Association of Myocardial Energetic Efficiency with Circumferential and Longitudinal Left Ventricular Myocardial Function in Subjects with Increased Body Mass Index (the FATCOR Study)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.J.; Kim, H.L.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.A. Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS ONE 2019, 14, e0222118. [Google Scholar] [CrossRef] [PubMed]
- Rider, O.J.; Cox, P.; Tyler, D.; Clarke, K.; Neubauer, S. Myocardial substrate metabolism in obesity. Int. J. Obes. 2013, 37, 972–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, C.; Sera, F.; Jin, Z.; Palmieri, V.; Homma, S.; Rundek, T.; Elkind, M.S.; Sacco, R.L.; Di Tullio, M.R. Abdominal adiposity, general obesity, and subclinical systolic dysfunction in the elderly: A population-based cohort study. Eur. J. Heart Fail. 2016, 18, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Kankaanpää, M.; Lehto, H.R.; Pärkkä, J.P.; Komu, M.; Viljanen, A.; Ferrannini, E.; Knuuti, J.; Nuutila, P.; Parkkola, R.; Iozzo, P. Myocardial triglyceride content and epicardial fat mass in human obesity: Relationship to left ventricular function and serum free fatty acid le. J. Clin. Endocrinol. Metab. 2006, 91, 4689–4695. [Google Scholar] [CrossRef] [PubMed]
- Knaapen, P.; Germans, T.; Knuuti, J.; Paulus, W.J.; Dijkmans, P.A.; Allaart, C.P.; Lammertsma, A.A.; Visser, F.C. Myocardial energetics and efficiency: Current status of the noninvasive approach. Circulation 2007, 115, 918–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Simone, G.; Izzo, R.; Losi, M.A.; Stabile, E.; Rozza, F.; Canciello, G.; Mancusi, C.; Trimarco, V.; De Luca, N.; Trimarco, B. Depressed myocardial energetic efficiency is associated with increased cardiovascular risk in hypertensive left ventricular hypertrophy. J. Hypertens. 2016, 34, 1846–1853. [Google Scholar] [CrossRef]
- de Simone, G.; Chinali, M.; Galderisi, M.; Benincasa, M.; Girfoglio, D.; Botta, I.; D’Addeo, G.; de Divitiis, O. Myocardial mechano-energetic efficiency in hypertensive adults. J. Hypertens. 2009, 27, 650–655. [Google Scholar] [CrossRef]
- Mancusi, C.; Losi, M.A.; Izzo, R.; Canciello, G.; Manzi, M.V.; Sforza, A.; De Luca, N.; Trimarco, B.; de Simone, G. Effect of diabetes and metabolic syndrome on myocardial mechano-energetic efficiency in hypertensive patients. The Campania Salute Network. J. Hum. Hypertens. 2017, 31, 395–399. [Google Scholar] [CrossRef]
- Mancusi, C.; de Simone, G.; Best, L.G.; Wang, W.; Zhang, Y.; Roman, M.J.; Lee, E.T.; Howard, B.V.; Devereux, R.B. Myocardial mechano-energetic efficiency and insulin resistance in non-diabetic members of the Strong Heart Study cohort. Cardiovasc. Diabetol. 2019, 18, 56. [Google Scholar] [CrossRef] [Green Version]
- Losi, M.A.; Izzo, R.; Mancusi, C.; Wang, W.; Roman, M.J.; Lee, E.T.; Howard, B.V.; Devereux, R.B.; de Simone, G. Depressed myocardial energetic efficiency increases risk of incident heart failure: The Strong Heart Study. J. Clin. Med. 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herfindal, B.; Gerdts, E.; Kringeland, E.A.; Saeed, S.; Midtbø, H.; Halland, H. Concomitant hypertension is associated with abnormal left ventricular geometry and lower systolic myocardial function in overweight participants: The FAT associated cardiovascular dysfunction study. J. Hypertens. 2020, 38, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial H. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. 1), S81–S90. [Google Scholar]
