Animal Models and Helicobacter pylori Infection
Abstract
:1. Introduction
2. Animal Models
3. Animal Models in Evaluating H. pylori-Mediated Gastric Pathogenicity
3.1. Animal Models Disclosing the Role of Outer Membrane Protein Involvement
3.2. Animal Models Disclosing the Pathogenic Role of the Cag Pathogenicity Island (cagPAI)
Animal Models | Evidence Found | References |
---|---|---|
Mongolian gerbils | Intact cagPAI strains exhibit more severe gastritis compared to cag-negative strains | [25,88,90,91,92] |
CagA-positive strains efficiently colonize and render carcinogenicity | [95] | |
CagG is important for successful colonization | [90] | |
Functional cagPAIs are necessary to induce the corpus-predominant gastritis | [96] | |
cagA-mutant strains cause antrum-region restricted inflammation without involving the acid-secreting corpus region | [96] | |
Mouse model | Functional T4SS is important for CagA-mediated virulence potential | [100] |
Chronic infection causes the recombination in CagY leading to T4SS loss of function | [102] | |
CagA overexpression results in hyperproliferation of epithelial cells and gastric adenocarcinoma | [50] | |
Rhesus macaques | Experimental infection causes a frameshift mutation in cagY rendering T4SS non-functional | [53] |
Natural infection does not lead to the mutation burst and shows functional T4SS | [58,106] |
4. Animal Models to Evaluate the Role of Host Factors in Pathogenicity
Animal Models | Evidence Found | References |
---|---|---|
Mongolian gerbils | Role of IL-1β in H. pylori-associated gastric pathogenicity | [125] |
H. pylori infection leads to nuclear factor-κB (NF-κB) activation in H. pylori-associated inflammation | [132] | |
Cluster of differentiation 44 (CD44) is crucial in H. pylori-associated epithelial cell proliferation leading to gastric cancer development | [133] | |
Mouse model | Gastric dendritic cells (DCs) protect the gastric mucosa from H. pylori-induced inflammation | [136] |
Gastric DCs allows H. pylori infection to persist | [136] | |
miRNAs synergistically act to promote cell survival and lymphocyte proliferation | [144] | |
DP T-cells play an immunosuppressive role in H. felis-induced gastritis | [145] | |
The APRIL (a proliferation inducing ligand) promotes B-cell infiltration and development of gastric MALT lymphoma | [146] | |
PD1 and the over expression of its ligand (PDL1) promote H. felis-induced tumorigenesis | [147] |
5. Animal Models to Evaluate the Role of Environmental (Dietary) Factors in Pathogenicity
6. Animal Models to Evaluate Therapeutics against H. pylori Infection and Cancer Progression
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- McColl, K.E. Clinical practice: Helicobacter pylori infection. N. Engl. J. Med. 2010, 362, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Doohan, D.; Fauzia, K.A.; Rathnayake, J.; Lamawansa, M.D.; Waskito, L.A.; Tuan, V.P.; Dashdorj, A.; Kabamba, E.T.; Phuc, B.H.; Ansari, S.; et al. Pepsinogen and Serum IgG Detection Is a Valuable Diagnostic Method for Helicobacter pylori Infection in a Low-Prevalence Country: A Report from Sri Lanka. Diagnostics 2021, 11, 1364. [Google Scholar] [CrossRef]
- Fujimura, S.; Kato, S.; Watanabe, A. Water source of Helicobacter pylori transmission route: A 3 year follow-up study of Japanese children living in a unique district. J. Med. Microbiol. 2008, 57, 909–910. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- Plummer, M.; Franceschi, S.; Vignat, J.; Forman, D.; de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 2015, 136, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Correa, P.; Haenszel, W.; Cuello, C.; Zavala, D.; Fontham, E.; Zarama, G.; Tannenbaum, S.; Collazos, T.; Ruiz, B. Gastric precancerous process in a high risk population: Cohort follow-up. Cancer Res. 1990, 50, 4737–4740. [Google Scholar] [PubMed]
- Correa, P.; Houghton, J. Carcinogenesis of Helicobacter pylori. Gastroenterology 2007, 133, 659–672. [Google Scholar] [CrossRef]
- Song, H.; Ekheden, I.G.; Zheng, Z.; Ericsson, J.; Nyren, O.; Ye, W. Incidence of gastric cancer among patients with gastric precancerous lesions: Observational cohort study in a low risk Western population. BMJ 2015, 351, h3867. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.J.; Kook, M.C.; Kim, Y.I.; Cho, S.J.; Lee, J.Y.; Kim, C.G.; Park, B.; Nam, B.H. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 2018, 378, 1085–1095. [Google Scholar] [CrossRef]
- Sigal, M.; Rothenberg, M.E.; Logan, C.Y.; Lee, J.Y.; Honaker, R.W.; Cooper, R.L.; Passarelli, B.; Camorlinga, M.; Bouley, D.M.; Alvarez, G.; et al. Helicobacter pylori activates and expands Lgr5stem cells through direct colonization of the gastric glands. Gastroenterology 2015, 148, 1392–1404.e21. [Google Scholar] [CrossRef]
- Gagnaire, A.; Nadel, B.; Raoult, D.; Neefjes, J.; Gorvel, J.P. Collateral damage: Insights into bacterial mechanisms that predispose host cells to cancer. Nat. Rev. Microbiol. 2017, 15, 109–128. [Google Scholar] [CrossRef]
- Sokolova, O.; Naumann, M. Crosstalk between DNA damage and inflammation in the multiple steps of gastric carcinogenesis. In Molecular Mechanisms of Inflammation: Induction, Resolution and Escape by Helicobacter pylori; Backert, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 107–137. [Google Scholar]
- Toller, I.M.; Neelsen, K.J.; Steger, M.; Hartung, M.L.; Hottiger, M.O.; Stucki, M.; Kalali, B.; Gerhard, M.; Sartori, A.A.; Lopes, M.; et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc. Natl. Acad. Sci. USA 2011, 108, 14944–14949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algood, H.M.S.; Cover, T.L. Helicobacter pylori persistence: An overview of interactions between H. pylori and host immune defenses. Clin. Microbiol. Rev. 2006, 19, 597–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, N.R.; Hartung, M.L.; Müller, A. Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 2013, 11, 385–399. [Google Scholar] [CrossRef]
