Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dodd, C.E.; Schlesinger, L.S. New concepts in understanding latent tuberculosis. Curr. Opin. Infect. Dis. 2017, 30, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Perez-Velez, C.M.; Roya-Pabon, C.L.; Marais, B.J. A systematic approach to diagnosing intra-thoracic tuberculosis in children. J. Infect. 2017, 74, S74–S83. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Denkinger, C.M.; Kik, S.V.; Cirillo, D.M.; Casenghi, M.; Shinnick, T.; Weyer, K.; Gilpin, C.; Boehme, C.C.; Schito, M.; Kimerling, M.; et al. Defining the needs for next generation assays for tuberculosis. J. Infect. Dis. 2015, 211, S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Togun, T.O.; MacLean, E.; Kampmann, B.; Pai, M. Biomarkers for diagnosis of childhood tuberculosis: A systematic review. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef]
- Sigal, G.B.; Pinter, A.; Lowary, T.L.; Kawasaki, M.; Li, A.; Mathew, A.; Tsionsky, M.; Zheng, R.B.; Plisova, T.; Shen, K.; et al. A novel sensitive immunoassay targeting the 5-Methylthio-D- Xylofuranose–Lipoarabinomannan epitope meets the WHO’s performance target for tuberculosis diagnosis. J. Clin. Microbiol. 2018, 56, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.E. Complement fixation with urine in tuberculosis. Am. Rev. Tuberc. 1931, 23, 733–738. [Google Scholar]
- World Health Organization. Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living With HIV; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Lawn, S.D.; Gupta-Wright, A. Detection of lipoarabinomannan (LAM) in urine is indicative of disseminated TB with renal involvement in patients living with HIV and advanced immunodeficiency: Evidence and implications. Trans. R. Soc. Trop. Med. Hyg. 2015, 110, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.A.; Lukande, R.L.; Kalungi, S.; Van Marck, E.; Van De Vijver, K.; Kambugu, A.; Nelson, A.M.; Colebunders, R.; Manabe, Y.C. Is urinary lipoarabinomannan the result of renal tuberculosis? Assessment of the renal histology in an autopsy cohort of Ugandan HIV-infected adults. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.; Racow, K.; Bekker, L.G.; Middelkoop, K.; Vogt, M.; Kreiswirth, B.N.; Lawn, S.D. Lipoarabinomannan in urine during tuberculosis treatment: Association with host and pathogen factors and mycobacteriuria. BMC Infect. Dis. 2012, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Bulterys, M.A.; Wagner, B.; Redard-Jacot, M.; Suresh, A.; Pollock, N.R.; Moreau, E.; Denkinger, C.M.; Drain, P.K.; Broger, T. Point-of-care urine LAM tests for tuberculosis diagnosis: A status update. J. Clin. Med. 2019, 9, 111. [Google Scholar] [CrossRef]
- Bjerrum, S.; Schiller, I.; Dendukuri, N.; Kohli, M.; Nathavitharana, R.R.; Zwerling, A.A.; Denkinger, C.M.; Steingart, K.R.; Shah, M. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in people living with HIV. Cochrane Database Syst. Rev. 2019, CD011420. [Google Scholar] [CrossRef]
- Kerkhoff, A.D.; Sossen, B.; Schutz, C.; Reipold, E.I.; Trollip, A.; Moreau, E.; Schumacher, S.G.; Burton, R.; Ward, A.; Nicol, M.P.; et al. Diagnostic sensitivity of SILVAMP TB-LAM (FujiLAM) point-of-care urine assay for extra-pulmonary tuberculosis in people living with HIV. Eur. Respir. J. 2020, 55, 1901259. [Google Scholar] [CrossRef]