- Marwick, T.H.; Gillebert, T.C.; Aurigemma, G.; Chirinos, J.; Derumeaux, G.; Galderisi, M.; Gottdiener, J.; Haluska, B.; Ofili, E.; Segers, P.; et al. Recommendations on the use of echocardiography in adult hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J. Am. Soc. Echocardiogr. 2015, 28, 727–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Simone, G.; Devereux, R.B. Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. Eur. J. Echocardiogr. 2002, 3, 192–198. [Google Scholar] [CrossRef]
- Pristaj, N.; Saeed, S.; Midtbø, H.; Halland, H.; Matre, K.; Gerdts, E. Covariables of myocardial function in women and men with increased body mass index. High Blood Press. Cardiovasc. Prev. 2020, 20, 346. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Bendiab, S.T.N.; Meziane-Tani, A.; Ouabdesselam, S.; Methia, N.; Latreche, S.; Henaoui, L.; Monsuez, J.J.; Benkhedda, S. Factors associated with global longitudinal strain decline in hypertensive patients with normal left ventricular ejection fraction. Eur. J. Prev. Cardiol. 2017, 24, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.T.; Strudwick, M.; van der Geest, R.J.; Ng, A.C.C.; Gillinder, L.; Goo, S.Y.; Cowin, G.; Delgado, V.; Wang, W.Y.S.; Bax, J.J. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ. Cardiovasc. Imaging 2018, 11, e007372. [Google Scholar] [CrossRef] [Green Version]
- Biering-Sørensen, T.; Biering-Sørensen, S.R.; Olsen, F.J.; Sengeløv, M.; Jørgensen, P.G.; Mogelvang, R.; Shah, A.M.; Jensen, J.S. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: The Copenhagen City Heart Study. Circ. Cardiovasc. Imaging 2017, 10, e005521. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, T.; Cauwenberghs, N.; Knez, J.; Yang, W.Y.; Herbots, L.; D’hooge, J.; Haddad, F.; Thijs, L.; Voigt, J.U.; Staessen, J.A. Additive prognostic value of left ventricular systolic dysfunction in a population-based cohort. Circ. Cardiovasc. Imaging 2016, 9, e004661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, I.J. 2017 George Lyman Duff memorial lecture: Fat in the blood, fat in the artery, fat in the heart: Triglyceride in physiology and disease. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 700–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barger, P.M.; Kelly, D.P. Fatty acid utilization in the hypertrophied and failing heart: Molecular regulatory mechanisms. Am. J. Med. Sci. 1999, 318, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010, 90, 207–258. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniak, L.S.; Dobbins, R.L.; Metzger, G.J.; Sartoni-D’Ambrosia, G.; Arbique, D.; Vongpatanasin, W.; Unger, R.; Victor, R.G. Myocardial triglycerides and systolic function in humans: In vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn. Reason. Med. 2003, 49, 417–423. [Google Scholar] [CrossRef]
