (29.3%) | 18 (31.6%) | 0.792 | 15 (26.8%) | 20 (33.9%) | 0.407 | 16 (29.1%) | 19 (31.7%) | 0.764 |
acute pneumonia (a) | 9 (15.5%) | 15 (26.3%) | 0.153 | 7 (12.5%) | 17 (28.8%) | 0.029 | 8 (14.6%) | 16 (26.7%) | 0.107 |
subacute pneumonia (b) | 8 (13.8%) | 3 (5.3%) | 0.114 | 8 (14.3%) | 3 (5.1%) | 0.089 | 8 (14.6%) | 3 (5.0%) | 0.078 |
arrhythmia | 7 (12.1%) | 5 (8.8%) | 0.562 | 6 (10.7%) | 6 (10.1%) | 0.924 | 7 (12.7%) | 5 (8.3%) | 0.441 |
anastomotic leakage | 4 (6.9%) | 4 (7.0%) | 0.980 | 1 (1.8%) | 7 (11.9%) | 0.024 | 2 (3.6%) | 6 (10.0%) | 0.170 |
recurrent nerve palsy | 6 (10.3%) | 6 (10.5%) | 0.975 | 6 (10.7%) | 6 (10.1%) | 0.924 | 5 (9.1%) | 7 (11.7%) | 0.651 |
sputum excretion difficulty | 2 (3.5%) | 5 (8.8%) | 0.226 | 1 (1.8%) | 6 (10.2%) | 0.048 | 2 (3.7%) | 5 (8.3%) | 0.284 |
chylothorax | 2 (3.5%) | 3 (5.3%) | 0.632 | 3 (5.4%) | 2 (3.4%) | 0.604 | 3 (5.5%) | 2 (3.3%) | 0.577 |
pulmonary embolism | 1 (1.7%) | 1 (1.8%) | 0.990 | 0 | 2 (3.4%) | 0.100 | 2 (3.6%) | 0 | 0.084 |
SSI | 0 | 4 (7.0%) | 0.016 | 0 | 4 (6.8%) | 0.019 | 0 | 4 (6.8%) | 0.021 |
other | 4 (6.9%) | 3 (5.3%) | 0.714 | 4 (7.1%) | 3 (5.1%) | 0.644 | 4 (7.3%) | 3 (5.0%) | 0.611 |
Acute kidney injury ** | 1 (1.7%) | 1 (1.8%) | 0.990 | 0 | 2 (3.4%) | 0.100 | 0 | 2 (3.3%) | 0.105 |
POD 1 Fluid Balance | p Value | |||
---|---|---|---|---|
All Patients | Lower | Higher | ||
No. of patients | 115 | 56 (48.7%) | 59 (51.3%) | |
Age | 68.7 ± 9.7 | 67.7 ± 9.1 | 69.7 ± 10.2 | 0.235 |
Sex | ||||
male | 79 (68.7%) | 32 (57.1%) | 47 (79.7%) | 0.009 |
female | 36 (31.3%) | 24 (42.9%) | 12 (20.3%) | |
BMI | 20.7 ± 3.2 | 20.3 ± 2.8 | 21.0 ± 3.4 | 0.354 |
BSA (m2) | 1.58 ± 0.17 | 1.55 ± 0.16 | 1.61 ± 0.18 | 0.121 |
ASA-PS * | ||||
class1 | 81 (70.4%) | 39 (69.6%) | 42 (71.2%) | 0.740 |
class2 | 24 (20.9%) | 13 (23.2%) | 11 (18.6%) | |
class3 | 10 (8.7%) | 4 (7.1%) | 6 (10.2%) | |
Tumor location | ||||
upper third | 14 (13.5%) | 3 (5.4%) | 11 (18.6%) | 0.072 |
middle third | 48 (45.2%) | 24 (42.9%) | 24 (40.7%) | |
lower third | 53 (41.4%) | 29 (51.8%) | 24 (40.7%) | |
cStage (TNM) | ||||
I | 18 (15.7%) | 9 (16.1%) | 9 (15.3%) | 0.703 |
II | 34 (29.6%) | 15 (26.8%) | 19 (32.2%) | |
III | 50 (43.5%) | 27 (48.2%) | 23 (39.0%) | |
IV | 13 (11.3%) | 5 (8.9%) | 8 (13.6%) | |
Histological type | ||||
squamous cell carcinoma | 107 (93.0%) | 51 (91.1%) | 56 (94.9%) | 0.416 |
adenocarcinoma | 8 (7.0%) | 5 (8.9%) | 3 (5.1%) | |
CCI | ||||
score ≤ 1 | 98 (85.2%) | 46 (82.1%) | 52 (88.1%) | 0.365 |
score ≥ 2 | 17 (14.8%) | 10 (17.9%) | 7 (11.9%) | |
Alb (g/dL) * | 3.5 ± 0.5 | 3.6 ± 0.5 | 3.5 ± 0.5 | 0.908 |
Preoperative treatment | ||||
none | 26 (22.6%) | 10 (17.9%) | 16 (27.1%) | 0.233 |
