The Non-Concordance of Self-Reported and Performance-Based Measures of Vestibular Dysfunction in Military and Civilian Populations Following TBI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Procedures
2.3. Activities-Specific Balance Confidence Scale (ABC)
2.4. Dizziness Handicap Inventory (DHI)
2.5. Computerized Dynamic Posturography Sensory Organization Test (CDP–SOT)
2.6. Statistical Analysis
3. Results
3.1. Demographic Characteristics
Military Sample (n = 56) | a (n = 214) | b (n = 92) | c (n = 44) | d (n = 10) | e ABC (n = 58) DHI (n = 59) | f (n = 8) | g ABC (n = 129) DHI (n = 127) | h (n = 10) | i (n = 6) | j (n = 100) | k (n = 108) | l (n = 62) | m (n = 12) | n (n = 48) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors. Reference | – | Vereeck et al., 2007 [22] | Tamber et al., 2009 [31] | Findling et al., 2011 [32] | Basford et al., 2003 [33] | Alsalaheen et al., 2016 [34] | Moore et al., 2016 [24] | Dunlap et al., 2020 [35] | Kaufman et al., 2006 [17] | Adams & Moore, 2017 [36] | Whitney et al., 2006 [37] | Register-Mihalik et al., 2008 [38] | Sosnoff et al., 2011 [39] | McDevitt et al., 2016 [40] | Row et al., 2019 [41] |
Age-(years), mean SD | 32.52 ±8.17 | 53.9 ** ±13.5 | 47.2 ** ±11.46 | 38.4 ** – | 40.9 ** ±11.3 | 15 ** ±1.8 | 31 – | 20 ** ±7 | 41 * ±11 | 39.33 ±13.7 | 59 ** ±17 | 18.83 ** ±1.27 | 20.04 ** ±1.47 | 20.5 ** ±1.8 | 47.49 * ±16.12 |
Gender-Males, n (%) | 47 (83.93%) | 110 (51.4%) | 28 (30.43%) | – | 6 (60%) | 20 (33.89%) | 4 (50%) | – | 6 (60%) | 2 (33.33%) | 38 (38%) | 75 (69.44%) | – | 7 (58.3%) | – |
Race-White, n (%) | 35 (62.5%) | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
# of TBI-mean SD | 4.19 ±3.7 | – | – | – | – | – | – | – | – | 1.67 ** ±1.21 | – | – | 1.24 ** ±0.61 | 2.6 ±2.9 | – |
MOI-Blunt, n (%) | 46 (82.14%) | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
TSI-(months), mean SD | 13.63 ±16.17 | – | – | – | – | – | 10.68 – | 7.07 ** ±7.92 | 33.60 ** – | 19.84 ±10.66 | 36 ** ±60 | 0.05 ** ±0.03 | 44.3 ** – | 0.92 ** – | 12.52 ±13.70 |
3.2. Service Members Self-Report Fewer Vestibular Deficits Following TBIs
3.3. Service Members Experience More Performance-Based Vestibular Impairment Following a TBI
3.4. Interrelationship of Self-Reported and Performance-Based Vestibular Measures in Military Service Members
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Agimi, Y.; Regasa, L.E.; Stout, K.C. Incidence of Traumatic Brain Injury in the U.S. Military, 2010–2014. Mil. Med. 2019, 184, e233–e241. [Google Scholar] [CrossRef]
- Phipps, H.; Mondello, S.; Wilson, A.; Dittmer, T.; Rohde, N.N.; Schroeder, P.J.; Nichols, J.; McGirt, C.; Hoffman, J.; Tanksley, K.; et al. Characteristics and Impact of U.S. Military Blast-Related Mild Traumatic Brain Injury: A Systematic Review. Front. Neurol. 2020, 2, 559318. [Google Scholar] [CrossRef]
- DoD Numbers for Traumatic Brain Injury Worldwide—Totals. Available online: https://dvbic.dcoe.mil/dod-worldwide-numbers-tbi (accessed on 1 February 2022).
