Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CMR Protocol
2.3. Functional Evaluation
2.4. Image Quality Assessment
2.5. Conditions of Image Analysis
2.6. Statistical Analysis
3. Results
3.1. Population Description
3.2. Cine Acquisitions
3.3. Quantitative Evaluation
3.4. Qualitative Evaluation
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khairy, P.; Ionescu-Ittu, R.; Mackie, A.S.; Abrahamowicz, M.; Pilote, L.; Marelli, A.J. Changing Mortality in Congenital Heart Disease. J. Am. Coll. Cardiol. 2010, 56, 1149–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Vincenti, G.; Monney, P.; Chaptinel, J.; Rutz, T.; Coppo, S.; Zenge, M.O.; Schmidt, M.; Nadar, M.S.; Piccini, D.; Chèvre, P.; et al. Compressed Sensing Single-Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass. J. Am. Coll. Cardiol. Imaging 2014, 7, 882–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kido, T.; Kido, T.; Nakamura, M.; Watanabe, K.; Schmidt, M.; Forman, C.; Mochizuki, T. Compressed Sensing Real-Time Cine Cardiovascular Magnetic Resonance: Accurate Assessment of Left Ventricular Function in a Single-Breath-Hold. J. Cardiovasc. Magn. Reson. 2016, 18, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Sudarski, S.; Henzler, T.; Haubenreisser, H.; Dösch, C.; Zenge, M.O.; Schmidt, M.; Nadar, M.S.; Borggrefe, M.; Schoenberg, S.O.; Papavassiliu, T. Free-Breathing Sparse Sampling Cine MR Imaging with Iterative Reconstruction for the Assessment of Left Ventricular Function and Mass at 3.0 T. Radiology 2017, 282, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.D.; Carr, M.; Botelho, M.P.F.; Rahsepar, A.A.; Markl, M.; Zenge, M.O.; Schmidt, M.; Nadar, M.S.; Spottiswoode, B.; Collins, J.D.; et al. Highly Accelerated Cardiac MRI Using Iterative SENSE Reconstruction: Initial Clinical Experience. Int. J. Cardiovasc. Imaging 2016, 32, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Camargo, G.C.; Erthal, F.; Sabioni, L.; Penna, F.; Strecker, R.; Schmidt, M.; Zenge, M.O.; Lima, R.d.S.L.; Gottlieb, I. Real-Time Cardiac Magnetic Resonance Cine Imaging with Sparse Sampling and Iterative Reconstruction for Left-Ventricular Measures: Comparison with Gold-Standard Segmented Steady-State Free Precession. Magn. Reson. Imaging 2017, 38, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Goebel, J.; Nensa, F.; Bomas, B.; Schemuth, H.P.; Maderwald, S.; Gratz, M.; Quick, H.H.; Schlosser, T.; Nassenstein, K. Real-Time SPARSE-SENSE Cardiac Cine MR Imaging: Optimization of Image Reconstruction and Sequence Validation. Eur. Radiol. 2016, 26, 4482–4489. [Google Scholar] [CrossRef] [PubMed]
- Kido, T.; Kido, T.; Nakamura, M.; Watanabe, K.; Schmidt, M.; Forman, C.; Mochizuki, T. Assessment of Left Ventricular Function and Mass on Free-Breathing Compressed Sensing Real-Time Cine Imaging. Circ. J. 2017, 81, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Bogachkov, A.; Ayache, J.B.; Allen, B.D.; Murphy, I.; Carr, M.L.; Spottiswoode, B.; Schmidt, M.; Zenge, M.O.; Nadar, M.S.; Zuehlsdorff, S.; et al. Right Ventricular Assessment at Cardiac MRI: Initial Clinical Experience Utilizing an IS-SENSE Reconstruction. Int. J. Cardiovasc. Imaging 2016, 32, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Haubenreisser, H.; Henzler, T.; Budjan, J.; Sudarski, S.; Zenge, M.O.; Schmidt, M.; Nadar, M.S.; Borggrefe, M.; Schoenberg, S.O.; Papavassiliu, T. Right Ventricular Imaging in 25 Seconds: Evaluating the Use of Sparse Sampling CINE with Iterative Reconstruction for Volumetric Analysis of the Right Ventricle. Investig. Radiol. 2016, 51, 379–386. [Google Scholar] [CrossRef]