- Vaira, D.; Holton, J.; Oderda, G.; Taylor, D.; Turner, R.; Colecchia, A.; Gandolfi, L. Transmission and sources of H. pylori. In Helicobacter pylori 1990; Menge, M., Gregor, M., Tytgat, N.J., Marshall, B.J., Mc Nulty, C.A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Megraud, F.; Brouter, N. Review article: Have we found the source of Helicobacter pylori? Aliment. Pharmacol. Ther. 2000, 14 (Suppl. 3), 7–12. [Google Scholar] [CrossRef] [PubMed]
- Stolte, M.; Meining, A. The updated Sydney system classification and grading of gastritis as the basis diagnosis and treatment. Can. J. Gastroenterol. 2001, 12, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Peek, R.M., Jr. Helicobacter pylori infection and disease: From humans to animal models. Dis. Models Mechan. 2008, 1, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Sturegard, E.; Sjunesson, H.; Ho, B.; Willen, R.; Aleljung, P.; NG, H.C.; Wadstrom, T. Severe gastritis in guinea pigs infected with Helicobacter pylori. J. Med. Microbiol. 1998, 47, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Sjunnesson, H.; Sturegard, E.; Hynes, S.; Willen, R.; Feinstein, R.; Wadstrom, T. Five months persistence of Helicobacter pylori infection in guinea pigs. APMIS 2003, 111, 634–642. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, J.L.; Lee, A. Animal models of Helicobacter pylori infection and disease. Microbes Infect. 2003, 5, 741–748. [Google Scholar] [CrossRef]
- Di, J.; Zhang, J.; Cao, L.; Huang, T.-T.; Zhang, J.-X.; Mi, Y.-N.; Xiao, X.; Yan, P.-P.; Wu, M.-L.; Yao, T.; et al. Hydrogen peroxide mediated oxygen enrichment eradicates Helicobacter pylori in vitro and in vivo. Antimicrob. Agents Chemother. 2020, 64, e02192-19. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, F.; Takagi, S.; Yokoyama, Y.; Iwao, E.; Ikeda, Y. Establishment of gastric Helicobacter pylori infection in Mongolian gerbils. J. Gastroenterol. 1996, 31 (Suppl. 9), 24–28. [Google Scholar] [CrossRef] [PubMed]
- Ogura, K.; Maeda, S.; Nakao, M.; Watanabe, T.; Tada, M.; Kyutoku, T.; Yoshida, H.; Shiratori, Y.; Omata, M. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J. Exp. Med. 2000, 192, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Noto, J.M.; Gaddy, J.A.; Lee, J.Y.; Piazuelo, M.B.; Friedman, D.B.; Colvin, D.C.; RomeroGallo, J.; Suarez, G.; Loh, J.; Slaughter, J.C.; et al. Iron defciency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J. Clin. Investig. 2013, 123, 479–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Tada, M.; Nagai, H.; Sasaki, S.; Nakao, M. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology 1998, 115, 642–648. [Google Scholar] [CrossRef]
- Hirayama, F.; Takagi, S.; Kusuhara, H.; Iwao, E.; Yokoyama, Y.; Ikeda, Y. Induction of gastric ulcer and intestinal metaplasia in Mongolian gerbils infected with Helicobacter pylori. J. Gastroenterol. 1996, 31, 755–757. [Google Scholar] [CrossRef]
- Matsumoto, S.; Washizuka, Y.; Matsumoto, Y.; Tawara, S.; Ikeda, F.; Yokota, Y.; Karita, M. Induction of ulceration and severe gastritis in Mongolian gerbil by Helicobacter pylori infection. J. Med. Microbiol. 1997, 46, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Honda, S.; Fujioka, T.; Tokieda, M.; Gotoh, T.; Nishizono, A.; Nasu, M. Gastric ulcer, atrophic gastritis, and intestinal metaplasia caused by Helicobacter pylori infection in Mongolian gerbils. Scand. J. Gastroenterol. 1998, 33, 454–460. [Google Scholar]
- Ikeno, T.; Ota, H.; Sugiyama, A.; Ishida, K.; Katsuyama, T.; Genta, R.M.; Kawasaki, S. Helicobacter pylori induced chronic active gastritis, intestinal metaplasia, and gastric ulcer in Mongolian gerbils. Am. J. Pathol. 1999, 154, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Ohkusa, T.; Okayasu, I.; Miwa, H.; Ohtaka, K.; Endo, S.; Sato, N. Helicobacter pylori infection induces duodenitis and superficial duodenal ulcer in Mongolian gerbils. Gut 2003, 52, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Boivin, G.P.; Washington, K.; Yang, K.; Ward, J.M.; Pretlow, T.P.; Russell, R.; Besselsen, D.G.; Godfrey, V.L.; Doetschman, T.; Dove, W.F.; et al. Pathology of mouse models of intestinal cancer: Consensus report and recommendations. Gastroenterology 2003, 124, 762–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatematsu, M.; Nozaki, K.; Tsukamoto, T. Helicobacter pylori infection and gastric carcinogenesis in animal models. Gastric Cancer. 2003, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; O’Rourke, J.; De Ungria, M.C.; Robertson, B.; Daskalopoulos, G.; Dixon, M.F. A standardized mouse model of Helicobacter pylori infection: Introducing the Sydney strain. Gastroenterology 1997, 112, 1386–1397. [Google Scholar] [CrossRef]
- Dey, T.K.; Karmakar, B.C.; Sarkar, A.; Paul, S.; Mukhopadhyay, A.K. A Mouse Model of Helicobacter pylori Infection. Methods Mol. Biol. 2021, 2283, 131–151. [Google Scholar] [PubMed]
- Wang, X.; Willén, R.; Svensson, M.; Ljungh, A.; Wadström, T. Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice. APMIS 2003, 111, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takata, T.; El-Omar, E.; Camorlinga, M.; Thompson, S.A.; Minohara, Y.; Ernst, P.B.; Blaser, M.J. Helicobacter pylori does not require Lewis X or Lewis Y expression to colonize C3H/HeJ mice. Infect. Immun. 2002, 70, 3073–3079. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, R.L.; Thiberge, J.M.; Huerre, M.; Labigne, A. Immune responses of specific-pathogen-free mice to chronic Helicobacter pylori (strain SS1) infection. Infect. Immun. 1998, 66, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- Garhart, C.A.; Redline, R.W.; Nedrud, J.G.; Czinn, S.J. Clearance of Helicobacter pylori Infection and Resolution of Postimmunization Gastritis in a Kinetic Study of Prophylactically Immunized Mice. Infect. Immun. 2002, 70, 3529–3538. [Google Scholar] [CrossRef] [Green Version]
- van Doorn, N.E.; Namavar, F.; Sparrius, M.; Stoof, J.; van Rees, E.P.; van Doorn, L.J.; Vandenbroucke Grauls, C.M. Helicobacter pylori-associated gastritis in mice is host and strain specific. Infect. Immun. 1999, 67, 3040–3046. [Google Scholar] [CrossRef] [Green Version]
