Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dodd, C.E.; Schlesinger, L.S. New concepts in understanding latent tuberculosis. Curr. Opin. Infect. Dis. 2017, 30, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Perez-Velez, C.M.; Roya-Pabon, C.L.; Marais, B.J. A systematic approach to diagnosing intra-thoracic tuberculosis in children. J. Infect. 2017, 74, S74–S83. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Denkinger, C.M.; Kik, S.V.; Cirillo, D.M.; Casenghi, M.; Shinnick, T.; Weyer, K.; Gilpin, C.; Boehme, C.C.; Schito, M.; Kimerling, M.; et al. Defining the needs for next generation assays for tuberculosis. J. Infect. Dis. 2015, 211, S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Togun, T.O.; MacLean, E.; Kampmann, B.; Pai, M. Biomarkers for diagnosis of childhood tuberculosis: A systematic review. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sigal, G.B.; Pinter, A.; Lowary, T.L.; Kawasaki, M.; Li, A.; Mathew, A.; Tsionsky, M.; Zheng, R.B.; Plisova, T.; Shen, K.; et al. A novel sensitive immunoassay targeting the 5-Methylthio-D- Xylofuranose–Lipoarabinomannan epitope meets the WHO’s performance target for tuberculosis diagnosis. J. Clin. Microbiol. 2018, 56, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, M.E. Complement fixation with urine in tuberculosis. Am. Rev. Tuberc. 1931, 23, 733–738. [Google Scholar]
- World Health Organization. Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living With HIV; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Lawn, S.D.; Gupta-Wright, A. Detection of lipoarabinomannan (LAM) in urine is indicative of disseminated TB with renal involvement in patients living with HIV and advanced immunodeficiency: Evidence and implications. Trans. R. Soc. Trop. Med. Hyg. 2015, 110, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.A.; Lukande, R.L.; Kalungi, S.; Van Marck, E.; Van De Vijver, K.; Kambugu, A.; Nelson, A.M.; Colebunders, R.; Manabe, Y.C. Is urinary lipoarabinomannan the result of renal tuberculosis? Assessment of the renal histology in an autopsy cohort of Ugandan HIV-infected adults. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, R.; Racow, K.; Bekker, L.G.; Middelkoop, K.; Vogt, M.; Kreiswirth, B.N.; Lawn, S.D. Lipoarabinomannan in urine during tuberculosis treatment: Association with host and pathogen factors and mycobacteriuria. BMC Infect. Dis. 2012, 12, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulterys, M.A.; Wagner, B.; Redard-Jacot, M.; Suresh, A.; Pollock, N.R.; Moreau, E.; Denkinger, C.M.; Drain, P.K.; Broger, T. Point-of-care urine LAM tests for tuberculosis diagnosis: A status update. J. Clin. Med. 2019, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Bjerrum, S.; Schiller, I.; Dendukuri, N.; Kohli, M.; Nathavitharana, R.R.; Zwerling, A.A.; Denkinger, C.M.; Steingart, K.R.; Shah, M. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in people living with HIV. Cochrane Database Syst. Rev. 2019, CD011420. [Google Scholar] [CrossRef] [Green Version]
- Kerkhoff, A.D.; Sossen, B.; Schutz, C.; Reipold, E.I.; Trollip, A.; Moreau, E.; Schumacher, S.G.; Burton, R.; Ward, A.; Nicol, M.P.; et al. Diagnostic sensitivity of SILVAMP TB-LAM (FujiLAM) point-of-care urine assay for extra-pulmonary tuberculosis in people living with HIV. Eur. Respir. J. 2020, 55, 1901259. [Google Scholar] [CrossRef]