chemotherapy and radiation chemotherapy | 89 (77.4%) | 46 (82.1%) | 43 (72.9%) |
POD 1 Fluid Balance | p Value | |||
---|---|---|---|---|
All Patients | Lower | Higher | ||
No. of patients | 115 | 56 (48.7%) | 59 (51.3%) | |
Surgery | ||||
thoracoscopy | 93 (80.9%) | 48 (85.7%) | 45 (76.3%) | 0.196 |
robotic surgery | 22 (19.1%) | 8 (14.3%) | 14 (23.7%) | |
Field of lymph node dissection | ||||
2 fields | 60 (52.2%) | 34 (60.7%) | 26 (44.1%) | 0.073 |
3 fields | 55 (47.8%) | 22 (39.3%) | 33 (55.9%) | |
Reconstruction route | ||||
ante-thoracic | 11 (9.6%) | 3 (5.4%) | 8 (13.6%) | 0.172 |
retrosternal | 68 (59.1%) | 32 (57.1%) | 36 (61.0%) | |
posterior mediastinal | 36 (31.3%) | 21 (37.5%) | 15 (25.4%) | |
Reconstruction organ | ||||
stomach tube | 113 (98.3%) | 56 (100%) | 57 (96.6%) | 0.100 |
other | 2 (1.7%) | 0 | 2 (3.4%) | |
Feeding tube | ||||
gastrostomy or jejunostomy | 113 (98.3%) | 56 (100%) | 57 (96.6%) | 0.100 |
none | 2 (1.7%) | 0 | 2 (3.4%) | |
Operative Time (min) | 479 ± 87 | 458 ± 85 | 499 ± 88 | 0.009 |
Bleeding Volume (mL) | 155 ± 201 | 151 ± 249 | 160 ± 143 | 0.236 |
Thoracic duct | ||||
resection | 21 (18.3%) | 11 (19.6%) | 10 (17.0%) | 0.709 |
preservation | 94 (81.7%) | 45 (80.4%) | 49 (83.0%) |
POD 1 Fluid Balance | p Value | |||
---|---|---|---|---|
All Patients | Lower | Higher | ||
No. of patients | 115 | 56 (48.7%) | 59 (51.3%) | |
Infusion volume * (mL) | 2937 ± 804 | 2663 ± 578 | 3198 ± 901 | <0.001 |
Tube feeding volume (mL) | 124 ± 56 | 118 ± 63 | 130 ± 47 | 0.140 |
Drainage output (mL) | 839 ± 486 | 907 ± 632 | 774 ± 276 | 0.493 |
Urine output (mL) | 1697 ± 745 | 1948 ± 803 | 1459 ± 601 | 0.001 |
Use of colloidal solution use | ||||
Albumin | 32 (27.7%) | 17 (30.4%) | 15 (25.4%) | 0.555 |
Hydroxyethyl starch | 85 (72.2%) | 39 (69.6%) | 44 (74.6%) | |
Use of blood transfusion | 18 (15.7%) | 6 (10.7%) | 12 (20.3%) | 0.152 |
Use of vasopressor | 62 (53.9%) | 32 (57.1%) | 30 (50.9%) | 0.498 |
Use of diuretic | 12 (10.5%) | 4 (7.1%) | 8 (13.8%) | 0.243 |
Weight increase rate (%) ** | 3.4 ± 2.3 | 3.0 ± 2.0 | 3.8 ± 2.5 | 0.044 |
CRP (mg/L) | 5.2 ± 2.6 | 4.9 ± 2.3 | 5.5 ± 2.8 | 0.198 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Age ≥ 65 (vs. <65) | 2.222 | 0.695–7.104 | 0.178 | |||
Sex male (vs. female) | 1.963 | 0.669–5.760 | 0.219 | |||
ASA-PS class2, 3 (vs. class 1) | 1.584 | 0.615–4.079 | 0.341 | |||
CCI ≥ 2 (vs. ≤1) | 3.335 | 1.112–10.00 | 0.032 | 4.191 | 1.222–14.37 | 0.027 |
Thoracoscopic surgery (vs. Robotic surgery) | 1.233 | 0.375–4.057 | 0.731 | |||
Operative time ≥ 475 min (vs. <475 min) | 1.068 | 0.434–2.262 | 0.886 | |||
Field of lymph node dissection 3 fields (vs. 2 fields) | 1.703 | 0.677–4.288 | 0.258 | |||
