Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sleep Apnea ECG Database
- NCKUHSCAD-APEG-A included 11 participants who provided severe SA recordings (30 < AHI ≤ 45), with an average ± standard deviation AHI of 39.25 ± 5.78/h.
- NCKUHSCAD-APEG-B included 35 participants who suffered from SA (AHI ≥ 10), with an average ± standard deviation AHI of 39.83 ± 23.08/h.
- NCKUHSCAD-APEG-C included the whole database, with an average ± standard deviation AHI of 29.02 ± 25.49/h.
- PAED-APEG-A included 8 participants with severe SA recordings from group A (30 < AHI ≤ 45, average ± standard deviation AHI: 39.14 ± 3.60/h, age 51.38 ± 6.43 years, and weight 87.88 ± 9.42 kg).
- PAED-APEG-B included participants who suffered from SA—i.e., all of group A (21 < AHI < 83) and group B (0 < AHI < 25, except b05). Thus, APEG-B included 1 female and 23 males, with an average ± standard deviation AHI of 41.55 ± 23.45/h, an age of 51.42 ± 6.50 years, and a weight of 93.04 ± 16.67 kg.
- PAED-APEG-C included the whole database (excluding b05 and c05). Thus, APEG-C included 4 females and 29 males, with an average ± standard deviation AHI of 30.23 ± 27.35/h, an age of 46.85 ± 9.80 years, and a weight of 86.67 ± 18.23 kg. This group featured the same arrangement of participants used in [12,16,17,18,20,29,30].
2.2. Sleep Apnea Detection Algorithm Using a Machine-Learning Framework and Bag-of-Features Derived from ECG Spectrograms
2.3. Data Preprocessing
2.4. Time–Frequency Transformation of ECG
2.5. Feature Extraction Using Bag-of-Features
2.6. Machine-Learning classifiers
2.7. k-Fold Cross-Validation
3. Experimental Results
4. Discussion
4.1. ECG Variation during Rapid Eye Movement (REM) and Non-REM Sleep Stages
4.2. Per Subject Classification (Leave-One-Subject-Out Cross-Validation)
4.3. Performance Comparison with the Existing Literature
4.4. Limitations and Future Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. Hidden health crisis costing America billions. In Underdiagnosing and Undertreating Obstructive Sleep Apnea Draining Healthcare System; Frost & Sullivan: Mountain View, CA, USA, 2016. [Google Scholar]
- Facco, F.L.; Lopata, V.; Wolsk, J.M.; Patel, S.; Wisniewski, S.R. Can We Use Home Sleep Testing for the Evaluation of Sleep Apnea in Obese Pregnant Women? Sleep Disord. 2019, 2019, 3827579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalewski, B.; Kamińska, A.; Syrico, A.; Kałdunska, A.; Pałka, Ł.; Sobolewska, E. The Usefulness of Modified Mallampati Score and CT Upper Airway Volume Measurements in Diagnosing OSA among Patients with Breathing-Related Sleep Disorders. Appl. Sci. 2021, 11, 3764. [Google Scholar] [CrossRef]
- Philip, P.; Bailly, S.; Benmerad, M.; Micoulaud-Franchi, J.; Grillet, Y.; Sapène, M.; Jullian-Desayes, I.; Joyeux-Faure, M.; Tamisier, R.; Pépin, J. Self-reported sleepiness and not the apnoea hypopnoea index is the best predictor of sleepiness-related accidents in obstructive sleep apnoea. Sci. Rep. 2020, 10, 16267. [Google Scholar] [CrossRef]
- Kukwa, W.; Migacz, E.; Lis, T.; Ishman, S.L. The effect of in-lab polysomnography and home sleep polygraphy on sleep position. Sleep Breath. Schlaf Atm. 2021, 25, 251. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Eng. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Guilleminault, C.; Poyares, D.; Rosa, A.; Huang, Y.-S. Heart rate variability, sympathetic and vagal balance and EEG arousals in upper airway resistance and mild obstructive sleep apnea syndromes. Sleep Med. 2005, 6, 451–457. [Google Scholar] [CrossRef]