- Kodama, M.; Murakami, K.; Nishizono, A.; Fujioka, T. Animal models for the study of Helicobacter-induced gastric carcinoma. J. Infect. Chemother. 2004, 10, 316–325. [Google Scholar] [CrossRef]
- Pritchard, D.M.; Przemeck, S.M. Review article: How useful are the rodent animal models of gastric adenocarcinoma? Aliment. Pharmacol. Ther. 2004, 19, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.C.; Dangler, C.A.; Chen, D.; Goldenring, J.R.; Koh, T.; Raychowdhury, R.; Coffey, R.J.; Ito, S.; Varro, A.; Dockray, G.J.; et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 2000, 118, 36–47. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kita, M.; Ohno, T.; Iwakura, Y.; Sekikawa, K.; Imanishi, J. Role of tumor necrosis factor-alpha and interferon-gamma in Helicobacter pylori infection. Microbiol. Immunol. 2004, 48, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Bhagat, G.; Cui, G.; Takaishi, S.; Kurt-Jones, E.A.; Rickman, B.; Betz, K.S.; Penz-Oesterreicher, M.; Bjorkdahl, O.; Fox, G.F.; et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008, 14, 408–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, D.J.; Lynch, N.A.; Lynch, R.G.; Lauricella, D.M. Rapid development of severe hyperplastic gastritis with gastric epithelial dedifferentiation in Helicobacter felis-infected IL-10 (−/−) mice. Am. J. Pathol. 1998, 152, 1377–1386. [Google Scholar] [PubMed]
- Cai, X.; Stoicov, C.; Li, H.; Carlson, J.; Whary, M.; Fox, J.G.; Houghton, J. Overcoming Fas-mediated apoptosis accelerates Helicobacter-induced gastric cancer in mice. Cancer Res. 2005, 65, 10912–10920. [Google Scholar] [CrossRef] [Green Version]
- Kuzushita, N.; Rogers, A.B.; Monti, N.A.; Whary, M.T.; Park, M.J.; Aswad, B.I.; Shirin, H.; Koff, A.; Eguchi, H.; Moss, S.F. p27 kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology 2005, 129, 1544–1556. [Google Scholar] [CrossRef]
- Ohnishi, N.; Yuasa, H.; Tanaka, S.; Sawa, H.; Miura, M.; Matsui, A.; Higashi, H.; Musashi, M.; Iwabuchi, K.; Suzuki, M.; et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl. Acad. Sci. USA. 2008, 105, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.G.; Rogers, A.B.; Ihrig, M.; Taylor, N.S.; Whary, M.T.; Dockray, G.; Varro, A.; Wang, T.C. Helicobacter pylori-associated gastric cancer in INS-GAS mice is gender specific. Cancer Res. 2003, 63, 942–950. [Google Scholar]
- Crabtree, J.E.; Ferrero, R.L.; Kusters, J.G. The mouse colonizing Helicobacter pylori strain SS1 may lack a functional cag pathogenicity island. Helicobacter 2002, 7, 139–140. [Google Scholar] [CrossRef]
- Barrozo, R.M.; Cooke, C.L.; Hansen, L.M.; Lam, A.M.; Gaddy, J.A.; Johnson, E.M.; Cariaga, T.A.; Suarez, G.; Peek, R.M., Jr.; Cover, T.; et al. Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog. 2013, 9, e1003189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, D.G.; Hudson, M.J.; Baskerville, A. Naturally occurring gastritis associated with Campylobacter pylori infection in the rhesus monkey. Lancet 1987, 2, 1338. [Google Scholar] [CrossRef]
- Dubois, A.; Fiala, N.; Heman-Ackah, L.M.; Drazek, E.; Tarnawski, A.; Fishbein, W.N.; Perez, G.P.; Blaser, M.J. Natural gastric infection with Helicobacter pylori in monkeys: A model for spiral bacteria infection in humans. Gastroenterology 1994, 106, 1405–1417. [Google Scholar] [CrossRef]
- Drazek, E.S.; Dubois, A.; Holmes, R.K. Characterization and presumptive identifcation of Helicobacter pylori isolates from rhesus monkeys. J. Clin. Microbiol. 1994, 32, 1799–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, A.; Berg, D.E.; Incecik, E.T.; Fiala, N.; Heman-Ackah, L.M.; Perez-Perez, G.I.; Blaser, M.J. Transient and persistent experimental infection of nonhuman primates with Helicobacter pylori: Implications for human disease. Infect. Immun. 1996, 64, 2885–2891. [Google Scholar] [CrossRef] [Green Version]
- Hashi, K.; Imai, C.; Yahara, K.; Tahmina, K.; Hayashi, T.; Azuma, T.; Miyabe-Nishiwaki, T.; Sato, H.; Matsuoka, M.; Niimi, S.; et al. Evaluating the origin and virulence of a Helicobacter pylori cagA-positive strain isolated from a non-human primate. Sci. Rep. 2018, 8, 15981. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Digest. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Homer, N.H.; Dangler, C.A.; Whary, M.T.; Fox, J.G. Experimental Helicobacter pylori infection induces antral gastritis and gastric mucosa-associated lymphoid tissue in guinea pigs. Infect. Immun. 1998, 66, 2614–2618. [Google Scholar]
- Durrani, Z.; Rijpkema, S. Orogastric vaccination of guinea pigs with Helicobacter pylori sonicate and a high dose of cholera toxin lowers the burden of infection. FEMS Immunol. Med. Microbiol. 2003, 36, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Keenan, J.I.; Rijpkema, S.C.; Durrani, Z.; Roake, J.A. Differences in immunogenicity and protection in mice and guinea pigs following intranasal immunization with Helicobacter pylori outer membrane antigens. FEMS Immunol. Med. Microbiol. 2003, 36, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Rijpkema, S.G.; Durrani, Z.; Beavan, G.; Gibson, J.R.; Luck, J.; Owen, R.J.; Auda, G.R. Analysis of host responses of guinea pigs during Helicobacter pylori infection. FEMS Immunol. Med. Microbiol. 2001, 30, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Sobala, G.M.; Crabtree, J.E.; Dixon, M.F.; Schorah, C.J.; Taylor, J.D.; Rathbone, B.J.; Heatley, R.V.; Axon, A.T.R. Acute Helicobacter pylori infection: Clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut 1991, 32, 1415–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkitt, M.D.; Duckworth, C.A.; Williams, J.M.; Pritchard, D.M. Helicobacter pylori-induced gastric pathology: Insights from in vivo and ex vivo models. Dis. Model. Mech. 2017, 10, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Wicher, V.; Scarroza, A.M.; Ramsing, A.L.; Wicher, K. Cytokine gene expression in skin of susceptible guinea pigs infected with Treponema pallidum. Immunology 1998, 95, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Hiromatsu, K.; Dascher, C.C.; Sugita, M.; Gingrich-Baker, C.; Brhar, S.M.; LeClair, K.P.; Brenner, M.B.; Porcelli, S.A. Characterization of guinea-pig group 1 CD1 proteins. Immunology 2002, 106, 159–172. [Google Scholar] [CrossRef]