POD 1 fluid balance higher group (vs. lower group) | 2.833 | 1.072–7.488 | 0.036 | 3.270 | 1.077–9.929 | 0.037 |
Weight loss rate at POD1 ≥ 3.5% (vs. <3.5%) | 1.465 | 0.588–3.650 | 0.412 | |||
Postoperative sputum excretion difficulty CD classification Grade ≥ II (vs. ≤I) | 5.867 | 1.216–28.30 | 0.028 | 6.337 | 1.160–34.60 | 0.033 |
Postoperative recurrent nerve palsy CD classification Grade ≥ II (vs. ≤I) | 4.772 | 1.366–16.33 | 0.014 | 5.900 | 1.571–22.16 | 0.009 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Age ≥ 65 (vs. <65) | 2.855 | 0.337–24.18 | 0.336 | |||
Sex male (vs. female) | 3.403 | 0.402–28.74 | 0.261 | |||
ASA-PS class2, 3 (vs. class 1) | 1.471 | 0.331–6.533 | 0.612 | |||
CCI ≥ 2 (vs. ≤1) | 1.231 | 0.142–10.69 | 0.851 | |||
Alb ≥ 3.0 g/dL (vs. <3.0 g/dL) | 4.750 | 1.006–22.43 | 0.049 | 5.065 | 0.996–25.75 | 0.051 |
Operative time ≥ 475 min (vs. <475 min) | 1.636 | 0.372–7.190 | 0.515 | |||
Field of lymph node dissection 3 fields (vs. 2 fields) | 1.703 | 0.677–4.288 | 0.258 | |||
Reconstruction route posterior mediastinal (vs. other) | 3.402 | 0.403–28.75 | 0.261 | |||
POD 1 fluid balance higher group (vs. lower group) | 7.404 | 0.880–62.26 | 0.065 | 7.739 | 0.895–68.89 | 0.063 |
Weight loss rate at POD1 ≥ 3.5% (vs. <3.5%) | 1.667 | 0.379–7.337 | 0.499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubo, Y.; Tanaka, K.; Yamasaki, M.; Yamashita, K.; Makino, T.; Saito, T.; Yamamoto, K.; Takahashi, T.; Kurokawa, Y.; Motoori, M.; et al. The Impact of Perioperative Fluid Balance on Postoperative Complications after Esophagectomy for Esophageal Cancer. J. Clin. Med. 2022, 11, 3219. https://doi.org/10.3390/jcm11113219
Kubo Y, Tanaka K, Yamasaki M, Yamashita K, Makino T, Saito T, Yamamoto K, Takahashi T, Kurokawa Y, Motoori M, et al. The Impact of Perioperative Fluid Balance on Postoperative Complications after Esophagectomy for Esophageal Cancer. Journal of Clinical Medicine. 2022; 11(11):3219. https://doi.org/10.3390/jcm11113219
Chicago/Turabian StyleKubo, Yuto, Koji Tanaka, Makoto Yamasaki, Kotaro Yamashita, Tomoki Makino, Takuro Saito, Kazuyoshi Yamamoto, Tsuyoshi Takahashi, Yukinori Kurokawa, Masaaki Motoori, and et al. 2022. "The Impact of Perioperative Fluid Balance on Postoperative Complications after Esophagectomy for Esophageal Cancer" Journal of Clinical Medicine 11, no. 11: 3219. https://doi.org/10.3390/jcm11113219
APA StyleKubo, Y., Tanaka, K., Yamasaki, M., Yamashita, K., Makino, T., Saito, T., Yamamoto, K., Takahashi, T., Kurokawa, Y., Motoori, M., Kimura, Y., Nakajima, K., Eguchi, H., & Doki, Y. (2022). The Impact of Perioperative Fluid Balance on Postoperative Complications after Esophagectomy for Esophageal Cancer. Journal of Clinical Medicine, 11(11), 3219. https://doi.org/10.3390/jcm11113219