- Babaeizadeh, S.; Zhou, S.H.; Pittman, S.D.; White, D.P. Electrocardiogram-derived respiration in screening of sleep-disordered breathing. J. Electrocardiol. 2011, 44, 700–706. [Google Scholar] [CrossRef]
- Berntson, G.G.; Thomas Bigger, J., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Langley, P.; Bowers, E.J.; Murray, A. Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: Application to ECG-derived respiration. IEEE Trans. Biomed. Eng. 2009, 57, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef]
- Hwang, S.H.; Lee, Y.J.; Jeong, D.-U.; Park, K.S. Apnea–hypopnea index prediction using electrocardiogram acquired during the sleep-onset period. IEEE Trans. Biomed. Eng. 2016, 64, 295–301. [Google Scholar]
- Van Steenkiste, T.; Groenendaal, W.; Deschrijver, D.; Dhaene, T. Automated sleep apnea detection in raw respiratory signals using long short-term memory neural networks. IEEE J. Biomed. Health Inform. 2018, 23, 2354–2364. [Google Scholar] [CrossRef] [Green Version]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.-H.; Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Quiceno-Manrique, A.; Alonso-Hernandez, J.; Travieso-Gonzalez, C.; Ferrer-Ballester, M.; Castellanos-Dominguez, G. Detection of obstructive sleep apnea in ECG recordings using time-frequency distributions and dynamic features. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; IEEE: Manhattan, NY, USA, 2009; pp. 5559–5562. [Google Scholar]
- Nguyen, H.D.; Wilkins, B.A.; Cheng, Q.; Benjamin, B.A. An online sleep apnea detection method based on recurrence quantification analysis. IEEE J. Biomed. Health Inform. 2013, 18, 1285–1293. [Google Scholar] [CrossRef]
- Sannino, G.; De Falco, I.; De Pietro, G. Monitoring obstructive sleep apnea by means of a real-time mobile system based on the automatic extraction of sets of rules through differential evolution. J. Biomed. Inform. 2014, 49, 84–100. [Google Scholar] [CrossRef]
- Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Kraemer, J.F.; Wessel, N.; Ravelo-García, A.G. Heart rate variability feature selection in the presence of sleep apnea: An expert system for the characterization and detection of the disorder. Comput. Biol. Med. 2017, 91, 47–58. [Google Scholar] [CrossRef]
- Singh, S.A.; Majumder, S. A novel approach osa detection using single-lead ECG scalogram based on deep neural network. J. Mech. Med. Biol. 2019, 19, 1950026. [Google Scholar] [CrossRef]
- Thomas, R.J.; Mietus, J.E.; Peng, C.-K.; Goldberger, A.L. An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep. Sleep 2005, 28, 1151–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Peng, C.-K.; Wu, H.-L.; Mietus, J.E.; Liu, Y.; Sun, R.-S.; Thomas, R.J. ECG-derived cardiopulmonary analysis of pediatric sleep-disordered breathing. Sleep Med. 2011, 12, 384–389. [Google Scholar] [CrossRef]
- Liu, D.; Yang, X.; Wang, G.; Ma, J.; Liu, Y.; Peng, C.-K.; Zhang, J.; Fang, J. HHT based cardiopulmonary coupling analysis for sleep apnea detection. Sleep Med. 2012, 13, 503–509. [Google Scholar] [CrossRef]
- Penzel, T.; McNames, J.; De Chazal, P.; Raymond, B.; Murray, A.; Moody, G. Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 2002, 40, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2003, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Sleep Medicine (AASM). AASM Clarifies Hypopnea Scoring Criteria. 2013. Available online: https://aasm.org/aasm-clarifies-hypopnea-scoring-criteria/ (accessed on 2 December 2021).