- Broger, T.; Sossen, B.; du Toit, E.; Kerkhoff, A.D.; Schutz, C.; Ivanova Reipold, E.; Ward, A.; Barr, D.A.; Macé, A.; Trollip, A.; et al. Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV: A diagnostic accuracy study. Lancet Infect. Dis. 2019, 19, 852–861. [Google Scholar] [CrossRef]
- Rangaka, M.X.; Cavalcante, S.C.; Marais, B.J.; Thim, S.; Martinson, N.A.; Swaminathan, S.; Chaisson, R.E. Controlling the seedbeds of tuberculosis: Diagnosis and treatment of tuberculosis infection. Lancet 2015, 386, 2344–2353. [Google Scholar] [CrossRef]
- Marais, B.J.; Schaaf, H.S. Tuberculosis in children. Cold Spring Harb. Perspect. Med. 2014, 4, 168–178. [Google Scholar] [CrossRef]
- Marais, B.J. Childhood tuberculosis—out of the shadows. Pneumonia 2016, 8, 1–2. [Google Scholar] [CrossRef][Green Version]
- Comella-del-Barrio, P.; Abellana, R.; Villar-Hernández, R.; Coute, M.D.J.; Mingels, B.S.; Aliaga, L.C.; Narcisse, M.; Gautier, J.; Ascaso, C.; Latorre, I.; et al. A model based on the combination of IFN-γ, IP-10, ferritin and 25-Hydroxyvitamin D for discriminating latent from active tuberculosis in children. Front. Microbiol. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Dunlap, N.E.; Bass, J.; Fujiwara, P.; Hopewell, P.; Horsburgh, C.R.; Salfinger, M.; Simone, P.M. Diagnostic standards and classification of tuberculosis in adults and children. Am. J. Respir. Crit. Care Med. 2000, 161, 1376–1395. [Google Scholar] [CrossRef]
- Domínguez, J.; Ruiz-Manzano, J.; De Souza-Galvão, M.; Latorre, I.; Milà, C.; Blanco, S.; Jiménez, M.Á.; Prat, C.; Lacoma, A.; Altet, N.; et al. Comparison of two commercially available gamma interferon blood tests for immunodiagnosis of tuberculosis. Clin. Vaccine Immunol. 2008, 15, 168–171. [Google Scholar] [CrossRef]
- Graham, S.M.; Cuevas, L.E.; Jean-Philippe, P.; Browning, R.; Casenghi, M.; Detjen, A.K.; Gnanashanmugam, D.; Hesseling, A.C.; Kampmann, B.; Mandalakas, A.; et al. Clinical case definitions for classification of intrathoracic tuberculosis in children: An update. Clin. Infect. Dis. 2015, 61, S179–S187. [Google Scholar] [CrossRef]
- World Health Organization. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- World Health Organization. WHO Anthro for Personal Computers, Version 3.2.2, 2011: Software for Assessing Growth and Development of the World’s Children; WHO: Geneva, Switzerland, 2010; p. 14. [Google Scholar]
- Iskandar, A.; Nursiloningrum, E.; Arthamin, M.Z.; Olivianto, E.; Chandrakusuma, M.S. The diagnostic value of urine lipoarabinomannan (LAM) antigen in childhood tuberculosis. J. Clin. Diagn. Res. 2017, 11, EC32–EC35. [Google Scholar] [CrossRef]
- Nicol, M.P.; Allen, V.; Workman, L.; Isaacs, W.; Munro, J.; Pienaar, S.; Black, F.; Adonis, L.; Zemanay, W.; Ghebrekristos, Y.; et al. Urine lipoarabinomannan testing for diagnosis of pulmonary tuberculosis in children: A prospective study. Lancet Glob. Health 2014, 2, e278–e284. [Google Scholar] [CrossRef]