- McMurray, D.N. Disease model: Pulmonary tuberculosis. Trends Mol. Med. 1994, 7, 135. [Google Scholar] [CrossRef]
- Poh, A.R.; O’Donoghue, R.J.; Ernst, M.; Putoczki, T.L. Mouse models for gastric cancer: Matching models to biological questions. J. Gastroenterol. Hepatol. 2016, 31, 1257–1272. [Google Scholar] [CrossRef]
- Jeevan, A.; McFarland, C.T.; Yoshimura, T.; Skwor, T.; Cho, H.; Lasco, T.; McMurray, D.N. Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation. Infect. Immun. 2006, 74, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Padilla-Carlin, D.J.; McMurray, D.N.; Hickey, A.J. The guinea pig as a model of infectious diseases. Comp. Med. 2008, 58, 324–340. [Google Scholar]
- Whary, M.T.; Fox, J.G. Natural and experimental Helicobacter infection. Comp. Med. Sci. 2004, 54, 128–158. [Google Scholar]
- Yan, J.; Luo, Y.H.; Mao, Y.F. Establishment of Helicobacter pylori infection model in Mongolian gerbils. World J. Gastroenterol. 2004, 10, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Márquez, A.C.; Mendoza-Elizalde, S.; Arenas-Huertero, F.; Trillo-Tinoco, J.; Valencia-Mayoral, P.; Consuelo-Sánchez, A.; Zarate-Franco, J.; Dionicio-Avendaño, A.R.; Herrera-Esquivel, J.d.J.; Recinos-Carrera, E.G.; et al. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model. BMC Infect. Dis. 2018, 18, 463. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Choi, E.; Petersen, C.P.; Noto, J.M.; Romero-Gallo, J.; Piazuelo, M.B.; Washington, M.K.; Peek, R.M., Jr.; Goldenring, J.R. Characterization of progressive metaplasia in the gastric corpus mucosa of Mongolian gerbils infected with Helicobacter pylori. J. Pathol. 2016, 239, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, A.T.; Johnston, E.; Krishna, U.; Yamaoka, Y.; Israel, D.A.; Nagy, T.A.; Wroblewski, L.E.; Piazuelo, M.B.; Correa, P.; Peek, R.M., Jr. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008, 68, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Correa, P.; Chen, V.W. Gastric cancer. Cancer Surv. 1994, 20, 55–76. [Google Scholar]
- Franco, A.T.; Israel, D.A.; Washington, M.K.; Krishna, U.; Fox, J.G.; Rogers, A.B.; Neish, A.S.; Collier-Hyams, L.; Perez-Perez, G.I.; Hatakeyama, M.; et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc. Natl. Acad. Sci. USA 2005, 102, 10646–10651. [Google Scholar] [CrossRef] [Green Version]
- Kudo, T.; Lu, H.; Wu, J.Y.; Ohno, T.; Wu, M.J.; Genta, R.M.; Graham, D.Y.; Yamaoka, Y. Pattern of transcription factor activation in Helicobacter pylori-infected Mongolian gerbils. Gastroenterology 2007, 132, 1024–1038. [Google Scholar] [CrossRef] [Green Version]
- Walencka, M.; Gonciarz, W.; Mnich, E.; Gajewski, A.; Stawerski, P.; Knapik-Dabrowicz, A.; Chmiela, M. The microbiological, histological, immunological and molecular determinants of Helicobacter pylori infection in guinea pigs as a convenient animal model to study pathogenicity of these bacteria and the infection dependent immune response of the host *. Acta. Biochimica Polonica. 2015, 62, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Velazquez-Guadarrama, N.; Olivares, A.; Valencia, P.; Delos Monteros, L.; Madrigal-Santillán, E.; Madrigal-Bujaidar, E. Genotoxic and oxidative damage induced by Helicobacter pylori in Meriones unguiculatus. J. Environ. Pathol. Toxicol. Oncol. 2007, 26, 39–49. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ohno, T.; Graham, D.Y.; Yamaoka, Y. Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J. Gastroenterol. Hepatol. 2011, 26, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, R.; Satou, K.; Shiroma, A.; Shimoji, M.; Teruya, K.; Matsumoto, T.; Akada, J.; Hirano, T.; Yamaoka, Y. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog. 2019, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Philpott, D.J.; Belaid, D.; Troubadour, P.; Thiberge, J.-M.; Tankovic, J.; Labigne, A.; Ferrero, R.L. Reduced activation of inflammatory responses in host cells by mouse adapted Helicobacter pylori isolates. Cell Microbiol. 2002, 4, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Wirth, H.-P.; Manqiao, Y.; Edgardo, S.-V.; Berg, D.E.; Dubois, A.; Blaser, M.J. Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus macaques. FASEB J. 2006, 20, 1534–1536. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.M.; Gideonsson, P.; Canfield, D.R.; Borén, T.; Solnick, J.V. Dynamic expression of the BabA adhesin and its BabB paralog during Helicobacter pylori infection in rhesus macaques. Infect. Immun. 2017, 85, e00094-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaoka, Y.; Kita, M.; Kodama, T.; Imamura, S.; Ohno, T.; Sawai, N.; Ishimaru, A.; Imanishi, J.; Graham, D.Y. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology 2002, 123, 1992–2004. [Google Scholar] [CrossRef] [PubMed]
- Akanuma, M.; Maeda, S.; Ogura, K.; Mitsuno, Y.; Hirata, Y.; Ikenoue, T.; Otsuka, M.; Watanabe, T.; Yamaji, Y.; Yoshida, H.; et al. The evaluation of putative virulence factors of Helicobacter pylori for gastroduodenal disease by use of a short-term Mongolian gerbil infection model. J. Infect. Dis. 2002, 185, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Li, X.H.; Liu, F.; Li, W.Q.; Gong, Z.C.; Li, Y.J. Role of the Outer Inflammatory Protein A/Cystine–Glutamate Transporter Pathway in Gastric Mucosal Injury Induced by Helicobacter pylori. Clin. Trans. Gastroenterol. 2020, 11, e00178. [Google Scholar] [CrossRef]
- Saito, H.; Yamaoka, Y.; Ishizone, S.; Maruta, F.; Sugiyama, A.; Graham, D.Y.; Yamauchi, K.; Ota, H.; Miyagawa, S. Roles of virD4 and cagG genes in the cag pathogenicity island of Helicobacter pylori using a Mongolian gerbil model. Gut 2005, 54, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohnita, K.; Isomoto, H.; Honda, S.; Wada, A.; Wen, C.Y.; Nishi, Y.; Mizuta, Y.; Hirayama, T.; Kohno, S. Helicobacter pylori strain-specific modulation of gastric inflammation in Mongolian gerbils. World J. Gastroenterol. 2005, 11, 1549–1553. [Google Scholar] [CrossRef]