- Broger, T.; Sossen, B.; du Toit, E.; Kerkhoff, A.D.; Schutz, C.; Ivanova Reipold, E.; Ward, A.; Barr, D.A.; Macé, A.; Trollip, A.; et al. Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV: A diagnostic accuracy study. Lancet Infect. Dis. 2019, 19, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Rangaka, M.X.; Cavalcante, S.C.; Marais, B.J.; Thim, S.; Martinson, N.A.; Swaminathan, S.; Chaisson, R.E. Controlling the seedbeds of tuberculosis: Diagnosis and treatment of tuberculosis infection. Lancet 2015, 386, 2344–2353. [Google Scholar] [CrossRef] [Green Version]
- Marais, B.J.; Schaaf, H.S. Tuberculosis in children. Cold Spring Harb. Perspect. Med. 2014, 4, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Marais, B.J. Childhood tuberculosis—out of the shadows. Pneumonia 2016, 8, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Comella-del-Barrio, P.; Abellana, R.; Villar-Hernández, R.; Coute, M.D.J.; Mingels, B.S.; Aliaga, L.C.; Narcisse, M.; Gautier, J.; Ascaso, C.; Latorre, I.; et al. A model based on the combination of IFN-γ, IP-10, ferritin and 25-Hydroxyvitamin D for discriminating latent from active tuberculosis in children. Front. Microbiol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, N.E.; Bass, J.; Fujiwara, P.; Hopewell, P.; Horsburgh, C.R.; Salfinger, M.; Simone, P.M. Diagnostic standards and classification of tuberculosis in adults and children. Am. J. Respir. Crit. Care Med. 2000, 161, 1376–1395. [Google Scholar] [CrossRef]
- Domínguez, J.; Ruiz-Manzano, J.; De Souza-Galvão, M.; Latorre, I.; Milà, C.; Blanco, S.; Jiménez, M.Á.; Prat, C.; Lacoma, A.; Altet, N.; et al. Comparison of two commercially available gamma interferon blood tests for immunodiagnosis of tuberculosis. Clin. Vaccine Immunol. 2008, 15, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.M.; Cuevas, L.E.; Jean-Philippe, P.; Browning, R.; Casenghi, M.; Detjen, A.K.; Gnanashanmugam, D.; Hesseling, A.C.; Kampmann, B.; Mandalakas, A.; et al. Clinical case definitions for classification of intrathoracic tuberculosis in children: An update. Clin. Infect. Dis. 2015, 61, S179–S187. [Google Scholar] [CrossRef]
- World Health Organization. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- World Health Organization. WHO Anthro for Personal Computers, Version 3.2.2, 2011: Software for Assessing Growth and Development of the World’s Children; WHO: Geneva, Switzerland, 2010; p. 14. [Google Scholar]
- Iskandar, A.; Nursiloningrum, E.; Arthamin, M.Z.; Olivianto, E.; Chandrakusuma, M.S. The diagnostic value of urine lipoarabinomannan (LAM) antigen in childhood tuberculosis. J. Clin. Diagn. Res. 2017, 11, EC32–EC35. [Google Scholar] [CrossRef]
- Nicol, M.P.; Allen, V.; Workman, L.; Isaacs, W.; Munro, J.; Pienaar, S.; Black, F.; Adonis, L.; Zemanay, W.; Ghebrekristos, Y.; et al. Urine lipoarabinomannan testing for diagnosis of pulmonary tuberculosis in children: A prospective study. Lancet Glob. Health 2014, 2, e278–e284. [Google Scholar] [CrossRef] [Green Version]