- Klinke, V.; Muzzarelli, S.; Lauriers, N.; Locca, D.; Vincenti, G.; Monney, P.; Lu, C.; Nothnagel, D.; Pilz, G.; Lombardi, M.; et al. Quality Assessment of Cardiovascular Magnetic Resonance in the Setting of the European CMR Registry: Description and Validation of Standardized Criteria. J. Cardiovasc. Magn. Reson. 2013, 15, 55. [Google Scholar] [CrossRef] [Green Version]
- Benchoufi, M.; Matzner-Lober, E.; Molinari, N.; Jannot, A.-S.; Soyer, P. Interobserver Agreement Issues in Radiology. Diagn. Interv. Imaging 2020, 101, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Myerson, S.G. Valvular and Hemodynamic Assessment with CMR. Heart Fail. Clin. 2009, 5, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Plein, S.; Bloomer, T.N.; Ridgway, J.P.; Jones, T.R.; Bainbridge, G.J.; Sivananthan, M.U. Steady-State Free Precession Magnetic Resonance Imaging of the Heart: Comparison with Segmented k-Space Gradient-Echo Imaging. J. Magn. Reson. Imaging 2001, 14, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Pennell, D.J.; Sechtem, U.P.; Higgins, C.B.; Manning, W.J.; Pohost, G.M.; Rademakers, F.E.; van Rossum, A.C.; Shaw, L.J.; Yucel, E.K.; Society for Cardiovascular Magnetic Resonance; et al. Clinical Indications for Cardiovascular Magnetic Resonance (CMR): Consensus Panel Report. Eur. Heart J. 2004, 25, 1940–1965. [Google Scholar] [CrossRef] [Green Version]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized Cardiovascular Magnetic Resonance Imaging (CMR) Protocols: 2020 Update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Vermersch, M.; Longère, B.; Coisne, A.; Schmidt, M.; Forman, C.; Monnet, A.; Pagniez, J.; Silvestri, V.; Simeone, A.; Cheasty, E.; et al. Compressed Sensing Real-Time Cine Imaging for Assessment of Ventricular Function, Volumes and Mass in Clinical Practice. Eur. Radiol. 2020, 30, 609–619. [Google Scholar] [CrossRef]
- Steeden, J.A.; Kowalik, G.T.; Tann, O.; Hughes, M.; Mortensen, K.H.; Muthurangu, V. Real-Time Assessment of Right and Left Ventricular Volumes and Function in Children Using High Spatiotemporal Resolution Spiral BSSFP with Compressed Sensing. J. Cardiovasc. Magn. Reson. 2018, 20, 79. [Google Scholar] [CrossRef]
- Clarke, C.J.; Gurka, M.J.; Norton, P.T.; Kramer, C.M.; Hoyer, A.W. Assessment of the Accuracy and Reproducibility of RV Volume Measurements by CMR in Congenital Heart Disease. J. Am. Coll. Cardiol. Imaging 2012, 5, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R.J.; von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D.J.; et al. Standardized Image Interpretation and Post-Processing in Cardiovascular Magnetic Resonance—2020 Update. J. Cardiovasc. Magn. Reson. 2020, 22, 19. [Google Scholar] [CrossRef]