- Shibata, W.; Hirata, Y.; Maeda, S.; Ogura, K.; Ohmae, T.; Yanai, A.; Mitsuno, Y.; Yamaji, Y.; Okamoto, M.; Yoshida, H.; et al. CagA protein secreted by the intact type IV secretion system leads to gastric epithelial inflammation in the Mongolian gerbil model. J. Pathol. 2006, 210, 306–314. [Google Scholar] [CrossRef]
- Akopyants, N.S.; Clifton, S.W.; Kersulyte, D.; Crabtree, J.E.; Youree, B.E.; Reece, C.A.; Bukanov, N.O.; Drazek, E.S.; Roe, B.A.; Berg, D.E. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 1998, 28, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Censini, S.; Lange, C.; Xiang, Z.; Crabtree, J.E.; Ghiara, P.; Borodovsky, M.; Rappuoli, R.; Covacci, A. CagA pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 1996, 93, 14648–14653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peek, R.M.; Wirth, H.; Mossll, S.F.; Yang, M.; Abdallall, A.; Tham, K.T.; Zhang, T.; Tang, L.H.; Modlin, I.M.; Blaser, M.J. Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology 2000, 118, 48–59. [Google Scholar] [CrossRef]
- Rieder, G.; Merchant, J.L.; Haas, R. Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 2005, 128, 1229–1242. [Google Scholar] [CrossRef]
- Arnold, I.C.; Lee, J.Y.; Amieva, M.R.; Roers, A.; Flavell, R.A.; Sparwasser, T.; Muller, A. Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia. Gastroenterology 2011, 140, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Horvath, D.J., Jr.; Radin, J.N.; Cho, S.H.; Washington, M.K.; Algood, H.M. The interleukin-17 receptor B subunit is essential for the Th2 response to Helicobacter pylori, but not for control of bacterial burden. PLoS ONE 2013, 8, e60363. [Google Scholar] [CrossRef] [Green Version]
- Noto, J.M.; Khizanishvili, T.; Chaturvedi, R.; Piazuelo, M.B.; Romero-Gallo, J.; Delgado, A.G.; Khurana, S.S.; Sierra, J.C.; Krishna, U.S.; Suarez, G.; et al. Helicobacter pylori promotes the expression of Kruppel-like factor 5, a mediator of carcinogenesis, in vitro and in vivo. PLoS ONE 2013, 8, e54344. [Google Scholar] [CrossRef] [Green Version]
- Barrozo, R.M.; Hansen, L.M.; Lam, A.M.; Skoog, E.C.; Martin, M.E.; Cai, L.P.; Lin, Y.; Latoscha, A.; Suerbaum, S.; Canfield, D.R.; et al. CagY is an immune-sensitive regulator of the Helicobacter pylori type IV secretion system. Gastroenterology 2016, 151, 1164–1175. [Google Scholar] [CrossRef] [Green Version]
- Skoog, E.C.; Morikis, V.A.; Martin, M.E.; Foster, G.A.; Cai, L.P.; Hansen, L.M.; Li, B.; Gaddy, J.A.; Simon, S.I.; Solnick, J.V. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding. MBIO 2018, 9, e00717-18. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.M.; Dekalb, D.J.; Cai, L.P.; Solnick, J.V. Identification of pathogenicity island genes associated with loss of type IV secretion function during murine infection with Helicobacter pylori. Infect. Immun. 2020, 88, e00801-19. [Google Scholar] [CrossRef]
- Pachathundikandi, S.K.; Tegtmeyer, N.; Arnold, I.C.; Lind, J.; Neddermann, M.; Falkeis-Veits, C.; Chattopadhyay, S.; Brönstrup, M.; Tegge, W.; Hong, M.; et al. T4SS-dependent TLR5 activation by Helicobacter pylori infection. Nat. Commun. 2019, 10, 5717. [Google Scholar] [CrossRef] [Green Version]
- Linz, B.; Windsor, H.M.; McGraw, J.J.; Hansen, L.M.; Gajewski, J.P.; Tomsho, L.P.; Hake, C.M.; Solnick, J.V.; Schuster, S.C.; Marshall, B.J. A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat. Commun. 2014, 5, 4165. [Google Scholar] [CrossRef] [PubMed]
- Nell, S.; Estibariz, I.; Krebes, J.; Bunk, B.; Graham, D.Y.; Overmann, J.; Song, Y.; Spröer, C.; Yang, I.; Wex, T.; et al. Genome and methylome variation in Helicobacter pylori with a cag pathogenicity island during early stages of human infection. Gastroenterology 2018, 154, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Skoog, E.C.; Deck, S.L.; Entwistle, H.D.; Hansen, L.M.; Solnick, J.V. Characterization of the cag pathogenicity island in Helicobacter pylori from naturally infected rhesus macaques. FEMS Microbiol. Lett. 2016, 363, fnw275. [Google Scholar] [CrossRef] [Green Version]
- Solnick, J.V.; Chang, K.; Canfeld, D.R.; Parsonnet, J. Natural Acquisition of Helicobacter pylori infection in newborn Rhesus Macaques. J. Clin. Microbiol. 2003, 41, 5511–5516. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, N.; Tabuchi, Y.; Horiuchi, T.; Obinata, M.; Furusawa, M. Establishment of gastric surface mucous cell lines from transgenic mice harboring temperature-sensitive simian virus 40 large Tantigen gene. Exp. Cell Res. 1993, 209, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Basu, M.; Blanchard, T.G.; Chintalacharuvu, S.R.; Guang, W.; Lillehoj, E.P.; Czinn, S.J. Early molecular events in murine gastric epithelial cells mediated by Helicobacter pylori CagA. Helicobacter 2016, 21, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambinder, R.F. Gamma herpes viruses and “hit-and-run” oncogenesis. Am. J. Pathol. 2000, 156, 1–3. [Google Scholar] [CrossRef]
- Galloway, D.A.; McDougall, J.K. The oncogenic potential of herpes simplex viruses: Evidence for a ‘hit-and-run’ mechanism. Nature 1983, 302, 21–24. [Google Scholar] [CrossRef]
- Niller, H.H.; Wolf, H.; Minarovits, J. Viral hit and run-oncogenesis: Genetic and epigenetic scenarios. Cancer Lett. 2011, 305, 200–217. [Google Scholar] [CrossRef]
- Lin, A.S.; McClain, M.S.; Beckett, A.C.; Caston, R.R.; Harvey, M.L.; Dixon, B.R.E.A.; Campbell, A.M.; Shuman, J.H.B.; Sawhney, N.; Delgado, A.G.; et al. Temporal control of the Helicobacter pylori Cag type IV secretion system in a Mongolian gerbil model of gastric carcinogenesis. MBIO 2020, 11, e01296-20. [Google Scholar] [CrossRef]
- O’Brien, V.P.; Koehne, A.L.; Dubrulle, J.; Rodriguez, A.E.; Leverich, C.K.; Kong, V.P.; Campbell, J.S.; Pierce, R.H.; Goldenring, J.R.; Choi, E.; et al. Sustained Helicobacter pylori infection accelerates gastric dysplasia in a mouse model. Life Sci. Allia. 2020, 4, e202000967. [Google Scholar] [CrossRef] [PubMed]