- Ruehland, W.R.; Rochford, P.D.; O’Donoghue, F.J.; Pierce, R.J.; Singh, P.; Thornton, A.T. The new AASM criteria for scoring hypopneas: Impact on the apnea hypopnea index. Sleep 2009, 32, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H. The apnea-ECG database. In Proceedings of the Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; IEEE: Manhattan, NY, USA, 2000; pp. 255–258. [Google Scholar]
- Hassan, A.R. Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting. Biomed. Signal Process. Control 2016, 29, 22–30. [Google Scholar] [CrossRef]
- Surrel, G.; Aminifar, A.; Rincón, F.; Murali, S.; Atienza, D. Online obstructive sleep apnea detection on medical wearable sensors. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Rioul, O.; Duhamel, P. Fast algorithms for discrete and continuous wavelet transforms. IEEE Trans. Inf. Theory 1992, 38, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Mietus, J.E.; Peng, C.-K.; Gilmartin, G.; Daly, R.W.; Goldberger, A.L.; Gottlieb, D.J. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. Sleep 2007, 30, 1756–1769. [Google Scholar] [CrossRef] [Green Version]
- Csurka, G.; Dance, C.; Fan, L.; Willamowski, J.; Bray, C. Visual categorization with bags of keypoints. In Proceedings of the Workshop on Statistical Learning in Computer Vision, ECCV, Prague, Czech Republic, 11–14 May 2004; pp. 1–2. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Dasarathy, B.V. Nearest Neighbor (NN) Norms: NN Pattern Classification Technique; IEEE Computer Society Tutorial: Ann Arbor, MI, USA, 1991. [Google Scholar]
- Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
- Gul, A.; Perperoglou, A.; Khan, Z.; Mahmoud, O.; Miftahuddin, M.; Adler, W.; Lausen, B. Ensemble of a subset of k NN classifiers. Adv. Data Anal. Classif. 2018, 12, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 2004, 5, 1089–1105. [Google Scholar]
- Sadek, I.; Heng, T.T.S.; Seet, E.; Abdulrazak, B. A new approach for detecting sleep apnea using a contactless bed sensor: Comparison study. J. Med. Internet Res. 2020, 22, e18297. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Tripathy, R.K.; Pachori, R.B. Detection of sleep apnea from heart beat interval and ECG derived respiration signals using sliding mode singular spectrum analysis. Digit. Signal Process. 2020, 104, 102796. [Google Scholar] [CrossRef]
- Niroshana, S.I.; Zhu, X.; Nakamura, K.; Chen, W. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network. PLoS ONE 2021, 16, e0250618. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- ŽEmaitytė, D.; Varoneckas, G.; Sokolov, E. Heart rhythm control during sleep. Psychophysiology 1984, 21, 279–289. [Google Scholar] [CrossRef]
- Raetz, S.L.; Richard, C.A.; Garfinkel, A.; Harper, R.M. Dynamic characteristics of cardiac RR intervals during sleep and waking states. Sleep 1991, 14, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Hornyak, M.; Cejnar, M.; Elam, M.; Matousek, M.; Wallin, B.G. Sympathetic muscle nerve activity during sleep in man. Brain 1991, 114, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; Dyken, M.E.; Mark, A.L.; Abboud, F.M. Sympathetic-nerve activity during sleep in normal subjects. N. Eng. J. Med. 1993, 328, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Valoni, E.; Adamson, P.; Piann, G. A comparison of healthy subjects with patients after myocardial infarction. Circulation 1995, 91, 1918–1922. [Google Scholar]