- Nicol, M.P.; Schumacher, S.G.; Workman, L.; Broger, T.; Baard, C.; Prins, M.; Bateman, L.; du Toit, E.; van Heerden, J.; Szekely, R.; et al. Accuracy of a novel urine test, Fujifilm SILVAMP tuberculosis lipoarabinomannan, for the diagnosis of pulmonary tuberculosis in children. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Nkereuwem, E.; Togun, T.; Gomez, M.P.; Székely, R.; Macé, A.; Jobe, D.; Schumacher, S.G.; Kampmann, B.; Denkinger, C.M.; Abok, I.I.; et al. Comparing accuracy of lipoarabinomannan urine tests for diagnosis of pulmonary tuberculosis in children from four African countries: A cross-sectional study. Lancet Infect. Dis. 2020, 3099, 1–9. [Google Scholar] [CrossRef]
- Paris, L.; Magni, R.; Zaidi, F.; Araujo, R.; Saini, N.; Harpole, M.; Coronel, J.; Kirwan, D.E.; Steinberg, H.; Gilman, R.H.; et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef]
- Jaganath, D.; Mupere, E. Childhood tuberculosis and malnutrition. J. Infect. Dis. 2012, 206, 1809–1815. [Google Scholar] [CrossRef]
- Ibrahim, M.K.; Zambruni, M.; Melby, C.L.; Melby, P.C. Impact of childhood malnutrition on host defense and infection. Clin. Microbiol. Rev. 2017, 30, 919–971. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Saravanan, N.; Bethunaickan, R.; Tripathy, S. Malnutrition: Modulator of immune responses in tuberculosis. Front. Immunol. 2017, 8, 1316. [Google Scholar] [CrossRef] [PubMed]
- Broger, T.; Nicol, M.P.; Sigal, G.B.; Gotuzzo, E.; Zimmer, A.J.; Surtie, S.; Caceres-Nakiche, T.; Mantsoki, A.; Reipold, E.I.; Székely, R.; et al. Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. J. Clin. Investig. 2020, 130, 5756–5764. [Google Scholar] [CrossRef] [PubMed]
- Bjerrum, S.; Broger, T.; Székely, R.; Mitarai, S.; Opintan, J.A.; Kenu, E.; Lartey, M.; Addo, K.K.; Chikamatsu, K.; Macé, A.; et al. Diagnostic accuracy of a novel and rapid lipoarabinomannan test for diagnosing tuberculosis among people with human immunodeficiency virus. Open Forum Infect. Dis. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. High-Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting; WHO: Geneva, Switzerland, 2014; pp. 1–96. [Google Scholar]
- Ricks, S.; Denkinger, C.M.; Schumacher, S.G.; Hallett, T.B.; Arinaminpathy, N. The potential impact of urine-LAM diagnostics on tuberculosis incidence and mortality: A modelling analysis. PLoS Med. 2020, 17, e1003466. [Google Scholar] [CrossRef]
- Roya-Pabon, C.L.; Perez-Velez, C.M. Tuberculosis exposure, infection and disease in children: A systematic diagnostic approach. Pneumonia 2016, 8, 1–18. [Google Scholar] [CrossRef]
- Broger, T.; Muyoyeta, M.; Kerkhoff, A.D.; Denkinger, C.M.; Moreau, E. Tuberculosis test results using fresh versus biobanked urine samples with FujiLAM. Lancet Infect. Dis. 2020, 20, 22–23. [Google Scholar] [CrossRef]
Overall (n = 79) | Confirmed TB (n = 5) | Unconfirmed TB (n = 50) | Unlikely TB (n = 4) | Controls (n = 20) | p-Value | |
---|---|---|---|---|---|---|
Female | 28 (35%) | 1 (20%) | 21 (42%) | 1 (25%) | 5 (25%) | 0.530 |
Male | 51 (65%) | 4 (80%) | 29 (58%) | 3 (75%) | 15 (75%) | |
Median age (IQR) months | 76 (58–121) | 95 (51–128) | 76 (51–122) | 152 (98–165) | 70 (58–94) | 0.109 |
<5 yrs. | 24 (30%) | 1 (20%) | 16 (32%) | 0 (0%) | 7 (35%) | 0.654 |
≥5 yrs. | 55 (70%) | 4 (80%) | 34 (68%) | 4 (100%) | 13 (65%) | |