- Alpízar-Alpízar, W.; Skindersoe, M.E.; Rasmussen, L.; Kriegbaum, M.C.; Christensen, I.J.; Lund, I.K.; Illemann, M.; Laerum, O.D.; Krogfelt, K.A.; Andersen, L.P.; et al. Helicobacter pylori Colonization Drives Urokinase Receptor (uPAR) Expression in Murine Gastric Epithelium During Early Pathogenesis. Microorganisms 2020, 8, 1019. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Thamphiwatana, S.; Carmona, E.M.; Rickman, B.; Doran, K.S.; Obonyo, M. Deficiency of the myeloid differentiation primary response molecule MyD88 leads to an early and rapid development of Helicobacter-induced gastric malignancy. Infect. Immun. 2014, 82, 356–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Moss, S.F. Rodent models of Helicobacter infection, inflammation, and disease. Methods Mol. Biol. 2012, 921, 89–98. [Google Scholar] [PubMed] [Green Version]
- Cai, X.; Carlson, J.; Stoicov, C.; Li, H.; Wang, T.C.; Houghton, J. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 2005, 128, 1937–1952. [Google Scholar] [CrossRef] [PubMed]
- Correa, P.; Haenszel, W.; Cuello, C.; Tannenbaum, S.; Archer, M. A model for gastric cancer epidemiology. Lancet 1975, 2, 58–60. [Google Scholar] [CrossRef]
- Bali, P.; Coker, J.; Lozano-Pope, I.; Zengler, K.; Obonyo, M. Microbiome Signatures in a Fastand Slow-Progressing Gastric Cancer Murine Model and Their Contribution to Gastric Carcinogenesis. Microorganisms 2021, 9, 189. [Google Scholar] [CrossRef]
- Liu, L.N.; Ding, S.G.; Shi, Y.Y.; Zhang, H.J.; Zhang, J.; Zhang, C. Helicobacter pylori with high thioredoxin-1 expression promotes stomach carcinogenesis in Mongolian gerbils. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Tebbutt, N.C.; Giraud, A.S.; Inglese, M.; Jenkins, B.; Waring, P.; Clay, F.J.; Malki, S.; Alderman, B.M.; Grail, D.; Hollande, F.; et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 2002, 8, 1089–1097. [Google Scholar] [CrossRef]
- Judd, L.M.; Alderman, B.M.; Howlett, M.; Shulkes, A.; Dow, C.; Moverley, J.; Grail, D.; Jenkins, B.J.; Ernst, M.; Giraud, A.S. Gastric Cancer Development in Mice Lacking the SHP2 Binding Site on the IL-6 FamilyCo-receptor gp130. Gastroenterology 2004, 126, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.O.; Lim, J.W.; Kim, K.H.; Kim, H. Involvement of Ras and AP-1 in Helicobacter pylori-Induced Expression of COX-2 and iNOS in Gastric Epithelial AGS Cells. Dig. Dis. Sci. 2010, 55, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Noach, L.A.; Bosma, N.B.; Jansen, J.; Hoek, F.J.; van Deventer, S.J.; Tytgat, G.N. Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection. Scand. J. Gastroenterol. 1994, 29, 425–429. [Google Scholar] [CrossRef]
- El-Omar, E.; Carrington, M.; Chow, W.-H.; McColl, K.E.L.; Bream, J.; Young, H.A.; Herrera, J.; Lissowska, J.; Yuan, C.-C.; Rothman, N.; et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000, 404, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, C.; Machado, J.C.; Pharoah, P.; Seruca, R.; Sousa, S.; Carvalho, R.; Capelinha, A.F.; Quint, W.; Caldas, C.; Van Doorn, L.-J.; et al. Helicobacter pylori and interleukin 1 genotyping: An opportunity to identify high-risk individuals for gastric carcinoma. J. Natl. Cancer Inst. 2002, 94, 1680–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.C.; Ladeira, M.S.; Pedrazzoli, J., Jr.; Ribeiro, M.L. Relationship of IL-1 and TNF-alpha polymorphisms with Helicobacter pylori in gastric diseases in a Brazilian population. Braz. J. Med. Biol. Res. 2012, 45, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Takashima, M.; Furuta, T.; Hanai, H.; Sugimura, H.; Kaneko, E. Effects of Helicobacter pylori infection on gastric acid secretion and serum gastrin levels in Mongolian gerbils. Gut 2001, 48, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, S.; Shibata, H.; Takahashi, M.; Ishikawa, F.; Yokokura, T.; Sugimura, T.; Wakabayashi, K. Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection. Cancer Sci. 2004, 95, 798–802. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Fukui, H.; Franceschi, F.; Penland, R.; Sepulveda, A.R.; Fujimori, T.; Terano, A.; Genta, R.M.; Graham, D.Y.; Yamaoka, Y. Cyclooxygenase expression during Helicobacter pylori infection in Mongolian gerbils. Dig. Dis. Sci. 2003, 48, 2139–2146. [Google Scholar] [CrossRef]
- Yanai, A.; Maeda, S.; Shibata, W.; Hikiba, Y. Activation of IkappaB kinase and NF-kappaB is essential for Helicobacter pylori-induced chronic gastritis in Mongolian gerbils. Infect. Immun. 2008, 76, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Bertaux-Skeirik, N.; Feng, R.; Schumacher, M.A.; Li, J.; Mahe, M.; Engevik, A.; Javier, J.E.; Jr, R.M.P.; Ottemann, K.; Orian-Rousseau, V.; et al. CD44 Plays a Functional Role in Helicobacter pylori induced Epithelial Cell Proliferation. PLoS Pathog. 2015, 11, e1004663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noto, J.M.; Rose, K.L.; Hachey, A.J.; Delgado, A.G.; Romero-Gallo, J.; Wroblewski, L.E.; Schneider, B.G.; Shah, S.C.; Cover, T.L.; Wilson, K.T.; et al. Carcinogenic Helicobacter pylori Strains Selectively Dysregulate the In Vivo Gastric Proteome, Which May Be Associated with Stomach Cancer Progression. Mol. Cell. Proteom. 2019, 18, 352–371. [Google Scholar] [CrossRef] [Green Version]
- Konturek, P.C.; Brzozowski, T.; Konturek, S.J.; Kwiecien, S.; Pajdo, R.; Drozdowicz, D.; Jerzy, S.; Elzbieta, K.; Hahn, E.G. Functional and morphological aspects of Helicobacter pylori-induced gastric cancer in Mongolian gerbils. Eur. J. Gastroenterol. Hepatol. 2003, 15, 745–754. [Google Scholar] [PubMed]