Frequency Band | Normal Breathing Data * | Apnea Data * | ||||
---|---|---|---|---|---|---|
APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | |
0.1–50 Hz | 4990/1778 | 11,236/4883 | 16,941/8383 | 1638/1799 | 5173/5886 | 5538/5895 |
8–50 Hz | 4990/1819 | 11,236/4985 | 16,941/8665 | 1638/1820 | 5173/5902 | 5538/5908 |
0.8–10 Hz | 4990/1776 | 11,236/4803 | 16,941/8568 | 1638/1802 | 5173/5775 | 5538/5778 |
0–0.8 Hz | 4990/1804 | 11,236/5060 | 16,941/8526 | 1638/1801 | 5173/5931 | 5538/5993 |
Confusion Matrix | Actual Class | ||||
A | B | ||||
Predicted Class | A | TP | FP | ||
B | FN | TN | |||
Total | P | N |
Database | Accuracy (%) | Sensitivity (%) | Specificity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | |
PAED | 87.35 | 88.06 | 90.43 | 89.70 | 90.40 | 88.72 | 85.01 | 85.32 | 91.55 |
NCKUHSCAD | 83.40 | 80.15 | 83.54 | 56.78 | 63.48 | 57.17 | 92.14 | 87.82 | 92.16 |
Frequency Band | Accuracy (%) | Sensitivity (%) | Specificity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | |
SVM | |||||||||
0.1–50 Hz | 81.6 | 77.7 | 81 | 50.2 | 45.4 | 32.4 | 91.9 | 92.5 | 96.9 |
8–50 Hz | 84.4 # | 80.5 | 83.8 # | 57.3 | 60.6 | 51.6 | 93.3 | 89.6 | 94.3 |
0.8–10 Hz | 83.3 | 79.6 | 82.6 | 53.8 | 56.6 | 42.9 | 93 | 90.1 | 95.5 |
0–0.8 Hz | 79.9 | 70.9 | 76.8 | 18.9 | 22 | 6 | 100 | 93.4 | 100 |
KNN | |||||||||
0.1–50 Hz | 81 | 77.8 | 81.6 | 49.6 | 57 | 47.1 | 91.3 | 87.3 | 92.8 |
8–50 Hz | 83.6 | 79.3 | 82.6 | 56.7 | 62.5 | 54.6 | 92.4 | 87.1 | 91.7 |
0.8–10 Hz | 82.7 | 78 | 81.3 | 52.4 | 53.7 | 44.6 | 92.6 | 89.1 | 93.4 |
0–0.8 Hz | 78.8 | 69.9 | 76.3 | 29.6 | 11.4 | 9 | 95 | 96.8 | 98.2 |
EL | |||||||||
0.1–50 Hz | 82.2 | 78.4 | 82.5 | 60.2 | 61.1 | 52.2 | 89.4 | 86.3 | 92.4 |
8–50 Hz | 84 | 80.8 # | 83.7 | 63.7 | 70.6 | 65.3 | 90.6 | 85.5 | 89.7 |
0.8–10 Hz | 82.5 | 78.6 | 82 | 60.5 | 60.8 | 48.8 | 89.7 | 86.8 | 92.9 |
0–0.8 Hz | 78.8 | 70.8 | 76.6 | 41.1 | 36.5 | 20.5 | 91.2 | 86.6 | 95 |
Frequency Band | Accuracy (%) | Sensitivity (%) | Specificity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | |
SVM | |||||||||
0.1–50 Hz | 77.2 | 82.8 | 86.5 | 78.8 | 81.3 | 79.1 | 75.5 | 84.5 | 91.3 |
8–50 Hz | 88.2 # | 88.3 | 90.9 | 90.1 | 90.7 | 89.1 | 86.3 | 85.6 | 92.1 |
0.8–10 Hz | 88.2 | 87.8 | 90.1 | 89.8 | 90.9 | 87.2 | 86.7 | 84.2 | 92.1 |
0–0.8 Hz | 65.7 | 68.0 | 71.4 | 63.5 | 73.4 | 52.4 | 68.0 | 61.7 | 83.8 |
KNN | |||||||||
0.1–50 Hz | 75.2 | 81.5 | 84.9 | 66.8 | 77.2 | 72.2 | 83.5 | 86.4 | 93.3 |
8–50 Hz | 86.1 | 86.5 | 89.5 | 82.3 | 85.4 | 82.6 | 90.0 | 87.7 | 94.0 |
0.8–10 Hz | 88.0 | 86.1 | 88.5 | 84.3 | 83.6 | 79.7 | 91.8 | 89.1 | 94.3 |
0–0.8 Hz | 59.3 | 62.5 | 66.0 | 52.1 | 62.1 | 35.0 | 66.5 | 62.9 | 86.5 |
EL | |||||||||
0.1–50 Hz | 75.7 | 81.8 | 85.6 | 71.1 | 81.9 | 78.0 | 80.2 | 81.8 | 90.7 |
8–50 Hz | 86.9 | 88.3 # | 91.4 # | 88.9 | 90.7 | 89.8 | 84.8 | 85.5 | 92.4 |