- Winter, M.M.; Bernink, F.J.; Groenink, M.; Bouma, B.J.; van Dijk, A.P.; Helbing, W.A.; Tijssen, J.G.; Mulder, B.J. Evaluating the Systemic Right Ventricle by CMR: The Importance of Consistent and Reproducible Delineation of the Cavity. J. Cardiovasc. Magn. Reson. 2008, 10, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratz, S.; Chung, T.; Greil, G.F.; Samyn, M.M.; Taylor, A.M.; Valsangiacomo Buechel, E.R.; Yoo, S.-J.; Powell, A.J. Guidelines and Protocols for Cardiovascular Magnetic Resonance in Children and Adults with Congenital Heart Disease: SCMR Expert Consensus Group on Congenital Heart Disease. J. Cardiovasc. Magn. Reson. 2013, 15, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonello, B.; Kilner, P.J. Review of the Role of Cardiovascular Magnetic Resonance in Congenital Heart Disease, with a Focus on Right Ventricle Assessment. Arch. Cardiovasc. Dis. 2012, 105, 605–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, X.; Lin, L.; Dai, J.-W.; Schmidt, M.; Forman, C.; An, J.; Jin, Z.-Y.; Wang, Y.-N. Diagnostic Efficacy of 2-Shot Compressed Sensing Cine Sequence Cardiovascular Magnetic Resonance Imaging for Left Ventricular Function. Cardiovasc. Diagn. Ther. 2020, 10, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Kellman, P.; Chefd’hotel, C.; Lorenz, C.H.; Mancini, C.; Arai, A.E.; McVeigh, E.R. High Spatial and Temporal Resolution Cardiac Cine MRI from Retrospective Reconstruction of Data Acquired in Real Time Using Motion Correction and Resorting. Magn. Reson. Med. 2009, 62, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Rizk, J. 4D Flow MRI Applications in Congenital Heart Disease. Eur. Radiol. 2021, 31, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- Gabiano, E.; Silvestri, V.; Pagniez, J.; Simeone, A.; Hennicaux, J.; Longere, B.; Pontana, F. Le flux 4D: Technique et principales applications pour l’étude de l’aorte thoracique. J. Imaging Diagn. Interv. 2020. [Google Scholar] [CrossRef]
- Barker, N.; Fidock, B.; Johns, C.S.; Kaur, H.; Archer, G.; Rajaram, S.; Hill, C.; Thomas, S.; Karunasaagarar, K.; Capener, D.; et al. A Systematic Review of Right Ventricular Diastolic Assessment by 4D Flow CMR. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef]
- Tariq, U.; Hsiao, A.; Alley, M.; Zhang, T.; Lustig, M.; Vasanawala, S.S. Venous and Arterial Flow Quantification Are Equally Accurate and Precise with Parallel Imaging Compressed Sensing 4D Phase Contrast MRI. J. Magn. Reson. Imaging 2013, 37, 1419–1426. [Google Scholar] [CrossRef] [Green Version]
- Longere, B.; Braye, G.; Pagniez, J.; Silvestri, V.; Simeone, A.; Kasprzak, K.; Monnet, A.; Pontana, F. Compressed Sensing 4D Flow MRI for the Assessment of the Left Ventricular Stroke Volume. In Proceedings of the European Society of Cardiovascular Radiology Congress, Antwerp, Belgium, 24–26 October 2019; p. P-0047. [Google Scholar]
- Hsiao, A.; Lustig, M.; Alley, M.T.; Murphy, M.; Chan, F.P.; Herfkens, R.J.; Vasanawala, S.S. Rapid Pediatric Cardiac Assessment of Flow and Ventricular Volume with Compressed Sensing Parallel Imaging Volumetric Cine Phase-Contrast MRI. Am. J. Roentgenol. 2012, 198, W250–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longère, B.; Chavent, M.-H.; Coisne, A.; Gkizas, C.; Pagniez, J.; Simeone, A.; Silvestri, V.; Schmidt, M.; Forman, C.; Montaigne, D.; et al. Single Breath-Hold Compressed Sensing Real-Time Cine Imaging to Assess Left Ventricular Motion in Myocardial Infarction. Diagn. Interv. Imaging 2020. [Google Scholar] [CrossRef]