- Ng, A.C.; Delgado, V.; Bertini, M.; van der Meer, R.W.; Rijzewijk, L.J.; Hooi Ewe, S.; Sjizik, E.P.; Ijaar, P. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 2010, 122, 2538–2544. [Google Scholar] [CrossRef] [Green Version]
- Neeland, I.J.; Gupta, S.; Ayers, C.R.; Turer, A.T.; Rame, J.E.; Das, S.R.; Berry, J.D.; Khera, A.; McGuire, D.K.; Vega, G.L.; et al. Relation of regional fat distribution to left ventricular structure and function. Circ. Cardiovasc. Imaging 2013, 8, 4862. [Google Scholar] [CrossRef] [Green Version]
- Lembo, M.; Santoro, C.; Sorrentino, R.; Canonico, M.E.; Fazio, V.; Trimarco, B.; Tadic, M.; Galderisi, M.; Esposito, R. Interrelation between midwall mechanics and longitudinal strain in newly diagnosed and never-treated hypertensive patients without clinically defined hypertrophy. J. Hypertens. 2020, 38, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Ross, J., Jr.; Braunwald, E. The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation 1964, 29, 739–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanoverschelde, J.L.; Wijns, W.; Essamri, B.; Bol, A.; Robert, A.; Labar, D.; Cogneau, M.; Michel, C.; Melin, J.A. Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: Effects of dobutamine. Am. J. Physiol. 1993, 265, H1884–H1892. [Google Scholar] [CrossRef] [PubMed]
- Akinboboye, O.O.; Reichek, N.; Bergmann, S.R.; Chou, R.L. Correlates of myocardial oxygen demand measured by positron emission tomography in the hypertrophied left ventricle. Am. J. Hypertens. 2003, 16, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Yasumura, Y.; Nozawa, T.; Futaki, S.; Tanaka, N.; Goto, Y.; Suga, H. Dissociation of pressure-rate product from myocardial oxygen consumption in dog. Jpn. J. Physiol. 1987, 37, 657–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juszczyk, A.; Jankowska, K.; Zawiślak, B.; Surdacki, A.; Chyrchel, B. Depressed cardiac mechanical energetic efficiency: A contributor to cardiovascular risk in common metabolic diseases-from mechanisms to clinical applications. J. Clin. Med. 2020, 9, 2681. [Google Scholar] [CrossRef] [PubMed]
MEEi ≤ 0.41 (n = 111) | MEEi 0.42–0.54 (n = 120) | MEEi 0.54–0.67 (n = 125) | MEEi ≥ 0.67 (n = 124) | p for Trend | |
---|---|---|---|---|---|
Age (years) | 48 ± 9 | 49 ± 9 | 46 ± 9 | 47 ± 9 | 0.021 |
Women | 42% | 58% | 68% | 75% | <0.001 |
BMI (kg/m2) | 33 ± 5 | 32 ± 4 | 32 ± 4 | 31 ± 4 | <0.001 |
Fat Free mass (%) | 65 ± 13 | 60 ± 13 | 58 ± 11 | 56 ± 10 | <0.001 |
Hypertension | 85% | 76% | 71% | 65% | <0.001 |
Obesity | 75% | 62% | 67% | 48% | <0.001 |
Diabetes | 10% | 9% | 4% | 7.5% | 0.146 |
Systolic BP (mmHg) | 135 ± 16 | 132 ± 17 | 126 ± 14 | 125 ± 15 | <0.001 |
Diastolic BP (mmHg) | 86 ± 9 | 84 ± 10 | 80 ± 8 | 79 ± 8 | <0.001 |
Heart rate (bpm) | 72 ± 11 | 70 ± 10 | 67 ± 10 | 63 ± 9 | <0.001 |
Fasting plasma glucose (mmol/L) | 5.05 ± 0.5 | 5 ± 0.4 | 5 ± 0.5 | 4.8 ± 0.4 | 0.005 |
eGFR (ml/min/1.73m2) | 94.7 ± 14 | 95.5 ± 13 | 98.6 ± 13 | 96.1 ± 13 | 0.106 |
Total cholesterol (mmol/L) | 5.5 ± 1.2 | 5.5 ± 1 | 5.3 ± 1.1 | 5.5 ± 0.9 | 0.243 |
HDL-cholesterol (mmol/L) | 1.2 ± 0.3 | 1.3 ± 0.4 | 1.3 ± 0.3 | 1.4 ± 0.3 | 0.013 |