- Berman, J.M.; Fredrickson, J.M. Vertigo after head injury—A five year follow-up. J. Otolaryngol. 1978, 7, 237–345. [Google Scholar]
- Giza, C.; Fife, T.D. Posttraumatic Vertigo and Dizziness. Semin. Neurol. 2013, 33, 238–243. [Google Scholar] [CrossRef]
- O’Neil, M.E.; Carlson, K.; Storzbach, D.; Brenner, L.; Freeman, M.; Quiñones, A.; Motu’apuaka, M.; Ensley, M.; Kansagara, D. Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review; Department of Veterans Affairs: Washington, DC, USA, 2013. [Google Scholar]
- Hebert, J.R.; Forster, J.E.; Stearns-Yoder, K.A.; Penzenik, M.E.; Brenner, L.A. Persistent Symptoms and Objectively Measured Balance Performance Among OEF/OIF Veterans with Remote Mild Traumatic Brain Injury. J. Head Trauma Rehabil. 2018, 33, 403–411. [Google Scholar] [CrossRef]
- Marcus, H.J.; Paine, H.; Sargeant, M.; Wolstenholme, S.; Collins, K.; Marroney, N.; Arshad, Q.; Tsang, K.; Jones, B.; Smith, R.; et al. Vestibular dysfunction in acute traumatic brain injury. J. Neurol. 2019, 266, 2430–2433. [Google Scholar] [CrossRef] [Green Version]
- Pape, M.M.; Williams, K.; Kodosky, P.N.; Dretsch, M. The Community Balance and Mobility Scale: A Pilot Study Detecting Impairments in Military Service Members with Comorbid Mild TBI and Psychological Health Conditions. J. Head Trauma Rehabil. 2016, 31, 339–345. [Google Scholar] [CrossRef]
- Pletcher, E.R.; Williams, V.J.; Abt, J.P.; Morgan, P.M.; Parr, J.J.; Wohleber, M.F.; Lovalekar, M.; Sell, T.C. Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces. J. Athl. Train. 2017, 52, 129–136. [Google Scholar] [CrossRef] [Green Version]
- McGrath, M.K.; Linder, S.M.; Koop, M.M.; Zimmerman, N.; Ballantyne, M.A.J.; Ahrendt, D.M.; Alberts, J.L. Military-Specific Normative Data for Cognitive and Motor Single- and Dual-Task Assessments for Use in Mild Traumatic Brain Injury Assessment. Mil. Med. 2020, 185 (Suppl. 1), 176–183. [Google Scholar] [CrossRef] [Green Version]
- Akin, F.W.; Murnane, O.D.; Hall, C.D.; Riska, K.M. Vestibular consequences of mild traumatic brain injury and blast exposure: A review. Brain Inj. 2017, 31, 1188–1194. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Pourbakht, A.; Bahrami, E. Vestibular Assessment in Patients with Persistent Symptoms of Mild Traumatic Brain Injury. Indian J. Otolaryngol. Head Neck Surg. 2020. [Google Scholar] [CrossRef]
- Jacobson, G.P.; Newman, C.W. The Development of the Dizziness Handicap Inventory. Arch. Otolaryngol.-Head Neck Surg. 1990, 116, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, K.D.; Kalmar, K. Does premorbid depression influence post-concussive symptoms and neuropsychological functioning? Brain Inj. 1997, 11, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, M.E.; Balaban, C.; Szczupak, M.; Buskirk, J.; Snapp, H.; Crawford, J.; Wise, S.; Murphy, S.; Marshall, K.; Pelusso, C.; et al. The use of oculomotor, vestibular, and reaction time tests to assess mild traumatic brain injury (mTBI) over time. Laryngoscope Investig. Otolaryngol. 2017, 2, 157–165. [Google Scholar] [CrossRef]
- Kaufman, K.R.; Brey, R.H.; Chou, L.-S.; Rabatin, A.; Brown, A.W.; Basford, J.R. Comparison of subjective and objective measurements of balance disorders following traumatic brain injury. Med Eng. Phys. 2006, 28, 234–239. [Google Scholar] [CrossRef]