- Go, D.M.; Lee, S.H.; Lee, S.H.; Woo, S.H.; Kim, K.; Kim, K.; Park, K.S.; Park, J.H.; Ha, S.J.; Kim, W.H.; et al. Regulation of Helicobacter-Induced Gastritis by Programmed Death Ligand 1–Expressing Classic Dendritic Cells. Cell. Mol. Gastroenterol. Hepatol. 2021, 2, 715–739. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.G.; Yu, F.; Hsieh, C.L.; Redline, R.W. Severe inflammation and reduced bacteria load in murine helicobacter infection caused by lack of phagocyte oxidase activity. J. Infect. Dis. 2003, 187, 1609–1615. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Shu, D.; Chadwick, V.S. Helicobacter pylori infection: Mechanism of colonization and functional dyspepsia Reduced colonization of gastric mucosa by Helicobacter pylori in mice deficient in interleukin-10. J. Gastroenterol. Hepatol. 2001, 16, 377–383. [Google Scholar] [CrossRef]
- Eaton, K.A.; Ringler, S.R.; Danon, S.J. Murine splenocytes induce severe gastritis and delayed-type hypersensitivity and suppress bacterial colonization in Helicobacter pylori-infected SCID mice. Infect. Immun. 1999, 67, 4594–4602. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.S.; Vats, N.; Hutchison, D.; Butler, J.; Chisholm, K.; Sisson, G.; Raudonikiene, A.; Marshall, J.S.; Veldhuyzen van Zanten, S.J. Development of an interleukin-12-deficient mouse model that is permissive for colonization by a motile KE26695 strain of Helicobacter pylori. Infect. Immun. 2003, 71, 2534–2541. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, R.M.; Rao, D.S.; Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 2012, 30, 295–312. [Google Scholar] [CrossRef]
- Schickel, R.; Boyerinas, B.; Park, S.M.; Peter, M.E. MicroRNAs: Key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008, 27, 5959–5974. [Google Scholar] [CrossRef] [Green Version]
- Chrisment, D.; Dubus, P.; Chambonnier, L.; de la Guardia, A.H.; Sifré, E.; Giese, A.; Capone, M.; Khairallah, C.; Costet, P.; Rousseau, B.; et al. Neonatal thymectomy favors Helicobacter pylori promoted gastric mucosa-associated lymphoid tissue lymphoma lesions in BALB/c mice. Am. J. Pathol. 2014, 184, 2174–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floch, P.; Capdevielle, C.; Staedel, C.; Izotte, J.; Sifré, E.; Laur, A.M.; Giese, A.; Korolik, V.; Dubus, P.; Mégraud, F.; et al. Deregulation of MicroRNAs in Gastric Lymphomagenesis Induced in the d3Tx Mouse Model of Helicobacter pylori Infection. Front. Cell. Infect. Microbiol. 2017, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Ruan, G.; Huang, A.; Hu, C.; Xu, N.; Fan, M.; Zhang, Z.; Wang, Y.; Xing, Y. CD4+ CD8αα+ T cells in the gastric epithelium mediate chronic inflammation induced by Helicobacter felis. Microb. Pathog. 2021, 159, 105151. [Google Scholar] [CrossRef] [PubMed]
- Floch, P.; Izotte, J.; Guillemaud, J.; Sifré, E.; Costet, P.; Rousseau, B.; Laur, A.M.; Giese, A.; Korolik, V.; Mégraud, F.; et al. A New Animal Model of Gastric Lymphomagenesis APRIL Transgenic Mice Infected by Helicobacter Species. Am. J. Pathol. 2017, 187, 1473–1484. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Chu, T.H.; Nienhüser, H.; Jiang, Z.; Del Portillo, A.; Remotti, H.E.; White, R.A.; Hayakawa, Y.; Tomita, H.; Fox, J.G.; et al. PD-1 Signaling Promotes Tumor-Infiltrating Myeloid-Derived Suppressor Cells and Gastric Tumorigenesis in Mice. Gastroenterol 2020, 160, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.L.; Peek, R.M., Jr. Diet, microbial virulence, and Helicobacter pylori-induced gastric cancer. Gut Micro. 2013, 4, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Bergin, I.L.; Sheppard, B.J.; Fox, J.G. Helicobacter pylori infection and high dietary salt independently induce atrophic gastritis and intestinal metaplasia in commercially available outbred Mongolian gerbils. Dig. Dis. Sci. 2003, 48, 475–485. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Radin, J.N.; Loh, J.T.; Zhang, F.; Washington, M.K.; Peek, R.M., Jr.; Scott Algood, H.M.; Cover, T.L. High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis. Infect. Immun. 2013, 81, 2258–2267. [Google Scholar] [CrossRef] [Green Version]
- Song, J.H.; Kim, Y.S.; Heo, N.J.; Lim, J.H.; Yang, S.Y.; Chung, G.E.; Kim, J.S. High Salt Intake Is Associated with Atrophic Gastritis with Intestinal Metaplasia. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Park, S.H.; Hong, K.S.; Han, Y.M.; Jang, S.H.; Kim, E.H.; Hahm, K.B. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis. Helicobacter 2014, 19, 221–236. [Google Scholar] [CrossRef]
- Ferrero, R.L.; Wilson, J.E.; Sutton, P. Mouse models of Helicobacter-induced gastric cancer: Use of cocarcinogens. Methods Mol. Biol. 2012, 921, 157–173. [Google Scholar]
- Toyoda, T.; Tsukamoto, T.; Yamamoto, M.; Ban, H.; Saito, N.; Takasu, S.; Shi, L.; Saito, A.; Ito, S.; Yamamura, Y.; et al. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: Identification of CD177 as a novel prognostic factor in patients with gastric cancer. BMC Gastroenterol. 2013, 13, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Wei, H.; Yi, J.; Xie, B.; Chen, J.; Zhou, C.; Wang, L.; Yang, Y. Chronic CagA-positive Helicobacter pylori infection with MNNG stimulation synergistically induces mesenchymal and cancer stem cell-like properties in gastric mucosal epithelial cells. J. Cell. Biochem. 2019, 120, 17635–17649. [Google Scholar] [CrossRef] [PubMed]
- Esposito, R.; Vllahu, M.; Morello, S.; Baldantoni, D.; Bellino, A.; Petrella, A.; Eletto, D.; Porta, A.; Tosco, A. Low copper availability limits Helicobacter infection in mice. FEBS J. 2020, 287, 2948–2960. [Google Scholar] [CrossRef] [PubMed]
- Pra, D.; Rech Franke, S.I.; Pegas Henriques, J.A.; Fenech, M. A possible link between iron deficiency and gastrointestinal carcinogenesis. Nutr. Cancer. 2009, 61, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Beales, I.L.P. Efficacy of Helicobacter pylori eradication therapies: A single centre observational study. BMC Gastroenterol. 2001, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Yeo, Y.H.; Shiu, S.-I.; Ho, H.J.; Zou, B.; Lin, J.-T.; Wu, M.-S.; Liou, J.-M.; Wu, C.-Y. First-line Helicobacter pylori eradication therapies in countries with high and low clarithromycin resistance: A systematic review and network meta-analysis. Gut 2018, 67, 20. [Google Scholar] [CrossRef] [Green Version]