Triglycerides (mmol/L) | 1.8 ± 1.5 | 1.5 ± 0.8 | 1.4 ± 0.9 | 1.3 ± 0.6 | <0.001 |
HOMA-IR | 4.3 ± 6.5 | 3.8 ± 4.9 | 3.4 ± 4.7 | 2.8 ± 2.1 | 0.019 |
MEEi ≤ 0.41 (n = 111) | MEEi 0.42–0.54 (n = 120) | MEEi 0.54–0.67 (n = 125) | MEEi ≥ 0.67 (n = 124) | p for Trend | |
---|---|---|---|---|---|
LV end diastolic diameter (mm) | 50 ± 5 | 50 ± 4 | 49 ± 5 | 48 ± 4 | <0.001 |
Ejection fraction (%) | 61 ± 6 | 62 ± 7 | 64 ± 6 | 63 ± 6 | <0.001 |
Midwall fractional shortening (%) | 15 ± 2 | 16 ± 3 | 17 ± 2 | 17 ± 2 | <0.001 |
E/A | 1.1 ± 0.32 | 1.1 ± 0.25 | 1.25 ± 0.36 | 1.29 ± 0.33 | <0.001 |
LV mass (g/m2.7) | 45 ± 11 | 41 ± 7 | 37 ± 7 | 34 ± 6 | <0.001 |
Relative wall thickness | 0.37 ± 0.08 | 0.36 ± 0.08 | 0.32 ± 0.07 | 0.31 ± 0.06 | <0.001 |
LV hypertrophy | 34% | 17% | 10% | 2% | <0.001 |
Concentric geometry | 23% | 20% | 10% | 5% | <0.001 |
GLS (%) | −18 ± 3 | −19 ± 3 | −20 ± 3 | −20 ± 3 | <0.001 |
Univariate | Model 1 (R2 = 0.14) | Model 2 (R2 = 0.31) | ||||
---|---|---|---|---|---|---|
Beta | p | Beta | p | Beta | p | |
Age (years) | −0.086 | 0.058 | −0.092 | 0.991 | 0.001 | 0.991 |
Male sex | −0.240 | 0.0001 | −0.234 | 0.0001 | −0.059 | 0.130 |
BMI (kg/m2) | −0.174 | 0.0001 | −0.181 | 0.0001 | −0.068 | 0.173 |
Hypertension (n/y) | −0.189 | 0.0001 | −0.098 | 0.038 | −0.037 | 0.393 |
HOMA IR | −0.130 | 0.005 | −0.054 | 0.238 | −0.065 | 0.121 |
Triglycerides (mmol/L) | −0.167 | 0.0001 | −0.089 | 0.05 | −0.085 | 0.04 |
LV mass (g/m2.7) | −0.492 | 0.0001 | – | – | −0.392 | 0.0001 |
Concentric geometry (n/y) | −0.204 | 0.0001 | – | – | 0.034 | 0.481 |
MFS (%) | 0.322 | 0.0001 | – | – | 0.128 | 0.01 |
GLS (%) | −0.231 | 0.0001 | – | – | −0.129 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancusi, C.; Midtbø, H.; De Luca, N.; Halland, H.; de Simone, G.; Gerdts, E. Association of Myocardial Energetic Efficiency with Circumferential and Longitudinal Left Ventricular Myocardial Function in Subjects with Increased Body Mass Index (the FATCOR Study). J. Clin. Med. 2021, 10, 1581. https://doi.org/10.3390/jcm10081581
Mancusi C, Midtbø H, De Luca N, Halland H, de Simone G, Gerdts E. Association of Myocardial Energetic Efficiency with Circumferential and Longitudinal Left Ventricular Myocardial Function in Subjects with Increased Body Mass Index (the FATCOR Study). Journal of Clinical Medicine. 2021; 10(8):1581. https://doi.org/10.3390/jcm10081581
Chicago/Turabian StyleMancusi, Costantino, Helga Midtbø, Nicola De Luca, Hilde Halland, Giovanni de Simone, and Eva Gerdts. 2021. "Association of Myocardial Energetic Efficiency with Circumferential and Longitudinal Left Ventricular Myocardial Function in Subjects with Increased Body Mass Index (the FATCOR Study)" Journal of Clinical Medicine 10, no. 8: 1581. https://doi.org/10.3390/jcm10081581
APA StyleMancusi, C., Midtbø, H., De Luca, N., Halland, H., de Simone, G., & Gerdts, E. (2021). Association of Myocardial Energetic Efficiency with Circumferential and Longitudinal Left Ventricular Myocardial Function in Subjects with Increased Body Mass Index (the FATCOR Study). Journal of Clinical Medicine, 10(8), 1581. https://doi.org/10.3390/jcm10081581