- Goebel, J.; Nensa, F.; Schemuth, H.P.; Maderwald, S.; Gratz, M.; Quick, H.H.; Schlosser, T.; Nassenstein, K. Compressed Sensing Cine Imaging with High Spatial or High Temporal Resolution for Analysis of Left Ventricular Function. J. Magn. Reson. Imaging 2016, 44, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.C.W.; Strugnell, W.; Riley, R.; Schmitt, B.; Zenge, M.; Schmidt, M.; Morris, N.R.; Hamilton-Craig, C. Higher Resolution Cine Imaging with Compressed Sensing for Accelerated Clinical Left Ventricular Evaluation. J. Magn. Reson. Imaging 2017, 45, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Wetzl, J.; Schmidt, M.; Pontana, F.; Longère, B.; Lugauer, F.; Maier, A.; Hornegger, J.; Forman, C. Single-Breath-Hold 3-D CINE Imaging of the Left Ventricle Using Cartesian Sampling. MAGMA 2017, 31, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Blalock, S.E.; Banka, P.; Geva, T.; Powell, A.J.; Zhou, J.; Prakash, A. Interstudy Variability in Cardiac Magnetic Resonance Imaging Measurements of Ventricular Volume, Mass, and Ejection Fraction in Repaired Tetralogy of Fallot: A Prospective Observational Study. J. Magn. Reson. Imaging 2013, 38, 829–835. [Google Scholar] [CrossRef]
- Leiner, T.; Bogaert, J.; Friedrich, M.G.; Mohiaddin, R.; Muthurangu, V.; Myerson, S.; Powell, A.J.; Raman, S.V.; Pennell, D.J. SCMR Position Paper (2020) on Clinical Indications for Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2020, 22, 76. [Google Scholar] [CrossRef] [PubMed]
Parameters | SSFPref | CSrt |
---|---|---|
Repetition time—ms | 3.16 | 2.70 |
Echo time—ms | 1.23 | 1.14 |
Flip angle—degrees | 57 | 60 |
Field of view—mm2 | 375 × 280 | 360 × 270 |
Matrix—pixels2 | 288 × 216 | 224 × 168 |
Spatial resolution—mm2 | 1.3 × 1.3 | 1.6 × 1.6 |
Temporal resolution—ms | 41.2 | 49 |
Slice thickness/gap—mm | 8/2 | 8/2 |
Bandwidth—Hz/pixel | 915 | 900 |
ECG mode | Prospective triggering | Prospective triggering |
Number of measured cardiac phases per cycle | 20 a | 16 ± 4.1 |
Reconstructed cardiac frames per cycle—n | 20 a | 20 b |
Number of views per frame—n | 13.0 ± 3.7 c | 18 a |
Number of breath holds | 13.3 ± 2.9 | 1 a |
Cycles of iterative reconstruction—n | NA | 40 |
Breath-hold duration—cardiac cycle per slice | 7 | 2 d |
Acceleration factor | 2 | 11 |
Mean ± SD (95% CI) | Minimum Value | Maximum Value | |
---|---|---|---|
Age—years | 22.0 ± 9.0 (19.9–24.5) | 7 | 53 |
Weight—kg | 59.1 ± 16.8 (54.8–63.4) | 24 | 100 |
Height—cm | 163.4 ± 15.0 (159.5–167.2) | 121 | 190 |
Body surface area—m2 | 1.6 ± 0.3 (1.6–1.7) | 0.9 | 2.3 |
Heart rate—beats per minute | 74.6 ± 14.2 (71.0–78.2) | 44 | 112 |
SSFPref Sequence (mean ± SD (95% CI)) | CSrt Sequence (mean ± SD (95% CI)) | Mean Difference ± SD (95% CI) | Paired t Test p | ICC | ||
---|---|---|---|---|---|---|
Inter | Intra | |||||
RVEF—% | 49.8 ± 7.8 (47.8–51.8) | 48.7 ± 8.6 (46.5–50.9) | −1.07 ± 2.90 (−1.81 to −0.32) | 0.006 | 0.95 | 0.94 |
RVEDV—mL | 192.9 ± 60.1 (177.5–208.3) | 194.9 ± 62.1 (179.0–210.8) | 2.00 ± 11.21 (−0.87 to 4.87) | 0.169 | 0.91 | 0.97 |
RVESV—mL | 98.9 ± 41.0 (88.4–109.4) | 102.4 ± 44.0 (91.1–113.7) | 3.51 ± 11.05 (0.68–6.34) | 0.016 | 0.97 | 0.98 |
RVSV—mL | 93.6 ± 25.7 (87.0–100.2) | 92.3 ± 26.0 (85.7–99.0) | −1.28 ± 2.96 (−2.04 to −0.52) | 0.001 | 0.99 | 0.93 |
LVEF—% | 57.4 ± 7.5 (55.4–59.3) | 57.8 ± 7.9 (55.7–59.8) | 0.38 ± 4.22 (−0.70 to 1.46) | 0.488 | 0.98 | 0.98 |
LVEDV—mL | 130.0 ± 40.1 (119.8–140.3) | 128.7 ± 43.6 (117.5–139.8) | −1.39 ± 10.68 (−4.13 to 1.34) | 0.312 | 0.98 | 0.97 |