- Broglio, S.P.; Macciocchi, S.N.; Ferrara, M.S. Sensitivity of the concussion assessment battery. Neurosurgery 2007, 60, 1050–1057, discussion 1057-8. [Google Scholar] [CrossRef] [PubMed]
- Gottshall, K.R.; Hoffer, M.E. Tracking Recovery of Vestibular Function in Individuals With Blast-Induced Head Trauma Using Vestibular-Visual-Cognitive Interaction Tests. J. Neurol. Phys. Ther. 2010, 34, 94–97. [Google Scholar] [CrossRef]
- Kleffelgaard, I.; Roe, C.; Soberg, H.L.; Bergland, A. Associations among self-reported balance problems, post-concussion symptoms and performance-based tests: A longitudinal follow-up study. Disabil. Rehabil. 2012, 34, 788–794. [Google Scholar] [CrossRef]
- Inness, E.L.; Sweeny, M.; Perez, O.H.; Danells, C.; Chandra, T.; Foster, E.; Saverino, C.; Comper, P.; Bayley, M.; Mochizuki, G. Self-reported Balance Disturbance and Performance-Based Balance Impairment After Concussion in the General Population. J. Head Trauma Rehabil. 2019, 34, E37–E46. [Google Scholar] [CrossRef]
- Vereeck, L.; Truijen, S.; Wuyts, F.L.; Van de Heyning, P.H. The Dizziness Handicap Inventory and Its Relationship With Functional Balance Performance. Otol. Neurotol. 2007, 28, 87–93. [Google Scholar] [CrossRef]
- Kontos, A.P.; Deitrick, J.M.; Collins, M.W.; Mucha, A. Review of Vestibular and Oculomotor Screening and Concussion Rehabilitation. J. Athl. Train. 2017, 52, 256–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, B.M.; Adams, J.T.; Barakatt, E. Outcomes Following a Vestibular Rehabilitation and Aerobic Training Program to Address Persistent Post-Concussion Symptoms. J. Allied Health 2016, 45, e59–e68. [Google Scholar] [PubMed]
- American Congress of Rehabilitation Medicine. Brain Injury Interdisciplinary Special Interest Group, Mild Traumatic Brain Injury Task Force Definition of mild traumatic brain injury. J. Head Trauma Rehabil. 1993, 8, 86–87. [Google Scholar]
- Corrigan, J.D.; Bogner, J. Initial Reliability and Validity of the Ohio State University TBI Identification Method. J. Head Trauma Rehabil. 2007, 22, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Loftin, M.C.; Arango, J.I.; Bobula, S.; Hill-Pearson, C.; Pazdan, R.M.; Souvignier, A.R. Implementation of a Generalized Vestibular Rehabilitation Approach. Mil. Med. 2019, 185, e221–e226. [Google Scholar] [CrossRef] [PubMed]
- Vander Vegt, C.B.; Hill-Pearson, C.A.; Hershaw, J.N.; Loftin, M.C.; Bobula, S.A.; Souvignier, A.R. A comparison of generalized and individualized vestibular rehabilitation therapy in a military TBI sample. J. Head Trauma Rehabil. 2022, in press. [CrossRef]
- Montilla-Ibáñez, A.; Martínez-Amat, A.; Lomas-Vega, R.; Cruz-Díaz, D.; De la Torre-Cruz, M.J.; Casuso-Pérez, R.; Hita-Contreras, F. The Activities-specific Balance Confidence scale: Reliability and validity in Spanish patients with vestibular disorders. Disabil. Rehabil. 2017, 39, 697–703. [Google Scholar] [CrossRef]
- Murray, N.; Salvatore, A.; Powell, D.; Reed-Jones, R. Reliability and Validity Evidence of Multiple Balance Assessments in Athletes with a Concussion. J. Athl. Train. 2014, 49, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Tamber, A.-L.; Wilhelmsen, K.T.; Strand, L.I. Measurement properties of the Dizziness Handicap Inventory by cross-sectional and longitudinal designs. Health Qual. Life Outcomes 2009, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Findling, O.; Schuster, C.; Sellner, J.; Ettlin, T.; Allum, J. Trunk sway in patients with and without, mild traumatic brain injury after whiplash injury. Gait Posture 2011, 34, 473–478. [Google Scholar] [CrossRef]