- De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother. 2009, 53, 1592–1597. [Google Scholar] [CrossRef] [Green Version]
- Vítor, J.M.B.; Vale, F.F. Alternative therapies for Helicobacter pylori: Probiotics and phytomedicine. Pathog. Dis. 2011, 63, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Goderska, K.; Agudo Pena, S.; Alarcon, T. Helicobacter pylori treatment: Antibiotics or probiotics. Appl. Microbiol. Biotechnol. 2018, 102, 1–7. [Google Scholar] [CrossRef]
- Jung, D.H.; Park, M.H.; Kim, C.J.; Lee, J.Y.; Keum, C.Y.; Kim, I.S.; Yun, C.H.; Kim, S.K.; Kim, W.H.; Lee, Y.C. Effect of β-caryophyllene from Cloves Extract on Helicobacter pylori Eradication in Mouse Model. Nutrients 2020, 12, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobert, A.P.; Boutaud, O.; Asim, M.; Zagol-Ikapitte, I.A.; Delgado, A.G.; Latour, Y.L.; Finley, J.L.; Singh, K.; Verriere, T.G.; Allaman, M.M.; et al. Dicarbonyl Electrophiles Mediate Inflammation-Induced Gastrointestinal Carcinogenesis. Gastroenterology 2021, 160, 1256–1268. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Deng, H.; Li, H.; Tang, W.; Guan, L.; Qiu, Y.; Donovan, M.J.; Chen, Z.; Tan, W. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat. Commun. 2021, 12, 2002. [Google Scholar] [CrossRef] [PubMed]
- Villegas, I.; Rosillo, M.Á.; Alarcón-de-la-Lastra, C.; Vázquez-Román, V.; Llorente, M.; Sánchez, S.; Gil, A.G.; Alcalde, P.; González, E.; Rosell, E.; et al. Amoxicillin and Clarithromycin Mucoadhesive Delivery System for Helicobacter pylori Infection in a Mouse Model: Characterization, Pharmacokinetics, and Efficacy. Pharmaceutics 2021, 13, 153. [Google Scholar] [CrossRef]
- Jeong, S.J.; Lee, K.H.; Kim, J.H.; Park, S.Y.; Song, Y.G. Efficacy and Gut Dysbiosis of Gentamicin-Intercalated Smectite as a New Therapeutic Agent against Helicobacter pylori in a Mouse Model. Antibiotics 2020, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Tao, L.; Jing, L.; Liu, D.; Hu, S.; Liu, W.; Zhou, N.; Xie, Y. Association of TLR4 and Treg in Helicobacter pylori Colonization and Inflammation in Mice. PLoS ONE 2016, 11, e0149629. [Google Scholar] [CrossRef] [Green Version]
- Narayana, J.L.; Huang, H.N.; Wu, C.J.; Chen, J.Y. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: In vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget 2015, 6, 12936–12954. [Google Scholar] [CrossRef] [Green Version]
Animal Models | Evidence Found | References |
---|---|---|
Mongolian gerbils | Shows light metaplasia after H. pylori infection | [74] |
Develops gastric cancer when infected with TN2GF4, TN2, and 7.13 strains | [27,77,78,79] | |
Nine months and 18 months post-infection, 20% and 44% of gerbils displayed macroscopic gastric ulcers, respectively. | [79] | |
Loss or acquisition of genetic material via genetic recombination | [81] | |
Loss of outer membrane protein blood group antigen-binding adhesin (BabA) after six months of infection | [82] | |
alpAB mutant did not infect the gerbil experimental models | [82] | |
In vivo bacterial adaptation causes an increase in virulence potential | [79] | |
Mouse model | In vivo bacterial adaptation causes mutations in babA, tlpB, and gltS | [83] |
In vivo bacterial adaptation occurs after infection of the animal stomach | [84] | |
“On” to “Off” switching of outer inflammatory protein (Oip)A, HopZ, HopO, and HopP occurs | [87] | |
oipA knockout strains renders lower inflammation than its wild-type strain | [87] | |
Rhesus macaques | “On” to “Off” switching of BabA occurs | [85] |
Guinea pigs | Shows significant increase in epithelial cells after H. pylori infection | [80] |
Animal Models | Evidence Found | References |
---|---|---|
Mongolian gerbils | High salt consumption in association with H. pylori infection induces gastric atrophy and intestinal metaplasia (IM) development | [149] |
H. pylori-infected animals maintained on a high-salt diet develop gastric cancer compared to H. pylori-infected animals maintained on a normal-salt diet | [150] | |
H. pylori-infected animals maintained on a low-iron diet develop more severe complications than H. pylori-infected animals maintained on normal-iron diet | [26] | |
Mouse model | Copper poverty leads to mild gastric damage and decreases the ability of H. felis to colonize the epithelium compared to the mice with normal copper | [156] |
Animal Models | Evidence Found | References |
---|---|---|
Mongolian gerbils | Hydrogen peroxide eliminates H. pylori and prevents H. pylori infection recurrence | [23] |
5-ethyl-2-hydroxybenzylamine (EtHOBA) prevents gastric cancer development | [164] | |
Mouse model | H-002119-00-001, a β-caryophyllene, shows a potent efficacy in bacterial eradication | [163] |
The graphitic nanozyme PtCo@Graphene (PtCo@G) exerts antibacterial activity against H. pylori | [165] | |
A mucoadhesive system (Mucolast®) loaded with amoxicillin and clarithromycin improves antibacterial efficacy against H. pylori | [166] | |
The gentamicin-intercalated smectite hybrid (S-GM) proves to be an effective therapeutic agent against H. pylori | [167] | |
Blockage of the Toll-like receptor 4 (TLR4) signaling pathway could play a role in controlling the H. pylori infection | [168] | |
Tilapia piscidin 4 (TP4), a peptide, inhibits the growth of antibiotic-resistant and sensitive H. pylori | [169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, S.; Yamaoka, Y. Animal Models and Helicobacter pylori Infection. J. Clin. Med. 2022, 11, 3141. https://doi.org/10.3390/jcm11113141
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. Journal of Clinical Medicine. 2022; 11(11):3141. https://doi.org/10.3390/jcm11113141
Chicago/Turabian StyleAnsari, Shamshul, and Yoshio Yamaoka. 2022. "Animal Models and Helicobacter pylori Infection" Journal of Clinical Medicine 11, no. 11: 3141. https://doi.org/10.3390/jcm11113141
APA StyleAnsari, S., & Yamaoka, Y. (2022). Animal Models and Helicobacter pylori Infection. Journal of Clinical Medicine, 11(11), 3141. https://doi.org/10.3390/jcm11113141