LVESV—mL | 56.3 ± 23.5 (50.3–62.3) | 55.5 ± 27.1 (48.5–62.4) | −0.84 ± 10.24 (−3.46 to 1.79) | 0.526 | 0.97 | 0.98 |
LVSV—mL | 73.6 ± 21.9 (68.0–79.2) | 73.4 ± 22.1 (67.7–79.0) | −0.23 ± 3.14 (−1.03 to 0.58) | 0.571 | 0.99 | 0.99 |
LVM—g | 95.7 ± 33.9 (87.0–104.4) | 102.9 ± 38.5 (93.0–112.8) | 7.18 ± 15.12 (3.31 to 11.05) | 0.0005 | 0.96 | 0.97 |
a. Image quality assessment performed for both sequences. | |||||||
Overall image quality score | CMR RV artifact score | ||||||
Score 1 Non-diagnostic | Score 2 Fair | Score 3 Good | Score 4 Excellent | Score 0–3 | Score 4–6 | Score 7–10 | |
SSFPref—n (%) | 1/61 (1.6%) | 10/61 (16.4%) | 22/61 (36.1%) | 28/61 (45.9%) | 47/61 (77.1%) | 11/61 (18.0%) | 3/61 (4.9%) |
CSrt—n (%) | 0/61 (0.0%) | 12/61 (19.7%) | 49/61 (80.3%) | 0/61 (0.0%) | 55/61 (90.2%) | 6/61 (9.8%) | 0/61 (0.0%) |
p-value | 0.0001 | 0.0016 | |||||
The significance of the Wilcoxon test is defined by p < 0.05. Abbreviations: SSFPref, reference steady-state free-precession cine; CSrt, real-time compressed-sensing cine; n (%), data represented as numbers (percentages); CMR, cardiac magnetic resonance; RV, right ventricle. | |||||||
b. Diagnostic performance crosstabulation for tricuspid-regurgitation-flow-related artifact depiction. | |||||||
SSFPref: TR+ | SSFPref: TR− | Total | |||||
CSrt: TR+ | 23/61 (37.7%) | 0 (0.0%) | 23/61 (37.7%) | ||||
CSrt: TR– | 8/61 (13.1%) | 30 (49.2%) | 38/61 (62.3%) | ||||
Total | 31/61 (50.8%) | 30/61 (49.2%) | 61/61 (100.0%) | ||||
Considering SSFPref as the gold standard, CSrt demonstrated the following diagnostic performances for the depiction of tricuspid-regurgitation-flow-related artifacts: sensitivity = 74.2%; specificity = 100%; positive predictive value = 100%; negative predictive value = 78.9%; area under ROC = 0.87. Abbreviations: SSFPref, reference steady-state free-precession cine; CSrt, real-time compressed-sensing cine; TR+, conspicuous tricuspid-regurgitation-flow-related artifact; TR–, no tricuspid-regurgitation-flow-related artifact depicted; ROC, receiver operating characteristic. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longère, B.; Pagniez, J.; Coisne, A.; Farah, H.; Schmidt, M.; Forman, C.; Silvestri, V.; Simeone, A.; Gkizas, C.V.; Hennicaux, J.; et al. Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging. J. Clin. Med. 2021, 10, 1930. https://doi.org/10.3390/jcm10091930
Longère B, Pagniez J, Coisne A, Farah H, Schmidt M, Forman C, Silvestri V, Simeone A, Gkizas CV, Hennicaux J, et al. Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging. Journal of Clinical Medicine. 2021; 10(9):1930. https://doi.org/10.3390/jcm10091930
Chicago/Turabian StyleLongère, Benjamin, Julien Pagniez, Augustin Coisne, Hedi Farah, Michaela Schmidt, Christoph Forman, Valentina Silvestri, Arianna Simeone, Christos V Gkizas, Justin Hennicaux, and et al. 2021. "Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging" Journal of Clinical Medicine 10, no. 9: 1930. https://doi.org/10.3390/jcm10091930
APA StyleLongère, B., Pagniez, J., Coisne, A., Farah, H., Schmidt, M., Forman, C., Silvestri, V., Simeone, A., Gkizas, C. V., Hennicaux, J., Cheasty, E., Toupin, S., Montaigne, D., & Pontana, F. (2021). Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging. Journal of Clinical Medicine, 10(9), 1930. https://doi.org/10.3390/jcm10091930