- Basford, J.R.; Chou, L.S.; Kaufman, K.R.; Brey, R.H.; Walker, A.; Malec, J.F.; Moessner, A.M.; Brown, A.W. An assessment of gait and balance deficits after traumatic brain injury. Arch. Phys. Med. Rehabil. 2003, 84, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Alsalaheen, B.A.; Whitney, S.L.; Marchetti, G.F.; Furman, J.M.; Kontos, A.P.; Collins, M.W.; Sparto, P.J. Relationship Between Cognitive Assessment and Balance Measures in Adolescents Referred for Vestibular Physical Therapy After Concussion. Clin. J. Sport Med. 2016, 26, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlap, P.M.; Mucha, A.; Smithnosky, D.; Whitney, S.L.; Furman, J.M.; Collins, M.W.; Kontos, A.P.; Sparto, P.J. The Gaze Stabilization Test Following Concussion. J. Am. Acad. Audiol. 2018, 29, 3766. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Moore, B. Return to Meaningful Activities After a Multi-Modal Rehabilitation Programme among Individuals Who Experience Persistent Dizziness and Debility Longer Than 9 Months after Sustaining a Concussion: A Case Series. Physiother. Can. 2017, 69, 249–259. [Google Scholar] [CrossRef]
- Whitney, S.L.; Marchetti, G.F.; Schade, A.I. The Relationship Between Falls History and Computerized Dynamic Posturography in Persons With Balance and Vestibular Disorders. Arch. Phys. Med. Rehabil. 2006, 87, 402–407. [Google Scholar] [CrossRef]
- Register-Mihalik, J.K.; Mihalik, J.P.; Guskiewicz, K.M. Balance deficits after sports-related concussion in individuals reporting posttraumatic headache. Neurosurgery 2008, 63, 76–82. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Broglio, S.P.; Shin, S.; Ferrara, M.S. Previous Mild Traumatic Brain Injury and Postural-Control Dynamics. J. Athl. Train. 2011, 46, 85–91. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, J.; Appiah-Kubi, K.O.; Tierney, R.; Wright, W.G. Vestibular and Oculomotor Assessments May Increase Accuracy of Subacute Concussion Assessment. Int. J. Sports Med. 2016, 37, 738–747. [Google Scholar] [CrossRef]
- Row, J.; Chan, L.; Damiano, D.; Shenouda, C.N.; Collins, J.; Zampieri, C. Balance Assessment in Traumatic Brain Injury: A Comparison of the Sensory Organization and Limits of Stability Tests. J. Neurotrauma 2019, 36, 2435–2442. [Google Scholar] [CrossRef]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef]
- Liutsko, L.; Muiños, R.; Tous-Ral, J.M. Age-related differences in proprioceptive and visuo-proprioceptive function in relation to fine motor behaviour. Eur. J. Ageing 2014, 11, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.; Waddington, G.; Adams, R.; Han, J. Age-related changes in proprioception of the ankle complex across the lifespan. J. Sport Health Sci. 2019, 8, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Vanspauwen, R.; Knoop, A.; Camp, S.; van Dinther, J.; Offeciers, F.E.; Somers, T.; Zarowski, A.; Blaivie, C. Outcome evaluation of the dizziness handicap inventory in an outpatient vestibular clinic. J. Vestib. Res. 2016, 26, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Schuh-Renner, A.; Canham-Chervak, M.; Grier, T.L.; Jones, B.H. Accuracy of self-reported injuries compared to medical record data. Musculoskelet. Sci. Pr. 2019, 39, 39–44. [Google Scholar] [CrossRef]