- Nicol, M.P.; Schumacher, S.G.; Workman, L.; Broger, T.; Baard, C.; Prins, M.; Bateman, L.; du Toit, E.; van Heerden, J.; Szekely, R.; et al. Accuracy of a novel urine test, Fujifilm SILVAMP tuberculosis lipoarabinomannan, for the diagnosis of pulmonary tuberculosis in children. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Nkereuwem, E.; Togun, T.; Gomez, M.P.; Székely, R.; Macé, A.; Jobe, D.; Schumacher, S.G.; Kampmann, B.; Denkinger, C.M.; Abok, I.I.; et al. Comparing accuracy of lipoarabinomannan urine tests for diagnosis of pulmonary tuberculosis in children from four African countries: A cross-sectional study. Lancet Infect. Dis. 2020, 3099, 1–9. [Google Scholar] [CrossRef]
- Paris, L.; Magni, R.; Zaidi, F.; Araujo, R.; Saini, N.; Harpole, M.; Coronel, J.; Kirwan, D.E.; Steinberg, H.; Gilman, R.H.; et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Jaganath, D.; Mupere, E. Childhood tuberculosis and malnutrition. J. Infect. Dis. 2012, 206, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.K.; Zambruni, M.; Melby, C.L.; Melby, P.C. Impact of childhood malnutrition on host defense and infection. Clin. Microbiol. Rev. 2017, 30, 919–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekaran, P.; Saravanan, N.; Bethunaickan, R.; Tripathy, S. Malnutrition: Modulator of immune responses in tuberculosis. Front. Immunol. 2017, 8, 1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broger, T.; Nicol, M.P.; Sigal, G.B.; Gotuzzo, E.; Zimmer, A.J.; Surtie, S.; Caceres-Nakiche, T.; Mantsoki, A.; Reipold, E.I.; Székely, R.; et al. Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. J. Clin. Investig. 2020, 130, 5756–5764. [Google Scholar] [CrossRef] [PubMed]
- Bjerrum, S.; Broger, T.; Székely, R.; Mitarai, S.; Opintan, J.A.; Kenu, E.; Lartey, M.; Addo, K.K.; Chikamatsu, K.; Macé, A.; et al. Diagnostic accuracy of a novel and rapid lipoarabinomannan test for diagnosing tuberculosis among people with human immunodeficiency virus. Open Forum Infect. Dis. 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. High-Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting; WHO: Geneva, Switzerland, 2014; pp. 1–96. [Google Scholar]
- Ricks, S.; Denkinger, C.M.; Schumacher, S.G.; Hallett, T.B.; Arinaminpathy, N. The potential impact of urine-LAM diagnostics on tuberculosis incidence and mortality: A modelling analysis. PLoS Med. 2020, 17, e1003466. [Google Scholar] [CrossRef]
- Roya-Pabon, C.L.; Perez-Velez, C.M. Tuberculosis exposure, infection and disease in children: A systematic diagnostic approach. Pneumonia 2016, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Broger, T.; Muyoyeta, M.; Kerkhoff, A.D.; Denkinger, C.M.; Moreau, E. Tuberculosis test results using fresh versus biobanked urine samples with FujiLAM. Lancet Infect. Dis. 2020, 20, 22–23. [Google Scholar] [CrossRef] [Green Version]
Overall (n = 79) | Confirmed TB (n = 5) | Unconfirmed TB (n = 50) | Unlikely TB (n = 4) | Controls (n = 20) | p-Value | |
---|---|---|---|---|---|---|
Female | 28 (35%) | 1 (20%) | 21 (42%) | 1 (25%) | 5 (25%) | 0.530 |
Male | 51 (65%) | 4 (80%) | 29 (58%) | 3 (75%) | 15 (75%) | |
Median age (IQR) months | 76 (58–121) | 95 (51–128) | 76 (51–122) | 152 (98–165) | 70 (58–94) | 0.109 |
<5 yrs. | 24 (30%) | 1 (20%) | 16 (32%) | 0 (0%) | 7 (35%) | 0.654 |
≥5 yrs. | 55 (70%) | 4 (80%) | 34 (68%) | 4 (100%) | 13 (65%) | |