0.8–10 Hz | 87.2 | 86.5 | 89.1 | 87.8 | 88.6 | 85.5 | 86.5 | 84.0 | 91.4 |
0–0.8 Hz | 65.2 | 69.5 | 69.5 | 64.7 | 45.9 | 45.9 | 65.8 | 85.1 | 85.1 |
Frequency Band | Accuracy (%) | Sensitivity (%) | Specificity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | |
SVM | |||||||||
0.1–50 Hz | 92.7 | 93.2 | 93.9 | 79.4 | 80.4 | 77.4 | 97 | 97.4 | 97.5 |
8–50 Hz | 95 # | 93.3 # | 94.9 # | 84.3 | 79.2 | 77.7 | 98.5 | 97.8 | 98.6 |
0.8–10 Hz | 80.1 | 81.5 | 85.9 | 38 | 40.3 | 37.3 | 93.8 | 94.8 | 96.5 |
KNN | |||||||||
0.1–50 Hz | 81.7 | 84.2 | 87.3 | 45.8 | 53.5 | 45.5 | 93.4 | 94 | 96.5 |
8–50 Hz | 87.1 | 85.1 | 88.2 | 59.2 | 52.4 | 47.3 | 96.3 | 95.6 | 97.1 |
0.8–10 Hz | 76.8 | 79 | 84.2 | 10.8 | 36 | 28.8 | 98.3 | 92.9 | 96.2 |
EL | |||||||||
0.1–50 Hz | 91.3 | 91.9 | 92.8 | 70.5 | 73.3 | 64.1 | 98 | 97.9 | 99 |
8–50 Hz | 94 | 91.8 | 93.3 | 79.6 | 78.4 | 66.8 | 98.7 | 96.1 | 99.1 |
0.8–10 Hz | 79.3 | 80.8 | 85.3 | 29.6 | 35.3 | 29.1 | 95.5 | 95.4 | 97.5 |
Sleep Stage | Accuracy (%) | Sensitivity (%) | Specificity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | APEG-A | APEG-B | APEG-C | |
Imbalanced Dataset | |||||||||
REM | 83.1 | 78.7 | 75 | 90.5 | 78.5 | 84.7 | 61.3 | 78.8 | 59.1 |
Non-REM | 74.8 | 81.4 | 77.8 | 72.3 | 81.6 | 78.7 | 77.1 | 81.1 | 77 |
Balanced Dataset | |||||||||
REM | 89.6 | 78.7 | 83.4 | 90 | 78.5 | 85.3 | 89.2 | 78.8 | 81.5 |
Non-REM | 75.5 | 86.6 | 79.1 | 74.5 | 86.8 | 80.8 | 76.4 | 86.4 | 77.5 |
Evaluation Parameter | APEG-A Subject | Average | |||||||
---|---|---|---|---|---|---|---|---|---|
a03 | a05 | a08 | a13 | a16 | a17 | a19 | a20 | ||
Accuracy | 75.0 | 54.3 | 76.5 | 85.2 | 73.3 | 67.2 | 80.2 | 52.1 | 70.48 |
Sensitivity | 98.6 | 70.1 | 57.8 | 77.4 | 68.4 | 95.7 | 66.5 | 26.4 | 70.11 |
Specificity | 54.7 | 32.4 | 88.4 | 92.7 | 83.1 | 49.5 | 88.8 | 93.0 | 72.83 |
Evaluation Parameter | APEG-B Subject | ||||||||||||
a01 | a02 | a03 | a04 | a05 | a06 | a07 | a08 | a09 | a10 | a11 | a12 | a13 | |
Accuracy | 92.35 | 20.83 | 84.17 | 58.54 | 81.90 | 65.42 | 72.71 | 75.83 | 83.75 | 77.08 | 65.95 | 52.08 | 81.46 |
Sensitivity | 100 | 0.26 | 93.24 | 56.69 | 91.80 | 28.96 | 85.37 | 59.36 | 86.89 | 87.95 | 32.97 | 52.85 | 65.11 |
Specificity | 21.05 | 100 | 76.36 | 79.49 | 68.18 | 87.88 | 52.69 | 86.35 | 73.68 | 74.81 | 91.18 | 43.90 | 97.14 |
Evaluation Parameter | APEG-B Subject | Average | |||||||||||
a14 | a15 | a16 | a17 | a18 | a19 | a20 | b01 | b02 | b03 | b04 | |||
Accuracy | 81.88 | 75 | 76.04 | 78.06 | 84.38 | 84.79 | 73.13 | 90.63 | 47.92 | 63.57 | 28.81 | 70.68 | |
Sensitivity | 99.74 | 80.62 | 72.50 | 93.48 | 89.04 | 68.11 | 65.08 | 10.53 | 88.17 | 84.62 | 90.0 | 70.14 | |
Specificity | 11.34 | 58.87 | 83.13 | 68.47 | 45.10 | 95.25 | 85.95 | 93.93 | 38.24 | 59.72 | 27.32 | 67.50 |
Evaluation Parameter | APEG-C Subject | ||||||||||||
a01 | a02 | a03 | a04 | a05 | a06 | a07 | a08 | a09 | a10 | a11 | a12 | a13 | |
Accuracy | 89.80 | 21.46 | 83.96 | 69.17 | 76.90 | 64.58 | 70.83 | 78.54 | 79.58 | 76.25 | 57.38 | 44.79 | 81.25 |
Sensitivity | 94.92 | 1.0 | 77.48 | 67.80 | 77.05 | 16.39 | 85.71 | 61.50 | 78.69 | 79.52 | 2.75 | 43.96 | 65.96 |