- Hotaling, B.; Theiss, J.; Cohen, B.; Wilburn, K.; Emberton, J.; Westrick, R. Self-Reported Musculoskeletal Injury Healthcare-Seeking Behaviors in US Air Force Special Warfare Personnel. J. Spec. Oper. Med. 2021, 21, 72–77. [Google Scholar] [CrossRef]
- Roberts, H.J.; Hoppes, C.W.; Del Toro, Y.M.; Lambert, K.H.; Springer, B.A. Normative values for the Sensory Organization Test in an active duty military cohort. Gait Posture 2021, 85, 31–37. [Google Scholar] [CrossRef]
- Lien, S.; Dickman, J.D. Vestibular Injury After Low-Intensity Blast Exposure. Front. Neurol. 2018, 9, 297. [Google Scholar] [CrossRef] [Green Version]
Military Sample (n = 56) | a (n = 214) | b (n = 92) | c (n = 44) | d (n = 10) | e ABC (n = 58) DHI (n = 59) | f (n = 8) | g ABC (n = 129) DHI (n = 127) | h (n = 10) | i (n = 6) | j (n = 100) | |
---|---|---|---|---|---|---|---|---|---|---|---|
ABC-mean SD | 77.11 ±14.61 | – – | – – | – – | – – | 67 * ±27 | 72 * – | 96 ** 10 | – – | 76.8 ±13.2 | 60 * ±24 |
DHI-mean SD Range | 37.75 ±11.74 [16–62] | 35.1 ±25 [0–96] | 39.91 ±18.95 [4–86] | 62.7 ** – [28–94] | 32.2 ±23 [4–68] | 44 * ±20 – | 53 ** – [30–96] | 12 ** ±14 – | 32 ±23 [4–68] | 64.1 * ±21.5 [30–96] | – – – |
Military Sample (n = 56) | k (n = 108) | l (n = 62) | m (n = 12) | n (n = 48) | |
---|---|---|---|---|---|
CDP–SOT | |||||
COMP-mean SD | 68.46 ±13.46 | 72.67 ±14.23 | 91.6 ** ±1.5 | 76.1 * ±8.5 | 72 ±12 |
VIS-mean SD | 81.36 ±14.03 | 83 ±18 | 97 ** ±1.4 | 84 ±10 | 88 ** ±9 |
VEST-mean SD | 55.63 ±22.28 | 63 * ±23 | 90.7 ** ±3.8 | 69 ** ±1 | 54 ±26 |
SOM-mean SD | 90.46 ±10.17 | 95 ** ±6 | 98.3 ** ±1.1 | 95 * ±5 | 94 * ±6 |
ABC | DHI | |||
---|---|---|---|---|
r | p | r | p | |
COMP | 0.380 | 0.004 | −0.239 | 0.076 |
VIS | 0.266 | 0.048 | −0.05 | 0.713 |
VEST | 0.352 | 0.008 | −0.23 | 0.089 |
SOM | 0.220 | 0.103 | −0.232 | 0.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, N.I.; Hentig, J.; Hager, M.; Hill-Pearson, C.; Hershaw, J.N.; Souvignier, A.R.; Bobula, S.A. The Non-Concordance of Self-Reported and Performance-Based Measures of Vestibular Dysfunction in Military and Civilian Populations Following TBI. J. Clin. Med. 2022, 11, 2959. https://doi.org/10.3390/jcm11112959
Wood NI, Hentig J, Hager M, Hill-Pearson C, Hershaw JN, Souvignier AR, Bobula SA. The Non-Concordance of Self-Reported and Performance-Based Measures of Vestibular Dysfunction in Military and Civilian Populations Following TBI. Journal of Clinical Medicine. 2022; 11(11):2959. https://doi.org/10.3390/jcm11112959
Chicago/Turabian StyleWood, Nicholas I., James Hentig, Madison Hager, Candace Hill-Pearson, Jamie N. Hershaw, Alicia R. Souvignier, and Selena A. Bobula. 2022. "The Non-Concordance of Self-Reported and Performance-Based Measures of Vestibular Dysfunction in Military and Civilian Populations Following TBI" Journal of Clinical Medicine 11, no. 11: 2959. https://doi.org/10.3390/jcm11112959
APA StyleWood, N. I., Hentig, J., Hager, M., Hill-Pearson, C., Hershaw, J. N., Souvignier, A. R., & Bobula, S. A. (2022). The Non-Concordance of Self-Reported and Performance-Based Measures of Vestibular Dysfunction in Military and Civilian Populations Following TBI. Journal of Clinical Medicine, 11(11), 2959. https://doi.org/10.3390/jcm11112959