BCG scar (n = 74) | 56 (76%) | 3 (60%) | 35 (78%) | 2 (50%) | 16 (80%) | 0.390 |
TST or QFT-GIT positive | 55 (93%) | 5 (100%) | 46 (92%) | 4 (100%) | 0 (0%) | 1.000 |
TST positive | 52 (88%) | 4 (80%) | 44 (88%) | 4 (100%) | 0 (0%) | 0.707 |
QFT-GIT positive (n = 53) | 37 (70%) | 5 (100%) | 28 (64%) | 4 (100%) | 0 (0%) | 0.101 |
TB contact | 50 (85%) | 1 (20%) | 45 (90%) | 4 (100%) | 0 (0%) | 0.002 |
Cough | 48 (81%) | 5 (100%) | 39 (78%) | 4 (100%) | 0 (0%) | 0.491 |
Fever | 40 (68%) | 4 (80%) | 34 (68%) | 2 (50%) | 0 (0%) | 0.718 |
Lethargy | 4 (7%) | 3 (60%) | 1 (2%) | 0 (0%) | 0 (0%) | 0.002 |
Weight loss (n = 56) | 19 (34%) | 3 (60%) | 15 (32%) | 1 (25%) | 0 (0%) | 0.517 |
Adenopathy | 22 (37%) | 4 (80%) | 18 (36%) | 0 (0%) | 0 (0%) | 0.046 |
Underweight (n = 74) | 18 (31%) | 3 (60%) | 15 (30%) | 0 (0%) | 0 (0%) | 0.201 |
Stunted (n = 58) a | 12 (21%) | 2 (40%) | 9 (18.4%) | 1 (25%) | 0.418 | |
X-ray consistent with TB | 28 (46%) | 5 (100%) | 23 (46%) | 0 (0%) | NA | 0.161 |
Positive smear-microscopy (n = 52) | 10 (19%) | 3 (60%) | 7 (16%) | 0 (0%) | 0 (0%) | 0.062 |
Treatment completed | 50 (85%) | 5 (100%) | 45 (90%) | 0 (0%) | NA | <0.001 |
Lost to follow-up | 8 (14%) | 0 (0%) | 4 (8%) | 4 (100%) | NA | |
Died | 1 (2%) | 0 (0%) | 1 (2%) | 0 (0%) | NA | |
Intrathoracic | 18 (31%) | 2 (40%) | 16 (32%) | 0 (0%) | NA | <0.001 |
Extra-thoracic | 7 (12%) | 0 (0%) | 7 (14%) | 0 (0%) | NA | |
Both | 4 (7%) | 3 (60%) | 1 (2%) | 0 (0%) | NA | |
Not defined | 30 (51%) | 0 (0%) | 26 (52%) | 4 (100%) | NA |
FujiLAM | |||
---|---|---|---|
Positive n (%) | Negative n (%) | Total | |
Confirmed TB | 3 (60%) | 2 (40%) | 5 |
Unconfirmed TB | 3 (6%) | 47 (94%) | 50 |
Unlikely TB | 1 (25%) | 3 (75%) | 4 |
Controls | 1 (5%) | 19 (95%) | 20 |
All | 8 (10.1%) | 71 (89.9%) | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comella-del-Barrio, P.; Molina-Moya, B.; Gautier, J.; Villar-Hernández, R.; Doresca, M.J.C.; Sallés-Mingels, B.; Canales-Aliaga, L.; Narcisse, M.; Pérez-Porcuna, T.M.; Creswell, J.; et al. Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis. J. Clin. Med. 2021, 10, 1914. https://doi.org/10.3390/jcm10091914
Comella-del-Barrio P, Molina-Moya B, Gautier J, Villar-Hernández R, Doresca MJC, Sallés-Mingels B, Canales-Aliaga L, Narcisse M, Pérez-Porcuna TM, Creswell J, et al. Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis. Journal of Clinical Medicine. 2021; 10(9):1914. https://doi.org/10.3390/jcm10091914
Chicago/Turabian StyleComella-del-Barrio, Patricia, Bárbara Molina-Moya, Jacqueline Gautier, Raquel Villar-Hernández, Mariette Jean Coute Doresca, Beatriz Sallés-Mingels, Lydia Canales-Aliaga, Margareth Narcisse, Tomás M. Pérez-Porcuna, Jacob Creswell, and et al. 2021. "Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis" Journal of Clinical Medicine 10, no. 9: 1914. https://doi.org/10.3390/jcm10091914
APA StyleComella-del-Barrio, P., Molina-Moya, B., Gautier, J., Villar-Hernández, R., Doresca, M. J. C., Sallés-Mingels, B., Canales-Aliaga, L., Narcisse, M., Pérez-Porcuna, T. M., Creswell, J., Cuevas, L. E., & Domínguez, J. (2021). Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis. Journal of Clinical Medicine, 10(9), 1914. https://doi.org/10.3390/jcm10091914