BCG scar (n = 74) | 56 (76%) | 3 (60%) | 35 (78%) | 2 (50%) | 16 (80%) | 0.390 |
TST or QFT-GIT positive | 55 (93%) | 5 (100%) | 46 (92%) | 4 (100%) | 0 (0%) | 1.000 |
TST positive | 52 (88%) | 4 (80%) | 44 (88%) | 4 (100%) | 0 (0%) | 0.707 |
QFT-GIT positive (n = 53) | 37 (70%) | 5 (100%) | 28 (64%) | 4 (100%) | 0 (0%) | 0.101 |
TB contact | 50 (85%) | 1 (20%) | 45 (90%) | 4 (100%) | 0 (0%) | 0.002 |
Cough | 48 (81%) | 5 (100%) | 39 (78%) | 4 (100%) | 0 (0%) | 0.491 |
Fever | 40 (68%) | 4 (80%) | 34 (68%) | 2 (50%) | 0 (0%) | 0.718 |
Lethargy | 4 (7%) | 3 (60%) | 1 (2%) | 0 (0%) | 0 (0%) | 0.002 |
Weight loss (n = 56) | 19 (34%) | 3 (60%) | 15 (32%) | 1 (25%) | 0 (0%) | 0.517 |
Adenopathy | 22 (37%) | 4 (80%) | 18 (36%) | 0 (0%) | 0 (0%) | 0.046 |
Underweight (n = 74) | 18 (31%) | 3 (60%) | 15 (30%) | 0 (0%) | 0 (0%) | 0.201 |
Stunted (n = 58) a | 12 (21%) | 2 (40%) | 9 (18.4%) | 1 (25%) | 0.418 | |
X-ray consistent with TB | 28 (46%) | 5 (100%) | 23 (46%) | 0 (0%) | NA | 0.161 |
Positive smear-microscopy (n = 52) | 10 (19%) | 3 (60%) | 7 (16%) | 0 (0%) | 0 (0%) | 0.062 |
Treatment completed | 50 (85%) | 5 (100%) | 45 (90%) | 0 (0%) | NA | <0.001 |
Lost to follow-up | 8 (14%) | 0 (0%) | 4 (8%) | 4 (100%) | NA | |
Died | 1 (2%) | 0 (0%) | 1 (2%) | 0 (0%) | NA | |
Intrathoracic | 18 (31%) | 2 (40%) | 16 (32%) | 0 (0%) | NA | <0.001 |
Extra-thoracic | 7 (12%) | 0 (0%) | 7 (14%) | 0 (0%) | NA | |
Both | 4 (7%) | 3 (60%) | 1 (2%) | 0 (0%) | NA | |
Not defined | 30 (51%) | 0 (0%) | 26 (52%) | 4 (100%) | NA |
FujiLAM | |||
---|---|---|---|
Positive n (%) | Negative n (%) | Total | |
Confirmed TB | 3 (60%) | 2 (40%) | 5 |
Unconfirmed TB | 3 (6%) | 47 (94%) | 50 |
Unlikely TB | 1 (25%) | 3 (75%) | 4 |
Controls | 1 (5%) | 19 (95%) | 20 |
All | 8 (10.1%) | 71 (89.9%) | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comella-del-Barrio, P.; Molina-Moya, B.; Gautier, J.; Villar-Hernández, R.; Doresca, M.J.C.; Sallés-Mingels, B.; Canales-Aliaga, L.; Narcisse, M.; Pérez-Porcuna, T.M.; Creswell, J.; et al. Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis. J. Clin. Med. 2021, 10, 1914. https://doi.org/10.3390/jcm10091914
Comella-del-Barrio P, Molina-Moya B, Gautier J, Villar-Hernández R, Doresca MJC, Sallés-Mingels B, Canales-Aliaga L, Narcisse M, Pérez-Porcuna TM, Creswell J, et al. Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis. Journal of Clinical Medicine. 2021; 10(9):1914. https://doi.org/10.3390/jcm10091914
Chicago/Turabian StyleComella-del-Barrio, Patricia, Bárbara Molina-Moya, Jacqueline Gautier, Raquel Villar-Hernández, Mariette Jean Coute Doresca, Beatriz Sallés-Mingels, Lydia Canales-Aliaga, Margareth Narcisse, Tomás M. Pérez-Porcuna, Jacob Creswell, and et al. 2021. "Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis" Journal of Clinical Medicine 10, no. 9: 1914. https://doi.org/10.3390/jcm10091914
APA StyleComella-del-Barrio, P., Molina-Moya, B., Gautier, J., Villar-Hernández, R., Doresca, M. J. C., Sallés-Mingels, B., Canales-Aliaga, L., Narcisse, M., Pérez-Porcuna, T. M., Creswell, J., Cuevas, L. E., & Domínguez, J. (2021). Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis. Journal of Clinical Medicine, 10(9), 1914. https://doi.org/10.3390/jcm10091914