Specificity | 42.11 | 100 | 89.53 | 84.62 | 76.70 | 94.28 | 47.31 | 89.42 | 82.46 | 75.57 | 99.16 | 53.66 | 95.92 |
Evaluation Parameter | APEG-C Subject | ||||||||||||
a14 | a15 | a16 | a17 | a18 | a19 | a20 | b01 | b02 | b03 | b04 | c02 | c06 | |
Accuracy | 81.46 | 73.96 | 73.33 | 78.61 | 88.75 | 78.96 | 56.25 | 93.96 | 63.54 | 72.38 | 41.67 | 98.54 | 91.90 |
Sensitivity | 98.43 | 78.93 | 70.31 | 65.94 | 92.31 | 57.84 | 38.98 | 0 | 74.19 | 70.77 | 50.0 | 0 | 0 |
Specificity | 14.43 | 59.68 | 79.38 | 86.49 | 58.82 | 92.20 | 83.78 | 97.83 | 60.98 | 72.68 | 41.46 | 98.75 | 92.12 |
Evaluation Parameter | APEG-C Subject | Average | |||||||||||
c07 | c09 | c10 | |||||||||||
Accuracy | 95.48 | 90.71 | 47.86 | 73.17 | |||||||||
Sensitivity | 25.0 | 0 | 0 | 50.88 | |||||||||
Specificity | 96.15 | 91.15 | 47.97 | 76.02 |
Author (Year) | Database (Population) | Time-Window Length | Method | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
Lin et al. (this paper) | Physionet Apnea-ECG (APEG-A: 3660 min, APEG-B: 11,160 min, APEG-C *: 15,180 min) | 1 min | CWT + SVM/KNN/EL | 91.4 | 89.8 | 92.4 |
Quinceno-Manrique et al. [16] (2009) | Physionet Apnea-ECG (all observations: 8928 intervals, best observations: 4000 intervals) | 3 min | SPWVD + PCA + KNN | 89.02 | Not mentioned | Not mentioned |
Nguyen et al. [17] (2014) | Physionet Apnea-ECG (whole database: Group A, B, and C) | 1 min | RQA + greedy forward feature selection + SVM and neural network | 85.26 | 86.37 | 83.47 |
Sannino et al. [18] (2014) | Physionet Apnea-ECG (whole database: Group A, B, and C) | 1 min | Frequency domain, time domain, and non-linear parameters + DEREx | 85.76 | 65.82 | 66.03 |
Varon et al. [12] (2015) | Physionet Apnea-ECG (34,324 annotated min) | 1 min | EDR (Ramp/PCA/kPCA) + LS-SVM | 84.74 | 84.71 | 84.69 |
Hassan [29] (2016) | Physionet Apnea-ECG (whole database: Group A, B, and C) | 1 min | TQWT + NIG + AdaBoost | 87.33 | 81.99 | 90.72 |
Surrel et al. [30] (2018) | Physionet Apnea-ECG (34,313 recorded min) | 1 min | Apnea scoring (energy) + SVM | 85.70 | 81.40 | 88.40 |
Singh et al. [20] (2019) | Physionet Apnea-ECG (whole database: Group A, B, and C) | 1 min | CWT + AlexNet CNN + Decision Fusion (SVM, KNN, Ensemble, LDA) | 86.22 | 90 | 83.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Wang, Y.-W.; Setiawan, F.; Trang, N.T.H.; Lin, C.-W. Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms. J. Clin. Med. 2022, 11, 192. https://doi.org/10.3390/jcm11010192
Lin C-Y, Wang Y-W, Setiawan F, Trang NTH, Lin C-W. Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms. Journal of Clinical Medicine. 2022; 11(1):192. https://doi.org/10.3390/jcm11010192
Chicago/Turabian StyleLin, Cheng-Yu, Yi-Wen Wang, Febryan Setiawan, Nguyen Thi Hoang Trang, and Che-Wei Lin. 2022. "Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms" Journal of Clinical Medicine 11, no. 1: 192. https://doi.org/10.3390/jcm11010192
APA StyleLin, C.-Y., Wang, Y.-W., Setiawan, F., Trang, N. T. H., & Lin, C.-W. (2022). Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms. Journal of Clinical Medicine, 11(1), 192. https://doi.org/10.3390/jcm11010192